1
|
Qi Y, Zhao R, Tian J, Lu J, He M, Tai Y. Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. Neurosci Bull 2024; 40:1774-1788. [PMID: 39080101 PMCID: PMC11607270 DOI: 10.1007/s12264-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 11/30/2024] Open
Abstract
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangteng Lu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Neupane C, Sharma R, Gao FF, Pham TL, Kim YS, Yoon BE, Jo EK, Sohn KC, Hur GM, Cha GH, Min SS, Kim CS, Park JB. Role of the STING→IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function. J Neurosci 2024; 44:e1810232024. [PMID: 39227159 PMCID: PMC11466066 DOI: 10.1523/jneurosci.1810-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Targeting altered expression and/or activity of GABA (γ-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING→GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits.
Collapse
Affiliation(s)
- Chiranjivi Neupane
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ramesh Sharma
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Fei Fei Gao
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Departments of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyung-Cheol Sohn
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Gang Min Hur
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Infectious Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Sun Seek Min
- Department of Physiology, Eulji University School of Medicine, Daejeon 35233, Korea
| | - Cuk-Seong Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08823, Korea
| |
Collapse
|
3
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM. Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures. Brain 2024; 147:1011-1024. [PMID: 37787057 PMCID: PMC10907087 DOI: 10.1093/brain/awad336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
Focal epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood. We used fluorescent glutamate and GABA sensors in an awake rodent model of neocortical seizures to resolve the spatiotemporal evolution of both neurotransmitters in the extracellular space. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagated centrifugally. GABA transients lasted longer than glutamate transients and were maximal ∼1.5 mm from the focus where they propagated centripetally. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing seizures to escape from local inhibitory restraint.
Collapse
Affiliation(s)
- Yoshiteru Shimoda
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Leite
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert T Graham
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jeremy Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Vincent Magloire
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Lindquist BE, Voskobiynyk Y, Goodspeed K, Paz JT. Patient-derived SLC6A1 variant S295L results in an epileptic phenotype similar to haploinsufficient mice. Epilepsia 2023; 64:e214-e221. [PMID: 37501613 PMCID: PMC10592270 DOI: 10.1111/epi.17731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The solute carrier family 6 member 1 (SLC6A1) gene encodes GAT-1, a γ-aminobutyric acid transporter expressed on astrocytes and inhibitory neurons. Mutations in SLC6A1 are associated with epilepsy and developmental disorders, including motor and social impairments, but variant-specific animal models are needed to elucidate mechanisms. Here, we report electrocorticographic (ECoG) recordings and clinical data from a patient with a variant in SLC6A1 that encodes GAT-1 with a serine-to-leucine substitution at amino acid 295 (S295L), who was diagnosed with childhood absence epilepsy. Next, we show that mice bearing the S295L mutation (GAT-1S295L/+ ) have spike-and-wave discharges with motor arrest consistent with absence-type seizures, similar to GAT-1+/- mice. GAT-1S295L/+ and GAT-1+/- mice follow the same pattern of pharmacosensitivity, being bidirectionally modulated by ethosuximide (200 mg/kg ip) and the GAT-1 antagonist NO-711 (10 mg/kg ip). By contrast, GAT-1-/- mice were insensitive to both ethosuximide and NO-711 at the doses tested. In conclusion, ECoG findings in GAT-1S295L/+ mice phenocopy GAT-1 haploinsufficiency and provide a useful preclinical model for drug screening and gene therapy investigations.
Collapse
Affiliation(s)
- Britta E. Lindquist
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
| | | | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158 USA
- University of California, San Francisco, Department of Neurology, Weill Institute, San Francisco, CA 94143 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
6
|
Vasziné Szabó E, Köves K, Csáki Á. Fluorescent Molecules That Help Reveal Previously Unidentified Neural Connections in Adult, Neonatal and Peripubertal Mammals. Int J Mol Sci 2023; 24:14478. [PMID: 37833924 PMCID: PMC10572731 DOI: 10.3390/ijms241914478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
One hundred and twenty-five years ago there was a lively discussion between Hungarian and Spanish neuroscientists on the nature of neural connections. The question was whether the neurofibrils run from one neuron to the next and connect neurons as a continuous network or the fibrils form an internal skeleton in the neurons and do not leave the cell; however, there is close contact between the neurons. About 50 years later, the invention of the electron microscope solved the problem. Close contacts between individual neurons were identified and named as synapses. In the following years, the need arose to explore distant connections between neuronal structures. Tracing techniques entered neuroscience. There are three major groups of tracers: (A) non-transsynaptic tracers used to find direct connections between two neuronal structures; (B) tracers passing gap junctions; (C) transsynaptic tracers passing synapses that are suitable to explore multineuronal circuits. According to the direction of the transport mechanism, the tracer may be ante- or retrograde. In this review, we focus on the ever-increasing number of fluorescent tracers that we have also used in our studies. The advantage of the use of these molecules is that the fluorescence of the tracer can be seen in histological sections without any other processes. Genes encoding fluorescent molecules can be inserted in various neuropeptide or neurotransmitter expressing transcriptomes. This makes it possible to study the anatomy, development or functional relations of these neuronal networks in transgenic animals.
Collapse
Affiliation(s)
- Enikő Vasziné Szabó
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, Semmelweis University, Szentkirályi u. 47, H-1088 Budapest, Hungary
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary; (K.K.); (Á.C.)
| | - Ágnes Csáki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary; (K.K.); (Á.C.)
