1
|
De Faveri F, Ceriani F, Marcotti W. In vivo spontaneous Ca 2+ activity in the pre-hearing mammalian cochlea. Nat Commun 2025; 16:29. [PMID: 39747044 PMCID: PMC11695946 DOI: 10.1038/s41467-024-55519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo. Here we show how calcium dynamics in the cochlear neuroepithelium of live pre-hearing mice shape the activity of the inner hair cells (IHCs) and their afferent synapses. Both IHCs and supporting cells (SCs) generate spontaneous calcium-dependent activity. Calcium waves from SCs synchronise the activity of nearby IHCs, which then spreads longitudinally recruiting several additional IHCs via a calcium wave-independent mechanism. This synchronised IHC activity in vivo increases the probability of afferent terminal recruitment. Moreover, the modiolar-to-pillar segregation in sound sensitivity of mature auditory nerve fibres appears to be primed at pre-hearing ages.
Collapse
Affiliation(s)
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Sanchez HA, Kraujaliene L, Verselis VK. A pore locus in the E1 domain differentially regulates Cx26 and Cx30 hemichannel function. J Gen Physiol 2024; 156:e202313502. [PMID: 39302316 DOI: 10.1085/jgp.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Connexins (Cxs) function as gap junction (GJ) channels and hemichannels that mediate intercellular and transmembrane signaling, respectively. Here, we investigated the proximal segment of the first extracellular loop, E1, of two closely related Cxs, Cx26 and Cx30, that share widespread expression in the cochlea. Computational studies of Cx26 proposed that this segment of E1 contains a parahelix and functions in gating. The sequence of the parahelix is identical between Cx26 and Cx30 except for an Ala/Glu difference at position 49. We show through cysteine-scanning and mutational analyses that position 49 is pore-lining and interacts with the adjacent Asp50 residue to impact hemichannel functionality. When both positions 49 and 50 are charged, as occurs naturally in Cx30, the hemichannel function is dampened. Co-expression of Cx30 with Cx26(D50N), the most common mutation associated with keratitis-ichthyosis-deafness syndrome, results in robust hemichannel currents indicating that position 49-50 interactions are relevant in heteromerically assembled hemichannels. Cysteine substitution at position 49 in either Cx26 or Cx30 results in tonic inhibition of hemichannels, both through disulfide formation and high-affinity metal coordination, suggestive of a flexible region of the pore that can narrow substantially. These effects are absent in GJ channels, which exhibit wild-type functionality. Examination of postnatal cochlear explants suggests that Cx30 expression is associated with reduced propagation of Ca2+ waves. Overall, these data identify a pore locus in E1 of Cx26 and Cx30 that impacts hemichannel functionality and provide new considerations for understanding the roles of these connexins in cochlear function.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso , Valparaíso, Chile
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Conrad LJ, Grandi FC, Carlton AJ, Jeng JY, de Tomasi L, Zarecki P, Marcotti W, Johnson SL, Mustapha M. The upregulation of K + and HCN channels in developing spiral ganglion neurons is mediated by cochlear inner hair cells. J Physiol 2024; 602:5329-5351. [PMID: 39324853 DOI: 10.1113/jp286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
Collapse
Affiliation(s)
- Linus J Conrad
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Fiorella C Grandi
- INSERM, Institute de Myologie, Centre de Recherche en Myologie F-75013, Sorbonne Université, Paris, France
| | - Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lara de Tomasi
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Aguilar C, Williams D, Kurapati R, Bains RS, Mburu P, Parker A, Williams J, Concas D, Tateossian H, Haynes AR, Banks G, Vikhe P, Heise I, Hutchison M, Atkins G, Gillard S, Starbuck B, Oliveri S, Blake A, Sethi S, Kumar S, Bardhan T, Jeng JY, Johnson SL, Corns LF, Marcotti W, Simon M, Wells S, Potter PK, Lad HV. Pleiotropic brain function of whirlin identified by a novel mutation. iScience 2024; 27:110170. [PMID: 38974964 PMCID: PMC11225360 DOI: 10.1016/j.isci.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.