| |
Collapse
|
7
|
Fischer FP, Kasture AS, Hummel T, Sucic S. Molecular and Clinical Repercussions of GABA Transporter 1 Variants Gone Amiss: Links to Epilepsy and Developmental Spectrum Disorders. Front Mol Biosci 2022; 9:834498. [PMID: 35295842 PMCID: PMC7612498 DOI: 10.3389/fmolb.2022.834498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) is the first member of the solute carrier 6 (SLC6) protein superfamily. GAT-1 (SLC6A1) is one of the main GABA transporters in the central nervous system. Its principal physiological role is retrieving GABA from the synapse into neurons and astrocytes, thus swiftly terminating neurotransmission. GABA is a key inhibitory neurotransmitter and shifts in GABAergic signaling can lead to pathological conditions, from anxiety and epileptic seizures to schizophrenia. Point mutations in the SLC6A1 gene frequently give rise to epilepsy, intellectual disability or autism spectrum disorders in the afflicted individuals. The mechanistic routes underlying these are still fairly unclear. Some loss-of-function variants impair the folding and intracellular trafficking of the protein (thus retaining the transporter in the endoplasmic reticulum compartment), whereas others, despite managing to reach their bona fide site of action at the cell surface, nonetheless abolish GABA transport activity (plausibly owing to structural/conformational defects). Whatever the molecular culprit(s), the physiological aftermath transpires into the absence of functional transporters, which in turn perturbs GABAergic actions. Dozens of mutations in the kin SLC6 family members are known to exhort protein misfolding. Such events typically elicit severe ailments in people, e.g., infantile parkinsonism-dystonia or X-linked intellectual disability, in the case of dopamine and creatine transporters, respectively. Flaws in protein folding can be rectified by small molecules known as pharmacological and/or chemical chaperones. The search for such apt remedies calls for a systematic investigation and categorization of the numerous disease-linked variants, by biochemical and pharmacological means in vitro (in cell lines and primary neuronal cultures) and in vivo (in animal models). We here give special emphasis to the utilization of the fruit fly Drosophila melanogaster as a versatile model in GAT-1-related studies. Jointly, these approaches can portray indispensable insights into the molecular factors underlying epilepsy, and ultimately pave the way for contriving efficacious therapeutic options for patients harboring pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Ameya S. Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
9
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
10
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
12
|
Hoshino O, Kameno R, Kubo J, Watanabe K. Spatiotemporal regulation of GABA concentration in extracellular space by gliotransmission crucial for extrasynaptic receptor-mediated improvement of sensory tuning performance in schizophrenia. J Comput Neurosci 2020; 48:317-332. [PMID: 32761409 DOI: 10.1007/s10827-020-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
In schizophrenic patients, sensory tuning performance tends to be deteriorated (i.e., flattened sensory tuning), for which impaired intracortical tonic inhibition arising from a reduction in GABA concentration in extracellular space might be responsible. The δ subunit-containing GABAA receptor, located on extrasynaptic sites, is known to be involved in mediating tonic inhibitory currents in cortical pyramidal cells and is considered to be one of the beneficial therapeutic targets for the treatment of schizophrenia. The transporter GAT-1 in glial (astrocytic) membrane controls concentration of GABA molecules by removing them from extracellular space. We speculated that the upregulation of extrasynaptic receptors might compensate for the impaired tonic inhibition and thus improve their sensory tuning performance, in which the astrocytic GABA transporter might play an important role. To test our hypothesis, we simulated a schizophrenic neural network model with a GABAergic gliotransmission (i.e., GABA transport by transporters embedded in astrocytic membranes) mechanism that modulates local ambient (extracellular) GABA levels in a neuronal activity-dependent manner. Upregulating extrasynaptic GABA receptors compensated the impaired tonic inhibition and sharpened the sensory tuning, provided that ambient GABA molecules around stimulus-sensitive pyramidal cells were actively removed during sensory stimulation. We suggest that the upregulation of extrasynaptic GABA receptors can improve the performance of sensory tuning in schizophrenic patients, for which spatiotemporal regulation of ambient GABA concentration by gliotransmission may be crucial.
Collapse
Affiliation(s)
- Osamu Hoshino
- Department of Intelligent Systems Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan. .,Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan.
| | - Rikiya Kameno
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| | - Jin Kubo
- Department of Rehabilitation Medicine, International University of Health and Welfare, Ichikawa Hospital, 6-1-14 Konodai, Ichikawa, Chiba, 272-0827, Japan
| | - Kazuo Watanabe
- Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima, 963-8563, Japan
| |
Collapse
|
13
|
Çomakli S, Özdemir S, Değirmençay Ş. Canine distemper virus induces downregulation of GABA A,GABA B, and GAT1 expression in brain tissue of dogs. Arch Virol 2020; 165:1321-1331. [PMID: 32253618 DOI: 10.1007/s00705-020-04617-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetic, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
14
|
Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K, Bao H, Bishara I, Jeon J, Mulcahy MJ, Cohen B, O'Riordan SL, Kim C, Dougherty DA, Chapman ER, Marvin JS, Looger LL, Lester HA. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J Gen Physiol 2019; 151:738-757. [PMID: 30718376 PMCID: PMC6571994 DOI: 10.1085/jgp.201812201] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022] Open
Abstract
Nicotine dependence is thought to arise in part because nicotine permeates into the endoplasmic reticulum (ER), where it binds to nicotinic receptors (nAChRs) and begins an "inside-out" pathway that leads to up-regulation of nAChRs on the plasma membrane. However, the dynamics of nicotine entry into the ER are unquantified. Here, we develop a family of genetically encoded fluorescent biosensors for nicotine, termed iNicSnFRs. The iNicSnFRs are fusions between two proteins: a circularly permutated GFP and a periplasmic choline-/betaine-binding protein engineered to bind nicotine. The biosensors iNicSnFR3a and iNicSnFR3b respond to nicotine by increasing fluorescence at [nicotine] <1 µM, the concentration in the plasma and cerebrospinal fluid of a smoker. We target iNicSnFR3 biosensors either to the plasma membrane or to the ER and measure nicotine kinetics in HeLa, SH-SY5Y, N2a, and HEK293 cell lines, as well as mouse hippocampal neurons and human stem cell-derived dopaminergic neurons. In all cell types, we find that nicotine equilibrates in the ER within 10 s (possibly within 1 s) of extracellular application and leaves as rapidly after removal from the extracellular solution. The [nicotine] in the ER is within twofold of the extracellular value. We use these data to run combined pharmacokinetic and pharmacodynamic simulations of human smoking. In the ER, the inside-out pathway begins when nicotine becomes a stabilizing pharmacological chaperone for some nAChR subtypes, even at concentrations as low as ∼10 nM. Such concentrations would persist during the 12 h of a typical smoker's day, continually activating the inside-out pathway by >75%. Reducing nicotine intake by 10-fold decreases activation to ∼20%. iNicSnFR3a and iNicSnFR3b also sense the smoking cessation drug varenicline, revealing that varenicline also permeates into the ER within seconds. Our iNicSnFRs enable optical subcellular pharmacokinetics for nicotine and varenicline during an early event in the inside-out pathway.
Collapse
Affiliation(s)
- Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Huan Bao
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Matthew J Mulcahy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Bruce Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Saidhbhe L O'Riordan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charlene Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| |
Collapse
|
15
|
O'Neill N, Sylantyev S. The Functional Role of Spontaneously Opening GABA A Receptors in Neural Transmission. Front Mol Neurosci 2019; 12:72. [PMID: 30983968 PMCID: PMC6447609 DOI: 10.3389/fnmol.2019.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Ionotropic type of γ-aminobutyric acid receptors (GABAARs) produce two forms of inhibitory signaling: phasic inhibition generated by rapid efflux of neurotransmitter GABA into the synaptic cleft with subsequent binding to GABAARs, and tonic inhibition generated by persistent activation of extrasynaptic and/or perisynaptic GABAARs by GABA continuously present in the extracellular space. It is widely accepted that phasic and tonic GABAergic inhibition is mediated by receptor groups of distinct subunit composition and modulated by different cytoplasmic mechanisms. Recently, however, it has been demonstrated that spontaneously opening GABAARs (s-GABAARs), which do not need GABA binding to enter an active state, make a significant input into tonic inhibitory signaling. Due to GABA-independent action mode, s-GABAARs promise new safer options for therapy of neural disorders (such as epilepsy) devoid of side effects connected to abnormal fluctuations of GABA concentration in the brain. However, despite the potentially important role of s-GABAARs in neural signaling, they still remain out of focus of neuroscience studies, to a large extent due to technical difficulties in their experimental research. Here, we summarize present data on s-GABAARs functional properties and experimental approaches that allow isolation of s-GABAARs effects from those of conventional (GABA-dependent) GABAARs.
Collapse
Affiliation(s)
- Nathanael O'Neill
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Xu X, Stoyanova EI, Lemiesz AE, Xing J, Mash DC, Heintz N. Species and cell-type properties of classically defined human and rodent neurons and glia. eLife 2018; 7:e37551. [PMID: 30320555 PMCID: PMC6188473 DOI: 10.7554/elife.37551] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping and immunofluorescence localization. Studies of sixteen human postmortem brains revealed gender specific transcriptional differences, cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event evident in three donor samples. Our data establish a comprehensive approach for analysis of molecular events associated with specific circuits and cell types in a wide variety of human conditions.
Collapse
Affiliation(s)
- Xiao Xu
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elitsa I Stoyanova
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Agata E Lemiesz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Jie Xing
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Deborah C Mash
- Miller School of MedicineUniversity of MiamiMiamiUnited States
| | - Nathaniel Heintz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
17
|
Measurement of intracellular concentration of fluorescently-labeled targets in living cells. PLoS One 2018; 13:e0194031. [PMID: 29694385 PMCID: PMC5918622 DOI: 10.1371/journal.pone.0194031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Abstract
Estimations of intracellular concentrations of fluorescently-labeled molecules within living cells are very important for guidance of biological experiments and interpretation of their results. Here we propose a simple and universal approach for such estimations. The approach is based upon common knowledge that the dye fluorescence is directly proportional to its quantum yield and the number of its molecules and that a coefficient of proportionality is determined by spectral properties of the dye and optical equipment used to record fluorescent signals. If two fluorescent dyes are present in the same volume, then a ratio of their concentrations is equal to a ratio of their fluorescence multiplied by some dye- and equipment-dependent coefficient. Thus, if the coefficient and concentration of one dye is known then the concentration of another dye can be determined. Here we have demonstrated how to calculate this coefficient (called a ratio factor) and how to use it for concentration measurements of fluorescently tagged molecules. As an example of how this approach can be used, we estimated a concentration of exogenously expressed neuronal Ca2+ sensor protein, hippocalcin, tagged by a fluorescent protein in a dendritic tree of rat hippocampal neurons loaded via a patch pipette with Alexa Fluor dye of known concentration. The new approach should allow performing a fast, inexpensive and reliable quantitative analysis of fluorescently-labeled targets in different parts of living cells.
Collapse
|
18
|
Kilinc D, Demir A. Spike timing precision of neuronal circuits. J Comput Neurosci 2018; 44:341-362. [DOI: 10.1007/s10827-018-0682-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/17/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
|
19
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
20
|
Extracellular Cyclic GMP Modulates Membrane Expression of The GluA1 and GluA2 Subunits of AMPA Receptor in Cerebellum: Molecular Mechanisms Involved. Sci Rep 2017; 7:17656. [PMID: 29247190 PMCID: PMC5732250 DOI: 10.1038/s41598-017-18024-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that extracellular cGMP modulates glutamatergic neurotransmission and some forms of learning. However, the underlying mechanisms remain unknown. We proposed the hypotheses that extracellular cGMP may regulate membrane expression of AMPA receptors. To do this extracellular cGMP should act on a membrane protein and activate signal transduction pathways modulating phosphorylation of the GluA1 and/or GluA2 subunits. It has been shown that extracellular cGMP modulates glycine receptors. The aims of this work were to assess: 1) whether extracellular cGMP modulates membrane expression of GluA1 and GluA2 subunits of AMPA receptors in cerebellum in vivo; 2) whether this is mediated by glycine receptors; 3) the role of GluA1 and GluA2 phosphorylation and 4) identify steps of the intracellular pathways involved. We show that extracellular cGMP modulates membrane expression of GluA1 and GluA2 in cerebellum in vivo and unveil the mechanisms involved. Extracellular cGMP reduced glycine receptor activation, modulating cAMP, protein kinases and phosphatases, and GluA1 and GluA2 phosphorylation, resulting in increased GluA1 and reduced GluA2 membrane expression. Extracellular cGMP therefore modulates membrane expression of AMPA receptors and glutamatergic neurotransmission. The steps identified may be therapeutic targets to improve neurotransmission and neurological function in pathological situations with abnormal glutamatergic neurotransmission.
Collapse
|
21
|
Moldavan M, Cravetchi O, Allen CN. GABA transporters regulate tonic and synaptic GABA A receptor-mediated currents in the suprachiasmatic nucleus neurons. J Neurophysiol 2017; 118:3092-3106. [PMID: 28855287 PMCID: PMC5814714 DOI: 10.1152/jn.00194.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022] Open
Abstract
GABA is a principal neurotransmitter in the hypothalamic suprachiasmatic nucleus (SCN) that contributes to intercellular communication between individual circadian oscillators within the SCN network and the stability and precision of the circadian rhythms. GABA transporters (GAT) regulate the extracellular GABA concentration and modulate GABAA receptor (GABAAR)-mediated currents. GABA transport inhibitors were applied to study how GABAAR-mediated currents depend on the expression and function of GAT. Nipecotic acid inhibits GABA transport and induced an inward tonic current in concentration-dependent manner during whole cell patch-clamp recordings from SCN neurons. Application of either the selective GABA transporter 1 (GAT1) inhibitors NNC-711 or SKF-89976A, or the GABA transporter 3 (GAT3) inhibitor SNAP-5114, produced only small changes of the baseline current. Coapplication of GAT1 and GAT3 inhibitors induced a significant GABAAR-mediated tonic current that was blocked by gabazine. GAT inhibitors decreased the amplitude and decay time constant and increased the rise time of spontaneous GABAAR-mediated postsynaptic currents. However, inhibition of GAT did not alter the expression of either GAT1 or GAT3 in the hypothalamus. Thus GAT1 and GAT3 functionally complement each other to regulate the extracellular GABA concentration and GABAAR-mediated synaptic and tonic currents in the SCN. Coapplication of SKF-89976A and SNAP-5114 (50 µM each) significantly reduced the circadian period of Per1 expression in the SCN by 1.4 h. Our studies demonstrate that GAT are important regulators of GABAAR-mediated currents and the circadian clock in the SCN.NEW & NOTEWORTHY In the suprachiasmatic nucleus (SCN), the GABA transporters GAT1 and GAT3 are expressed in astrocytes. Inhibition of these GABA transporters increased a tonic GABA current and reduced the circadian period of Per1 expression in SCN neurons. GAT1 and GAT3 showed functional cooperativity: inhibition of one GAT increased the activity but not the expression of the other. Our data demonstrate that GABA transporters are important regulators of GABAA receptor-mediated currents and the circadian clock.