Collapse
Affiliation(s)
- Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Debbie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ramakrishna Kurapati
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Philomena Mburu
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andy Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Jackie Williams
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Danilo Concas
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Hilda Tateossian
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew R. Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Pratik Vikhe
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Gemma Atkins
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simon Gillard
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Simona Oliveri
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Tanaya Bardhan
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Lara F. Corns
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Didcot, Oxfordshire OX11 0RD, UK
| |
Collapse
|
5
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hool SA, Jeng J, Jagger DJ, Marcotti W, Ceriani F. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells. J Physiol 2023; 601:4375-4395. [PMID: 37715703 PMCID: PMC10952729 DOI: 10.1113/jp284980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/18/2023] Open
Abstract
Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.
Collapse
Affiliation(s)
- Sarah A. Hool
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
7
|
Kersbergen CJ, Babola TA, Kanold PO, Bergles DE. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice. PLoS Biol 2023; 21:e3002160. [PMID: 37368868 PMCID: PMC10298803 DOI: 10.1371/journal.pbio.3002160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Intrinsically generated neural activity propagates through the developing auditory system to promote maturation and refinement of sound processing circuits prior to hearing onset. This early patterned activity is induced by non-sensory supporting cells in the organ of Corti, which are highly interconnected through gap junctions containing connexin 26 (Gjb2). Although loss of function mutations in Gjb2 impair cochlear development and are the most common cause of congenital deafness, it is not known if these variants disrupt spontaneous activity and the developmental trajectory of sound processing circuits in the brain. Here, we show in a new mouse model of Gjb2-mediated congenital deafness that cochlear supporting cells adjacent to inner hair cells (IHCs) unexpectedly retain intercellular coupling and the capacity to generate spontaneous activity, exhibiting only modest deficits prior to hearing onset. Supporting cells lacking Gjb2 elicited coordinated activation of IHCs, leading to coincident bursts of activity in central auditory neurons that will later process similar frequencies of sound. Despite alterations in the structure of the sensory epithelium, hair cells within the cochlea of Gjb2-deficient mice were intact and central auditory neurons could be activated within appropriate tonotopic domains by loud sounds at hearing onset, indicating that early maturation and refinement of auditory circuits was preserved. Only after cessation of spontaneous activity following hearing onset did progressive hair cell degeneration and enhanced auditory neuron excitability manifest. This preservation of cochlear spontaneous neural activity in the absence of connexin 26 may increase the effectiveness of early therapeutic interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J. Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Travis A. Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Ma Q, Zhang J, Qi W, Li Z, Jiang Y, Zhang M, He H, Su K, Shi H. Store-Operated Ca 2+ Channels Contribute to the Generation of Ca 2+ Waves in Interdental Cells in the Cochleae. ACS Chem Neurosci 2023; 14:1896-1904. [PMID: 37146126 DOI: 10.1021/acschemneuro.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jianning Zhang
- Yueyang Hospital of Integrative Chinese & Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weidong Qi
- Department of Otolaryngology Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zhuangzhuang Li
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Miao Zhang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hao He
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
9
|
Carlton AJ, Jeng J, Grandi FC, De Faveri F, Ceriani F, De Tomasi L, Underhill A, Johnson SL, Legan KP, Kros CJ, Richardson GP, Mustapha M, Marcotti W. A critical period of prehearing spontaneous Ca 2+ spiking is required for hair-bundle maintenance in inner hair cells. EMBO J 2023; 42:e112118. [PMID: 36594367 PMCID: PMC9929643 DOI: 10.15252/embj.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.