Collapse
Affiliation(s)
- Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon; and
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon; and
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon; and
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
22
|
Strutt H, Gamage J, Strutt D. Robust Asymmetric Localization of Planar Polarity Proteins Is Associated with Organization into Signalosome-like Domains of Variable Stoichiometry. Cell Rep 2017; 17:2660-2671. [PMID: 27926869 PMCID: PMC5177602 DOI: 10.1016/j.celrep.2016.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
In developing epithelia, the core planar polarity proteins physically interact with each other and localize asymmetrically at opposite cell ends, forming intercellular complexes that link the polarity of neighboring cells. Using quantitative imaging to examine the composition of the core protein complex in vivo, we find that complex composition is unexpectedly plastic. The transmembrane proteins Frizzled and Flamingo form a stoichiometric nucleus in the complex, while the relative levels of the other four core proteins can vary independently. Exploring the functional consequences of this, we show that robust cell polarization is achieved over a range of complex stoichiometries but is dependent on maintaining appropriate levels of the components Frizzled and Strabismus. We propose that the core proteins assemble into signalosome-like structures, where stable association is not dependent on one-to-one interactions with binding partners, and signaling functions can act over a wide range of complex compositions.
Collapse
Affiliation(s)
- Helen Strutt
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jessica Gamage
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
23
|
Hu J, Weise C, Böttcher C, Fan H, Yin J. Expression, purification and structural analysis of functional GABA transporter 1 using the baculovirus expression system. Beilstein J Org Chem 2017; 13:874-882. [PMID: 28546845 PMCID: PMC5433199 DOI: 10.3762/bjoc.13.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
The γ-aminobutyric acid (GABA) transporter 1 (GAT1) belongs to a family of Na+ and Cl−-coupled transport proteins and possesses 12 putative transmembrane domains. To perform structural analyses of the GAT1 protein, the GAT1/green fluorescent protein (GFP) fusion protein was functionally expressed in insect Sf9 cells by the BAC-TO-BAC® baculovirus expression system. A two-step procedure to purify the GAT1/GFP fusion protein from insect Sf9 cells has been established and involves immunoaffinity chromatography using self-prepared anti-GFP antibodies and size-exclusion fast protein liquid chromatography (SE-FPLC). A yield of 200–300 μg of the GAT1/GFP protein could be purified from 400–600 mL of infected Sf9 cells. The purified protein was analyzed by transmission electron microscopy (TEM), which revealed that the GAT1/GFP fusion protein was isolated in its monomeric form.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Avenue 1800, 214122, Wuxi, China.,Institut für Biochemie und Molekularbiologie, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Arnimallee 22, Berlin D-14195, Germany
| | - Chris Weise
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, Berlin D-14195, Germany
| | - Christoph Böttcher
- Institut für Chemie und Biochemie - Biochemie, Freie Universität Berlin, Thielallee 63, Berlin D-14195, Germany
| | - Hua Fan
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité Universitätsmedizin Berlin, Berlin D-13353, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| |
Collapse
|
24
|
Marini M, Limongi T, Falqui A, Genovese A, Allione M, Moretti M, Lopatin S, Tirinato L, Das G, Torre B, Giugni A, Cesca F, Benfenati F, Di Fabrizio E. Imaging and structural studies of DNA-protein complexes and membrane ion channels. NANOSCALE 2017; 9:2768-2777. [PMID: 28155926 DOI: 10.1039/c6nr07958j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABAA channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 Å, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.
Collapse
Affiliation(s)
- M Marini
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - T Limongi
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - A Falqui
- King Abdullah University of Science and Technology, NABLA lab, BESE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - A Genovese
- King Abdullah University of Science and Technology, NABLA lab, BESE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - M Allione
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - M Moretti
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - S Lopatin
- King Abdullah University of Science and Technology, Imaging and Characterization core lab, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - L Tirinato
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - G Das
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - B Torre
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - A Giugni
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - F Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - F Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - E Di Fabrizio
- King Abdullah University of Science and Technology, SMILEs lab, PSE and BESE Divisions, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
25
|
Eskandari S, Willford SL, Anderson CM. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:85-116. [PMID: 28828607 DOI: 10.1007/978-3-319-55769-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl-: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl-, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl-, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl-, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl-, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na+, 0-5 Cl-, and 1-5 GABA per transport cycle. Only the 3 Na+: 1 Cl-: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl-: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.
Collapse
Affiliation(s)
- Sepehr Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Samantha L Willford
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Cynthia M Anderson
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| |
Collapse
|
26
|
Patrizio A, Specht CG. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques. NEUROPHOTONICS 2016; 3:041805. [PMID: 27335891 PMCID: PMC4891561 DOI: 10.1117/1.nph.3.4.041805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.
Collapse
Affiliation(s)
- Angela Patrizio
- Institute of Biology, Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, École Normale Supérieure (ENS), 46 rue d’Ulm, Paris 75005, France
| | - Christian G. Specht
- Institute of Biology, Biologie Cellulaire de la Synapse, Inserm U1024, CNRS 8197, École Normale Supérieure (ENS), 46 rue d’Ulm, Paris 75005, France
| |
Collapse
|
27
|
Zhang L, Wither RG, Lang M, Wu C, Sidorova-Darmos E, Netchev H, Matolcsy CB, Snead OC, Eubanks JH. A Role for Diminished GABA Transporter Activity in the Cortical Discharge Phenotype of MeCP2-Deficient Mice. Neuropsychopharmacology 2016; 41:1467-76. [PMID: 26499511 PMCID: PMC4832024 DOI: 10.1038/npp.2015.323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/13/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
Cortical network hyper-excitability is a common phenotype in mouse models lacking the transcriptional regulator methyl-CPG-binding protein 2 (MeCP2). Here, we implicate enhanced GABAB receptor activity stemming from diminished cortical expression of the GABA transporter GAT-1 in the genesis of this network hyper-excitability. We found that administering the activity-dependent GABAB receptor allosteric modulator GS-39783 to female Mecp2(+/-) mice at doses producing no effect in wild-type mice strongly potentiated their basal rates of spontaneous cortical discharge activity. Consistently, administering the GABAB receptor antagonist CGP-35348 significantly decreased basal discharge activity in these mice. Expression analysis revealed that while GABAB or extra-synaptic GABAA receptor prevalence is preserved in the MeCP2-deficient cortex, the expression of GAT-1 is significantly reduced from wild-type levels. This decrease in GAT-1 expression is consequential, as low doses of the GAT-1 inhibitor NO-711 that had no effects in wild-type mice strongly exacerbated cortical discharge activity in female Mecp2(+/-) mice. Taken together, these data indicate that the absence of MeCP2 leads to decreased cortical levels of the GAT-1 GABA transporter, which facilitates cortical network hyper-excitability in MeCP2-deficient mice by increasing the activity of cortical GABAB receptors.
Collapse
Affiliation(s)
- Liang Zhang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Robert G Wither
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Min Lang
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chiping Wu
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Elena Sidorova-Darmos
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hristo Netchev
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Catherine B Matolcsy
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Orlando Carter Snead
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- University of Toronto Epilepsy Research Program, University of Toronto, Toronto, ON, Canada,Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Physiology, University of Toronto, Toronto, ON, Canada,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada,Toronto Western Hospital, 8KD-417, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada, Tel: +1 416 603 5800, ext. 2933, Fax: +1 416 603 5745, E-mail:
| |
Collapse
|
28
|
Tracer Flux Measurements to Study Outward Transport by Monoamine Neurotransmitter Transporters. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3765-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Moldavan M, Cravetchi O, Williams M, Irwin RP, Aicher SA, Allen CN. Localization and expression of GABA transporters in the suprachiasmatic nucleus. Eur J Neurosci 2015; 42:3018-32. [PMID: 26390912 DOI: 10.1111/ejn.13083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 01/25/2023]
Abstract
GABA is a principal neurotransmitter in the suprachiasmatic hypothalamic nucleus (SCN), the master circadian clock. Despite the importance of GABA and GABA uptake for functioning of the circadian pacemaker, the localization and expression of GABA transporters (GATs) in the SCN has not been investigated. The present studies used Western blot analysis, immunohistochemistry and electron microscopy to demonstrate the presence of GABA transporter 1 (GAT1) and GAT3 in the SCN. By using light microscopy, GAT1 and GAT3 were co-localized throughout the SCN, but were not expressed in the perikarya of arginine vasopressin- or vasoactive intestinal peptide-immunoreactive (-ir) neurons of adult rats, nor in the neuronal processes labelled with the neurofilament heavy chain. Using electron microscopy, GAT1- and GAT3-ir was found in glial processes surrounding unlabelled neuronal perikarya, axons, dendrites, and enveloped symmetric and asymmetric axo-dendritic synapses. Glial fibrillary acidic protein-ir astrocytes grown in cell culture were immunopositive for GAT1 and GAT3 and both GATs could be observed in the same glial cell. These data demonstrate that synapses in the SCN function as 'tripartite' synapses consisting of presynaptic axon terminals, postsynaptic membranes and astrocytes that contain GABA transporters. This model suggests that astrocytes expressing both GATs may regulate the extracellular GABA, and thereby modulate the activity of neuronal networks in the SCN.
Collapse
Affiliation(s)
- Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Melissa Williams
- Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Robert P Irwin
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Sue A Aicher
- Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239-3098, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Hyperactivity and impaired attention in Gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatr 2015; 27:368-74. [PMID: 26072958 DOI: 10.1017/neu.2015.37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioural disorder. It is conceivable that Gamma aminobutyric acid (GABA) neurotransmission is implicated in the pathophysiology of ADHD. This study investigated the effect of GABA transporter 1 (GAT-1) on the anxiety-like behaviours and cognitive function in knockout mice. METHODS In all, 20 adult male mice were divided into two groups: wild-type (WT) group and GAT-1-/- group. The open field test, elevated O-maze (EZM) and Morris water maze were used to evaluate behavioural traits relevant to ADHD. RESULTS Compared with WT mice, the GAT-1-/- mice travelled longer and displayed an enhanced kinematic velocity with the significant reduction of rest time in the open field test (p<0.05). The EZM showed that GAT-1-/- mice displayed a significant increase in total entries into the open sectors and the closed sectors compared with the WT mice. The WT mice showed shorter latencies after the training session (p<0.01), whereas the GAT-1-/- mice made no difference during probe test, the GAT-1-/- mice spent less time in the target quadrant (p<0.01). CONCLUSION Our results demonstrated that GAT-1-/- mice have phenotypes of hyperactivity, impaired sustained attention and learning deficiency, and the performance of GAT-1-/- mice is similar to ADHD symptoms. So, the study of the GAT-1-/- mice may provide new insights into the mechanisms and the discovery of novel therapeutics for the treatment of ADHD.
Collapse
|
31
|
Lee-Montiel FT, Li P, Imoukhuede PI. Quantum dot multiplexing for the profiling of cellular receptors. NANOSCALE 2015; 7:18504-18514. [PMID: 26377627 DOI: 10.1039/c5nr01455g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The profiling of cellular heterogeneity has wide-reaching importance for our understanding of how cells function and react to their environments in healthy and diseased states. Our ability to interpret and model cell behavior has been limited by the difficulties of measuring cell differences, for example, comparing tumor and non-tumor cells, particularly at the individual cell level. This demonstrates a clear need for a generalizable approach to profile fluorophore sites on cells or molecular assemblies on beads. Here, a multiplex immunoassay for simultaneous detection of five different angiogenic markers was developed. We targeted angiogenic receptors in the vascular endothelial growth factor family (VEGFR1, VEGFR2 and VEGFR3) and Neuropilin (NRP) family (NRP1 and NRP2), using multicolor quantum dots (Qdots). Copper-free click based chemistry was used to conjugate the monoclonal antibodies with 525, 565, 605, 655 and 705 nm CdSe/ZnS Qdots. We tested and performed colocalization analysis of our nanoprobes using the Pearson correlation coefficient statistical analysis. Human umbilical vein endothelial cells (HUVEC) were tested. The ability to easily monitor the molecular indicators of angiogenesis that are a precursor to cancer in a fast and cost effective system is an important step towards personalized nanomedicine.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | |
Collapse
|
32
|
GONG XUE, SHAO YIYE, LI BING, CHEN LONG, WANG CUICUI, CHEN YINGHUI. γ-aminobutyric acid transporter-1 is involved in anxiety-like behaviors and cognitive function in knockout mice. Exp Ther Med 2015; 10:653-658. [PMID: 26622370 PMCID: PMC4509144 DOI: 10.3892/etm.2015.2577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the effect of γ-aminobutyric acid transporter-1 (GAT-1) on the anxiety-like behaviors and cognitive function in knockout mice. In total, 20 adult male mice were divided into two groups, namely the GAT-1 knockout (GAT-1-/-) and wild-type (WT) groups. The open field test, elevated 0-maze (EZM) and Morris water maze were used to evaluate changes in anxiety-like behaviors and cognitive function. Compared with the WT mice, GAT-1-/- mice made more entries and spent a longer time within the central area, traveling a greater distance, during the open field test (P<0.05). The EZM revealed that GAT-1-/- mice spent more time in the open sectors and made more total entries when compared with the WT mice (P<0.01). Observations from the two tests indicated reduced anxiety-like behaviors in the GAT-1-/- mice. During the learning session using a Morris water maze, the latency to find the platform was significantly longer in the GAT-1-/- mice when compared with the WT mice (P<0.01). In addition, during the probe test, the GAT-1-/- mice spent less time in the target quadrant and more time in the opposite quadrant when compared with the WT mice (P<0.01); thus, the cognitive function in the GAT-1-/- mice was impaired. Therefore, the results demonstrated that the anxiety-like behaviors were reduced and cognitive function was impaired in GAT-1 knockout mice, indicating that GAT-1 is involved in anxiety and cognitive functions.