Collapse
Affiliation(s)
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | - Stuart L Johnson
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Kevin P Legan
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | - Corné J Kros
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | | | - Mirna Mustapha
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
10
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
11
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
12
|
Chen P, Wu W, Zhang J, Chen J, Li Y, Sun L, Hou S, Yang J. Pathological mechanisms of connexin26-related hearing loss: Potassium recycling, ATP-calcium signaling, or energy supply? Front Mol Neurosci 2022; 15:976388. [PMID: 36187349 PMCID: PMC9520402 DOI: 10.3389/fnmol.2022.976388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary deafness is one of the most common human birth defects. GJB2 gene mutation is the most genetic etiology. Gap junction protein 26 (connexin26, Cx26) encoded by the GJB2 gene, which is responsible for intercellular substance transfer and signal communication, plays a critical role in hearing acquisition and maintenance. The auditory character of different Connexin26 transgenic mice models can be classified into two types: profound congenital deafness and late-onset progressive hearing loss. Recent studies demonstrated that there are pathological changes including endocochlear potential reduction, active cochlear amplification impairment, cochlear developmental disorders, and so on, in connexin26 deficiency mice. Here, this review summarizes three main hypotheses to explain pathological mechanisms of connexin26-related hearing loss: potassium recycling disruption, adenosine-triphosphate-calcium signaling propagation disruption, and energy supply dysfunction. Elucidating pathological mechanisms underlying connexin26-related hearing loss can help develop new protective and therapeutic strategies for this common deafness. It is worthy of further study on the detailed cellular and molecular upstream mechanisms to modify connexin (channel) function.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenjin Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| |
Collapse
|
13
|
Paciello F, Zorzi V, Raspa M, Scavizzi F, Grassi C, Mammano F, Fetoni AR. Connexin 30 deletion exacerbates cochlear senescence and age-related hearing loss. Front Cell Dev Biol 2022; 10:950837. [PMID: 36016655 PMCID: PMC9395607 DOI: 10.3389/fcell.2022.950837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic mutations in the Gjb2 and Gjb6 genes, encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, have been linked to the most frequent monogenic hearing impairment, nonsyndromic hearing loss, and deafness DFNB1. It is known that Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that partial deletion of Cx26 can accelerate age-related hearing loss (ARHL), a multifactorial complex disorder, with both environmental and genetic factors contributing to the etiology of the disease. Here, we investigated the role of Cx30 in cochlear-aging processes using a transgenic mouse model with total deletion of Cx30 (Cx30 ΔΔ mice), in which Cx30 was removed without perturbing the surrounding sequences. We show that these mice are affected by exacerbated ARHL, with increased morphological cochlear damage, oxidative stress, inflammation, and vascular dysfunctions. Overall, our data demonstrate that Cx30 deletion can be considered a genetic risk factor for ARHL, making cochlear structures more susceptible to aging processes.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | | | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- Department of Physics and Astronomy, University of Padova, Padova, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| | - Anna Rita Fetoni
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Audiology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- *Correspondence: Fabio Mammano, ; Anna Rita Fetoni,
| |
Collapse
|
14
|
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, Adameyko I, Hadjab S, Lallemend F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 2022; 13:3878. [PMID: 35790771 PMCID: PMC9256748 DOI: 10.1038/s41467-022-31580-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Phoebe Uhl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Filova
- Institute of Biotechnology CAS, 25250, Vestec, Czech Republic
| | | | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Brotto D, Caserta E, Sorrentino F, Favaretto N, Marioni G, Martini A, Bovo R, Gheller F, Trevisi P. Long-Term Impedance Trend in Cochlear Implant Users with Genetically Determined Congenital Profound Hearing Loss. J Am Acad Audiol 2022; 33:105-114. [PMID: 35577055 DOI: 10.1055/s-0041-1739290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Impedance is a basic parameter registered at any cochlear implant (CI) fitting section. It is useful in monitoring electrode functioning and the status of the surrounding anatomical structures. PURPOSE The main aim of this study is to evaluate the 5-year impedance-value trend in patients affected by congenital genetically determined profound hearing loss implanted with Cochlear Nucleus devices. RESEARCH DESIGN Observational, retrospective, monocentric study. STUDY SAMPLE Twenty-seven consecutive patients (9 females: 12.0 ± 7.6 years old; range: 4.2-40.4) with genetic diagnosis of GJB2 mutation causing congenital profound hearing loss who underwent cochlear implantation from 2010 to 2020 with good auditory benefit. INTERVENTION Impedance values of the CIs were obtained from the CIs' programming software that registers those parameters for each follow-up section of each patient. DATA COLLECTION AND ANALYSIS Impedance values were measured over time (activation, 6, 12, 24, and 60 months after cochlear implantation), for each of the 22 electrodes, in common ground, monopolar 1, monopolar 2, and monopolar 1 + 2 stimulation modes. RESULTS A significant variation was found between CI activation and 6-month follow-up. This difference was found for each of the 22 electrodes. Electrodes 1 to 4 showed higher impedance values compared with all other electrodes in each time interval. Repeated-measures analysis of variance ruled out significant variations in impedance values from 6-month to 5-year follow-up. CONCLUSIONS Impedance values were extremely stable after activation, at least for the first 5 years. In these cases, even minimal impedance variations should be carefully evaluated for their possible implications on hearing performance.