Collapse
Affiliation(s)
- XUE GONG
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - YIYE SHAO
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - BING LI
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - LONG CHEN
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - CUICUI WANG
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - YINGHUI CHEN
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
33
|
Hanson SM, Sansom MSP, Becker EBE. Modeling Suggests TRPC3 Hydrogen Bonding and Not Phosphorylation Contributes to the Ataxia Phenotype of the Moonwalker Mouse. Biochemistry 2015; 54:4033-41. [PMID: 26112884 PMCID: PMC4530436 DOI: 10.1021/acs.biochem.5b00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A gain-of-function
mutation (T635A) in the transient receptor potential
(TRP) channel TRPC3 results in abnormal channel gating and causes
cerebellar ataxia in the dominant Moonwalker (Mwk) mouse mutant. However, the underlying molecular and
structural mechanisms are unclear. Here, we used a combined approach
of computational modeling and functional characterization of proposed
TRPC3 mutants. Our findings support a mechanism by which the hydrogen
bonding capability of threonine 635 plays a significant role in maintaining
a stable, closed state channel. This capability is lost in the Mwk mutant, suggesting a structural basis for the disease-causing
phenotype in the Mwk mouse.
Collapse
Affiliation(s)
- Sonya M Hanson
- †Molecular Physiology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States.,‡Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- ‡Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Esther B E Becker
- §MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
34
|
Carvill G, McMahon J, Schneider A, Zemel M, Myers C, Saykally J, Nguyen J, Robbiano A, Zara F, Specchio N, Mecarelli O, Smith R, Leventer R, Møller R, Nikanorova M, Dimova P, Jordanova A, Petrou S, Helbig I, Striano P, Weckhuysen S, Berkovic S, Scheffer I, Mefford H, Mefford HC. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. Am J Hum Genet 2015; 96:808-15. [PMID: 25865495 DOI: 10.1016/j.ajhg.2015.02.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/25/2015] [Indexed: 01/09/2023] Open
Abstract
GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ~4% of unsolved MAE cases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nat Commun 2015; 6:6597. [PMID: 25798861 PMCID: PMC4374149 DOI: 10.1038/ncomms7597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022] Open
Abstract
GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. Membrane depolarization during increased neuronal activity as seen during epilepsy has been suggested to easily reverse neuronal GABA transporters. Here the authors use modelling and experimental data and challenge this view by showing that synaptic GABA release during excessive neuronal firing averts reversal of GABA uptake.
Collapse
|
36
|
Scimemi A. Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 2014; 8:161. [PMID: 24987330 PMCID: PMC4060055 DOI: 10.3389/fncel.2014.00161] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses.
Collapse
|
37
|
Weddell JC, Imoukhuede PI. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One 2014; 9:e97271. [PMID: 24827582 PMCID: PMC4020774 DOI: 10.1371/journal.pone.0097271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead to different predictions of drug efficacy.
Collapse
Affiliation(s)
- Jared C. Weddell
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
38
|
Scimemi A. Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission. Front Cell Neurosci 2014; 8:128. [PMID: 24860430 PMCID: PMC4026733 DOI: 10.3389/fncel.2014.00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022] Open
Abstract
The brain relies on GABAergic neurons to control the ongoing activity of neuronal networks. GABAergic neurons control the firing pattern of excitatory cells, the temporal structure of membrane potential oscillations and the time window for integration of synaptic inputs. These actions require a fine control of the timing of GABA receptor activation which, in turn, depends on the precise timing of GABA release from pre-synaptic terminals and GABA clearance from the extracellular space. Extracellular GABA is not subject to enzymatic breakdown, and its clearance relies entirely on diffusion and uptake by specific transporters. In contrast to glutamate transporters, GABA transporters are abundantly expressed in neuronal pre-synaptic terminals. GABA transporters move laterally within the plasma membrane and are continuously trafficked to/from intracellular compartments. It is hypothesized that due to their proximity to GABA release sites, changes in the concentration and lateral mobility of GABA transporters may have a significant effect on the time course of the GABA concentration profile in and out of the synaptic cleft. To date, this hypothesis remains to be tested. Here we use 3D Monte Carlo reaction-diffusion simulations to analyze how changes in the density of expression and lateral mobility of GABA transporters in the cell membrane affect the extracellular GABA concentration profile and the activation of GABA receptors. Our results indicate that these manipulations mainly alter the GABA concentration profile away from the synaptic cleft. These findings provide novel insights into how the ability of GABA transporters to undergo plastic changes may alter the strength of GABAergic signals and the activity of neuronal networks in the brain.
Collapse
|
39
|
Xu XH, Qiu MH, Dong H, Qu WM, Urade Y, Huang ZL. GABA transporter-1 inhibitor NO-711 alters the EEG power spectra and enhances non-rapid eye movement sleep during the active phase in mice. Eur Neuropsychopharmacol 2014; 24:585-94. [PMID: 24080505 DOI: 10.1016/j.euroneuro.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA in the CNS and regulates GABAergic transmission. Compounds that inhibit GAT1 are targets often used for the treatment of epilepsy; however sedation has been reported as a side effect of these agents, indicating potential sedative and/or hypnotic uses for these compounds. In the current study, we observed the sleep behaviors of mice treated with NO-711, a selective GAT1 inhibitor, in order to elucidate the role of GAT1 in sleep-wake regulation during the active phase. The data revealed that NO-711 at a high dose of 10 mg/kg caused a marked enhancement of EEG activity in the frequency ranges of 3-25 Hz during wakefulness as well as rapid eye movement (REM) sleep. During the non-REM (NREM) sleep, NO-711 (10 mg/kg) elevated EEG activity in the frequency ranges of 1.5-6.75 Hz. Similar changes were found in mice treated with a low dose of 3 mg/kg. NO-711 administered i.p. at a dose of 1, 3 or 10 mg/kg significantly shortened the sleep latency of NREM sleep, increased the amount of NREM sleep and the number of NREM sleep episodes. NO-711 did not affect the sleep latency and the amount of REM sleep. NO-711 dose-dependently increased c-Fos expression in sleep-promoting nucleus of the ventrolateral preoptic area and median preoptic area. However, c-Fos expression was decreased in the wake-promoting nuclei, tuberomammillary nucleus and lateral hypothalamus. These results indicate that NO-711 can increase NREM sleep in mice.