Collapse
Affiliation(s)
- Davide Brotto
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Ezio Caserta
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Flavia Sorrentino
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Niccolò Favaretto
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Gino Marioni
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Martini
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Roberto Bovo
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Flavia Gheller
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| | - Patrizia Trevisi
- Section of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Jin Y, Sun L, Yang J. Pseudo-Temporal Analysis of Single-Cell RNA Sequencing Reveals Trans-Differentiation Potential of Greater Epithelial Ridge Cells Into Hair Cells During Postnatal Development of Cochlea in Rats. Front Mol Neurosci 2022; 15:832813. [PMID: 35370544 PMCID: PMC8966675 DOI: 10.3389/fnmol.2022.832813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
The hair cells of the cochlea play a decisive role in the process of hearing damage and recovery, yet knowledge of their regeneration process is still limited. Greater epithelial ridge (GER) cells, a type of cell present during cochlear development that has the characteristics of a precursor sensory cell, disappear at the time of maturation of hearing development. Its development and evolution remain mysterious for many years. Here, we performed single-cell RNA sequencing to profile the gene expression landscapes of rats’ cochlear basal membrane from P1, P7, and P14 and identified eight major subtypes of GER cells. Furthermore, single-cell trajectory analysis for GER cells and hair cells indicated that among the different subtypes of GER, four subtypes had transient cell proliferation after birth and could transdifferentiate into inner and outer hair cells, and two of them mainly transdifferentiated into inner hair cells. The other two subtypes eventually transdifferentiate into outer hair cells. Our study lays the groundwork for elucidating the mechanisms of the key regulatory genes and signaling pathways in the trans-differentiation of GER cell subtypes into hair cells and provides potential clues to understand hair cell regeneration.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Shuna Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Fan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Yulian Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Yulian Jin,
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- Lianhua Sun,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- Jun Yang,
| |
Collapse
|
18
|
Sun L, Gao D, Chen J, Hou S, Li Y, Huang Y, Mammano F, Chen J, Yang J. Failure Of Hearing Acquisition in Mice With Reduced Expression of Connexin 26 Correlates With the Abnormal Phasing of Apoptosis Relative to Autophagy and Defective ATP-Dependent Ca2+ Signaling in Kölliker’s Organ. Front Cell Neurosci 2022; 16:816079. [PMID: 35308122 PMCID: PMC8928193 DOI: 10.3389/fncel.2022.816079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations in the GJB2 gene that encodes connexin 26 (Cx26) are the predominant cause of prelingual hereditary deafness, and the most frequently encountered variants cause complete loss of protein function. To investigate how Cx26 deficiency induces deafness, we examined the levels of apoptosis and autophagy in Gjb2loxP/loxP; ROSA26CreER mice injected with tamoxifen on the day of birth. After weaning, these mice exhibited severe hearing impairment and reduced Cx26 expression in the cochlear duct. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells were observed in apical, middle, and basal turns of Kölliker’s organ at postnatal (P) day 1 (P1), associated with increased expression levels of cleaved caspase 3, but decreased levels of autophagy-related proteins LC3-II, P62, and Beclin1. In Kölliker’s organ cells with decreased Cx26 expression, we also found significantly reduced levels of intracellular ATP and hampered Ca2+ responses evoked by extracellular ATP application. These results offer novel insight into the mechanisms that prevent hearing acquisition in mouse models of non-syndromic hearing impairment due to Cx26 loss of function.
Collapse
Affiliation(s)
- Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuyu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Biochemistry and Cell Biology, Italian National Research Council, Monterotondo, Italy
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Jun Yang Jianyong Chen Fabio Mammano
| |
Collapse
|
19
|
Chen J, Chen P, He B, Gong T, Li Y, Zhang J, Lv J, Mammano F, Hou S, Yang J. Connexin30-Deficiency Causes Mild Hearing Loss With the Reduction of Endocochlear Potential and ATP Release. Front Cell Neurosci 2022; 15:819194. [PMID: 35110999 PMCID: PMC8802669 DOI: 10.3389/fncel.2021.819194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
GJB2 and GJB6 are adjacent genes encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, with overlapping expressions in the inner ear. Both genes are associated with the commonest monogenic hearing disorder, recessive isolated deafness DFNB1. Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that Cx30 knockout mice had severe hearing loss along with a 90% reduction in Cx26, while another Cx30 knockout mouse model showed normal hearing with nearly half of Cx26 preserved. In this study, we used CRISPR/Cas9 technology to establish a new Cx30 knockout mouse model (Cx30−/−), which preserves approximately 70% of Cx26. We found that the 1, 3, and 6-month-old Cx30−/− mice showed mild hearing loss at full frequency. Immunofluorescence and HE staining suggested no significant differences in microstructure of the cochlea between Cx30−/− mice and wild-type mice. However, transmission electron microscopy showed slight cavity-like damage in the stria vascularis of Cx30−/− mice. And Cx30 deficiency reduced the production of endocochlear potential (EP) and the release of ATP, which may have induced hearing loss. Taken together, this study showed that lack of Cx30 can lead to hearing loss with an approximately 30% reduction of Cx26 in the present Cx30 knockout model. Hence, Cx30 may play an important rather than redundant role in hearing development.
Collapse
Affiliation(s)
- Junmin Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyu Gong
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingrong Lv
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Shule Hou
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology—Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou Jun Yang
| |
Collapse
|
20
|
Laird DW, Lampe PD. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol 2022; 32:58-69. [PMID: 34429228 PMCID: PMC8688313 DOI: 10.1016/j.tcb.2021.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
The 21-member connexin gene family exhibits distinct tissue expression patterns that can cause a diverse array of over 30 inherited connexin-linked diseases ranging from deafness to skin defects and blindness. Intriguingly, germline mutations can cause disease in one tissue while other tissues that abundantly express the mutant connexin remain disease free, highlighting the importance of the cellular context of mutant expression. Modeling connexin pathologies in genetically modified mice and tissue-relevant cells has informed extensively on no less than a dozen gain- and loss-of-function mechanisms that underpin disease. This review focuses on how a deeper molecular understanding of the over 930 mutations in 11 connexin-encoding genes is foundational for creating a framework for therapeutic interventions.
Collapse
Affiliation(s)
- Dale W. Laird
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, University of Western Ontario, London, ON, CANADA
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
21
|
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 2021; 19:e3001445. [PMID: 34758021 PMCID: PMC8608324 DOI: 10.1371/journal.pbio.3001445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chen J, Gao D, Chen J, Hou S, He B, Li Y, Li S, Zhang F, Sun X, Mammano F, Sun L, Yang J, Zheng G. Single-Cell RNA Sequencing Analysis Reveals Greater Epithelial Ridge Cells Degeneration During Postnatal Development of Cochlea in Rats. Front Cell Dev Biol 2021; 9:719491. [PMID: 34540839 PMCID: PMC8446670 DOI: 10.3389/fcell.2021.719491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023] Open
Abstract
Greater epithelial ridge cells, a transient neonatal cell group in the cochlear duct, which plays a crucial role in the functional maturation of hair cell, structural development of tectorial membrane, and refinement of audio localization before hearing. Greater epithelial ridge cells are methodologically homogeneous, while whether different cell subtypes are existence in this intriguing region and the degeneration mechanism during postnatal cochlear development are poorly understood. In the present study, single-cell RNA sequencing was performed on the cochlear duct of postnatal rats at day 1 (P1) and day 7 (P7) to identify subsets of greater epithelial ridge cell and progression. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to examine genes enriched biological processes in these clusters. We identified a total of 26 clusters at P1 and P7 rats and found that the cell number of five cell clusters decreased significantly, while four clusters had similar gene expression patterns and biological properties. The genes of these four cell populations were mainly enriched in Ribosome and P13K-Akt signal pathway. Among them, Rps16, Rpsa, Col4a2, Col6a2, Ctsk, and Jun are particularly interesting as their expression might contribute to the greater epithelial ridge cells degeneration. In conclusion, our study provides an important reference resource of greater epithelial ridge cells landscape and mechanism insights for further understanding greater epithelial ridge cells degeneration during postnatal rat cochlear development.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baihui He
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuna Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiayu Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Lianhua Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guiliang Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine Ear Institute, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
23
|
Gap Junction Channelopathies and Calmodulinopathies. Do Disease-Causing Calmodulin Mutants Affect Direct Cell-Cell Communication? Int J Mol Sci 2021; 22:ijms22179169. [PMID: 34502077 PMCID: PMC8431743 DOI: 10.3390/ijms22179169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
The cloning of connexins cDNA opened the way to the field of gap junction channelopathies. Thus far, at least 35 genetic diseases, resulting from mutations of 11 different connexin genes, are known to cause numerous structural and functional defects in the central and peripheral nervous system as well as in the heart, skin, eyes, teeth, ears, bone, hair, nails and lymphatic system. While all of these diseases are due to connexin mutations, minimal attention has been paid to the potential diseases of cell–cell communication caused by mutations of Cx-associated molecules. An important Cx accessory protein is calmodulin (CaM), which is the major regulator of gap junction channel gating and a molecule relevant to gap junction formation. Recently, diseases caused by CaM mutations (calmodulinopathies) have been identified, but thus far calmodulinopathy studies have not considered the potential effect of CaM mutations on gap junction function. The major goal of this review is to raise awareness on the likely role of CaM mutations in defects of gap junction mediated cell communication. Our studies have demonstrated that certain CaM mutants affect gap junction channel gating or expression, so it would not be surprising to learn that CaM mutations known to cause diseases also affect cell communication mediated by gap junction channels.