Collapse
Affiliation(s)
- Xin-Hong Xu
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei-Hong Qiu
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Hui Dong
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China; Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | - Zhi-Li Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation. PLoS One 2013; 8:e75823. [PMID: 24155871 PMCID: PMC3796508 DOI: 10.1371/journal.pone.0075823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/19/2013] [Indexed: 01/26/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.
Collapse
|
41
|
Wang L, Tu P, Bonet L, Aubrey KR, Supplisson S. Cytosolic transmitter concentration regulates vesicle cycling at hippocampal GABAergic terminals. Neuron 2013; 80:143-58. [PMID: 24094108 DOI: 10.1016/j.neuron.2013.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
Sustained synaptic transmission requires vesicle recycling and refilling with transmitter, two processes considered to proceed independently. Contrary to this assumption, we show here that depletion of cytosolic transmitter at GABAergic synapses reversibly reduces the number of recycling vesicles. Using paired recordings in hippocampal cultures, we show that repetitive activity causes two phases of reduction of the postsynaptic response. The first involves the classical depletion of the readily releasable and recycling pools, while the second reflects impairment of vesicle filling as GABA is consumed, since it can only be reversed by uptake of GABA or its precursors, glutamate or glutamine. Surprisingly, this second phase is associated with reduced quantal release, a faster depression rate and lower FM5-95 labeling, suggesting that the size of the cycling vesicular pool is regulated by cytosolic transmitter availability. Regulation of vesicular cycling may represent a general mechanism of presynaptic plasticity, matching synaptic release to transmitter supply.
Collapse
Affiliation(s)
- Lu Wang
- INSERM, U1024, F-75005 Paris, France; CNRS, UMR 8197, F-75005 Paris, France; Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France; Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 200062 Shanghai, China
| | | | | | | | | |
Collapse
|
42
|
Yang P, Cai G, Cai Y, Fei J, Liu G. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder. Acta Biochim Biophys Sin (Shanghai) 2013; 45:578-85. [PMID: 23656791 DOI: 10.1093/abbs/gmt043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity, impaired sustained attention, impulsivity, and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination. However, the pathophysiology and etiology of ADHD remain inconclusive so far. Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-) is hyperactive and exhibited impaired memory performance in the Morris water maze. In the current study, we found that the gat1-/- mice showed low levels of attentional focusing and increased impulsivity. In addition, the gat1-/- mice displayed ataxia characterized by defects in motor coordination and balance skills. The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine. Collectively, these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.
Collapse
Affiliation(s)
- Ping Yang
- School of Life Sciences and Technology, TongJi University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
43
|
Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, Takahashi TT, Liman ER, Ellis-Davies GCR, McGee AW, Sabatini BL, Roberts RW, Arnold DB. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 2013; 78:971-85. [PMID: 23791193 PMCID: PMC3779638 DOI: 10.1016/j.neuron.2013.04.017] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed Fibronectin intrabodies generated with mRNA display (FingRs), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and that, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices, FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo.
Collapse
Affiliation(s)
- Garrett G Gross
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A. Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 2013; 591:3901-17. [PMID: 23732644 PMCID: PMC3764636 DOI: 10.1113/jphysiol.2013.257162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological properties and functional role of GABAergic signal transmission from neurons to the gap junction-coupled astrocytic network are still unclear. GABA-induced astrocytic Cl− flux has been hypothesized to affect the driving force for GABAergic transmission by modulating [Cl−]o. Thus, revealing the properties of GABA-mediated astrocytic responses will deepen our understanding of GABAergic signal transmission. Here, we analysed the Cl− dynamics of neurons and astrocytes in CA1 hippocampal GABAergic tripartite synapses, using Cl− imaging during GABA application, and whole cell recordings from interneuron–astrocyte pairs in the stratum lacunosum-moleculare. Astrocytic [Cl−]i was adjusted to physiological conditions (40 mm). Although GABA application evoked bidirectional Cl− flux via GABAA receptors and mouse GABA transporter 4 (mGAT4) in CA1 astrocytes, a train of interneuron firing induced only GABAA receptor-mediated inward currents in an adjacent astrocyte. A GAT1 inhibitor increased the interneuron firing-induced currents and induced bicuculline-insensitive, mGAT4 inhibitor-sensitive currents, suggesting that synaptic spillover of GABA predominantly induced the astrocytic Cl− efflux because GABAA receptors are localized near the synaptic clefts. This GABA-induced Cl− efflux was accompanied by Cl− siphoning via the gap junctions of the astrocytic network because gap junction inhibitors significantly reduced the interneuron firing-induced currents. Thus, Cl− efflux from astrocytes is homeostatically maintained within astrocytic networks. A gap junction inhibitor enhanced the activity-dependent depolarizing shifts of reversal potential of neuronal IPSCs evoked by repetitive stimulation to GABAergic synapses. These results suggest that Cl− conductance within the astrocytic network may contribute to maintaining GABAergic synaptic transmission by regulating [Cl−]o.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
45
|
Pietrzykowski AZ, Ortiz-Miranda S, Knott TK, Custer E, Puig S, Lemos JR, Treistman SN. Molecular Tolerance of Voltage-Gated Calcium Channels is Evident After Short Exposures to Alcohol in Vasopressin-Releasing Nerve Terminals. Alcohol Clin Exp Res 2013; 37:933-40. [DOI: 10.1111/acer.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
Affiliation(s)
| | - Sonia Ortiz-Miranda
- Department of MaPS & Program in Neuroscience ; University of Massachusetts Medical School; Worcester; Massachusetts
| | - Thomas K. Knott
- Department of MaPS & Program in Neuroscience ; University of Massachusetts Medical School; Worcester; Massachusetts
| | - Edward Custer
- Department of MaPS & Program in Neuroscience ; University of Massachusetts Medical School; Worcester; Massachusetts
| | - Sylvie Puig
- Department of MaPS & Program in Neuroscience ; University of Massachusetts Medical School; Worcester; Massachusetts
| | - José R. Lemos