Collapse
|
24
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc Natl Acad Sci U S A 2021; 118:2019681118. [PMID: 34050020 PMCID: PMC8179140 DOI: 10.1073/pnas.2019681118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.
Collapse
|
26
|
Jeng JY, Harasztosi C, Carlton A, Corns L, Marchetta P, Johnson SL, Goodyear RJ, Legan KP, Rüttiger L, Richardson GP, Marcotti W. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca 2+ near stereocilia. J Physiol 2021; 599:2015-2036. [PMID: 33559882 PMCID: PMC7612128 DOI: 10.1113/jp280905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 10/11/2023] Open
Abstract
KEY POINTS The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 μM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Csaba Harasztosi
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Laura Corns
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Philine Marchetta
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Kevin P. Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lukas Rüttiger
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
27
|
Yang X, Liu N, Mu H, Lv Y, Zhang H, Li Y, Guan J, Gai Z, Liu Y. Reprogramming of human peripheral blood mononuclear cell (PBMC) from a patient suffering from hearing loss into iPSC line (SDQLCHi035-A) maintaining compound heterozygous variations in GJB2 gene. Stem Cell Res 2021; 51:102188. [PMID: 33517119 DOI: 10.1016/j.scr.2021.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022] Open
Abstract
Mutation in the gap junction beta-2 (GJB2) gene is a main cause of autosomal-recessive nonsyndromic hearing loss (ARNSHL). The c.235delC and c.299-300del mutations are more common mutations in Chinese Han deaf patients, in which the compound heterozygous mutations of these two sites cause severe-to-profound hearing loss in a significant percentage. We established an induced pluripotent stem cell (iPSC) line from a 2-year-old boy with hearing loss, caused by compound heterozygous mutations in GJB2 (c.235delC and c.299-300del). The iPSCs was verified based on pluripotency markers and demonstrated trilineage differentiation potential in vitro.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Ning Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Hong Mu
- Otolaryngology Department, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yuqiang Lv
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Haiyan Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yue Li
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Jingyun Guan
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| |
Collapse
|
28
|
Molecular Mechanisms and Biological Functions of Autophagy for Genetics of Hearing Impairment. Genes (Basel) 2020; 11:genes11111331. [PMID: 33187328 PMCID: PMC7697636 DOI: 10.3390/genes11111331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of hearing impairment following cochlear damage can be caused by many factors, including congenital or acquired onset, ototoxic drugs, noise exposure, and aging. Regardless of the many different etiologies, a common pathologic change is auditory cell death. It may be difficult to explain hearing impairment only from the aspect of cell death including apoptosis, necrosis, or necroptosis because the level of hearing loss varies widely. Therefore, we focused on autophagy as an intracellular phenomenon functionally competing with cell death. Autophagy is a dynamic lysosomal degradation and recycling system in the eukaryotic cell, mandatory for controlling the balance between cell survival and cell death induced by cellular stress, and maintaining homeostasis of postmitotic cells, including hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear. Autophagy is considered a candidate for the auditory cell fate decision factor, whereas autophagy deficiency could be one of major causes of hearing impairment. In this paper, we review the molecular mechanisms and biologic functions of autophagy in the auditory system and discuss the latest research concerning autophagy-related genes and sensorineural hearing loss to gain insight into the role of autophagic mechanisms in inner-ear disorders.