- Department of MaPS & Program in Neuroscience ; University of Massachusetts Medical School; Worcester; Massachusetts
| | | |
Collapse
|
46
|
Lee-Montiel FT, Imoukhuede PI. Engineering quantum dot calibration standards for quantitative fluorescent profiling. J Mater Chem B 2013; 1:6434-6441. [DOI: 10.1039/c3tb20904k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Ransom CB, Tao W, Wu Y, Spain WJ, Richerson GB. Rapid regulation of tonic GABA currents in cultured rat hippocampal neurons. J Neurophysiol 2012; 109:803-12. [PMID: 23114210 DOI: 10.1152/jn.00460.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Subacute and chronic changes in tonic GABAergic inhibition occur in human and experimental epilepsy. Less is known about how tonic inhibition is modulated over shorter time frames (seconds). We measured endogenous tonic GABA currents from cultured rat hippocampal neurons to evaluate how they are affected by 1) transient increases in extracellular GABA concentration ([GABA]), 2) transient postsynaptic depolarization, and 3) depolarization of presynaptic cells. Transient increases in [GABA] (1 μM) reduced tonic currents; this reduction resulted from GABA-induced shifts in the reversal potential for GABA currents (E(GABA)). Transient depolarization of postsynaptic neurons reversed the effects of exogenous GABA and potentiated tonic currents. The voltage-dependent potentiation of tonic GABA currents was independent of E(GABA) shifts and represented postdepolarization potentiation (PDP), an intrinsic GABA(A) receptor property (Ransom CB, Wu Y, Richerson GB. J Neurosci 30: 7672-7684, 2010). Inhibition of vesicular GABA release with concanamycin A (ConA) did not affect tonic currents. In ConA-treated cells, transient application of 12 mM K(+) to depolarize presynaptic neurons and glia produced a persistent increase in tonic current amplitude. The K(+)-induced increase in tonic current was reversibly inhibited by SKF89976a (40 μM), indicating that this was caused by nonvesicular GABA release from GABA transporter type 1 (GAT1). Nonvesicular GABA release due to GAT1 reversal also occurred in acute hippocampal brain slices. Our results indicate that tonic GABA currents are rapidly regulated by GABA-induced changes in intracellular Cl(-) concentration, PDP of extrasynaptic GABA(A) receptors, and nonvesicular GABA release. These mechanisms may influence tonic inhibition during seizures when neurons are robustly depolarized and extracellular GABA and K(+) concentrations are elevated.
Collapse
Affiliation(s)
- Christopher B Ransom
- Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
48
|
Zhou Y, Holmseth S, Guo C, Hassel B, Höfner G, Huitfeldt HS, Wanner KT, Danbolt NC. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J Biol Chem 2012; 287:35733-35746. [PMID: 22896705 DOI: 10.1074/jbc.m112.368175] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [(3)H]taurine. Furthermore, most of the uptake of [(3)H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain.
Collapse
Affiliation(s)
- Yun Zhou
- Centre of Molecular Biology and Neuroscience, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Silvia Holmseth
- Centre of Molecular Biology and Neuroscience, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Caiying Guo
- HHMI, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Bjørnar Hassel
- Department for Neurohabilitation, Oslo University Hospital, N-0372 Oslo, Norway; Norwegian Defense Research Establishment, N-2027 Kjeller, Norway
| | - Georg Höfner
- Department für Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Henrik S Huitfeldt
- Department of Pathology, Oslo University Hospital, University of Oslo, N-0372 Oslo, Norway
| | - Klaus T Wanner
- Department für Pharmazie, Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Niels C Danbolt
- Centre of Molecular Biology and Neuroscience, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| |
Collapse
|
49
|
Förster resonance energy transfer (FRET) correlates of altered subunit stoichiometry in cys-loop receptors, exemplified by nicotinic α4β2. Int J Mol Sci 2012; 13:10022-10040. [PMID: 22949846 PMCID: PMC3431844 DOI: 10.3390/ijms130810022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 11/17/2022] Open
Abstract
We provide a theory for employing Förster resonance energy transfer (FRET) measurements to determine altered heteropentameric ion channel stoichiometries in intracellular compartments of living cells. We simulate FRET within nicotinic receptors (nAChRs) whose α4 and β2 subunits contain acceptor and donor fluorescent protein moieties, respectively, within the cytoplasmic loops. We predict FRET and normalized FRET (NFRET) for the two predominant stoichiometries, (α4)3(β2)2vs. (α4)2(β2)3. Studying the ratio between FRET or NFRET for the two stoichiometries, minimizes distortions due to various photophysical uncertainties. Within a range of assumptions concerning the distance between fluorophores, deviations from plane pentameric geometry, and other asymmetries, the predicted FRET and NFRET for (α4)3(β2)2 exceeds that of (α4)2(β2)3. The simulations account for published data on transfected Neuro2a cells in which α4β2 stoichiometries were manipulated by varying fluorescent subunit cDNA ratios: NFRET decreased monotonically from (α4)3(β2)2 stoichiometry to mostly (α4)2(β2)3. The simulations also account for previous macroscopic and single-channel observations that pharmacological chaperoning by nicotine and cytisine increase the (α4)2(β2)3 and (α4)3(β2)2 populations, respectively. We also analyze sources of variability. NFRET-based monitoring of changes in subunit stoichiometry can contribute usefully to studies on Cys-loop receptors.
Collapse
|
50
|
Shi J, Cai Y, Liu G, Gong N, Liu Z, Xu T, Wang Z, Fei J. Enhanced learning and memory in GAT1 heterozygous mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:359-66. [PMID: 22318715 DOI: 10.1093/abbs/gms005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of a family of membrane proteins, called GABA transporters (GAT1-4). It is well established that GABA system is involved in the modulation of memory. Our previous study showed that homozygous GAT1(-/-) mice exhibited impaired hippocampus-dependent learning and memory. To evaluate the impact of endogenous reduced GABA reuptake on mice cognitive behaviors, the ability of learning and memory of heterozygous GAT1(+/-) mice was detected by the passive avoidance paradigm and Morris water maze. The hole board paradigm was also used to measure changes in anxiety-related behavior or exploratory behavior in such mice. As one form of synaptic plasticity, long-term potentiation was recorded in the mouse hippocampal CA1 area. We found that GAT1(+/-) mice displayed increased learning and memory, decreased anxiety-like behaviors, and highest synaptic plasticity compared with wild-type and homozygous GAT1(-/-) mice. Our results suggest that a moderate reduction in GAT1 activity causes the enhancement of learning and memory in mice.
Collapse
Affiliation(s)
- Jun Shi
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|