Collapse
|
29
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
30
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
31
|
Hearing Phenotypes of Patients with Hearing Loss Homozygous for the GJB2 c.235delc Mutation. Neural Plast 2020; 2020:8841522. [PMID: 32802038 PMCID: PMC7416285 DOI: 10.1155/2020/8841522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Hereditary hearing loss is characterized by remarkable phenotypic heterogeneity. Patients with the same pathogenic mutations may exhibit various hearing loss phenotypes. In the Chinese population, the c.235delC mutation is the most common pathogenic mutation of GJB2 and is closely related to hereditary recessive hearing loss. Here, we investigated the hearing phenotypes of patients with hearing loss associated with the homozygous c.235delC mutation, paying special attention to asymmetric interaural hearing loss. A total of 244 patients with the GJB2 c.235delC homozygous mutation encountered from 2007 to 2015 were enrolled. The severity of hearing loss was scaled with the American Speech-Language-Hearing Association (ASHA). Auditory phenotypes were analyzed, and three types of interaural asymmetry were defined based on audiograms: Type A (asymmetry of hearing loss severity), Type B (asymmetry of audiogram shape), and Type C (Type A plus Type B). Of the 488 ears (244 cases) examined, 71.93% (351) presented with profound hearing loss, 14.34% (70) with severe hearing loss, and 9.43% (46) with moderate to severe hearing loss. The most common audiogram shapes were descending (31.15%) and flat (24.18%). A total of 156 (63.93%) of the 244 patients exhibited asymmetric interaural hearing loss in terms of severity and/or audiogram shape. Type A was evident in 14 of these cases, Type B in 106, and Type C in 36. In addition, 211 of 312 ears (67.63%) in the interaural hearing asymmetry group showed profound hearing loss, and 59 (18.91%) exhibited severe hearing loss, with the most common audiogram shapes being flat (27.88%) and descending (22.12%). By contrast, in the interaural hearing symmetry group, profound hearing loss was observed in 140 ears (79.55%), and the most common audiograms were descending (46.59%) and residual (21.59%). Hearing loss associated with the GJB2 c.235delC homozygous mutation shows diverse phenotypes, and a considerable proportion of patients show bilateral hearing loss asymmetry.
Collapse
|
32
|
Beach R, Abitbol JM, Allman BL, Esseltine JL, Shao Q, Laird DW. GJB2 Mutations Linked to Hearing Loss Exhibit Differential Trafficking and Functional Defects as Revealed in Cochlear-Relevant Cells. Front Cell Dev Biol 2020; 8:215. [PMID: 32300592 PMCID: PMC7142214 DOI: 10.3389/fcell.2020.00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
GJB2 gene (that encodes Cx26) mutations are causal of hearing loss highlighting the importance of Cx26-based channel signaling amongst the supporting cells in the organ of Corti. While the majority of these GJB2 mutations are inherited in an autosomal recessive manner, others are inherited in an autosomal dominant manner and lead to syndromic hearing loss as well as skin diseases. To assess if common or divergent mechanisms are at the root of GJB2-linked hearing loss, we expressed several mutants in cochlear-relevant HEI-OC1 cells derived from the developing organ of Corti. Since supporting cells of the mature mammalian organ of Corti have negligible Cx43, but HEI-OC1 cells are rich in Cx43, we first used CRISPR-Cas9 to ablate endogenous Cx43, thus establishing a connexin-deficient platform for controlled reintroduction of hearing-relevant connexins and Cx26 mutants. We found three distinct outcomes and cellular phenotypes when hearing loss-linked Cx26 mutants were expressed in cochlear-relevant cells. The dominant syndromic Cx26 mutant N54K had trafficking defects and did not fully prevent wild-type Cx26 gap junction plaque formation but surprisingly formed gap junctions when co-expressed with Cx30. In contrast, the dominant syndromic S183F mutant formed gap junctions incapable of transferring dye and, as expected, co-localized in the same gap junctions as wild-type Cx26 and Cx30, but also gained the capacity to intermix with Cx43 within gap junctions. Both recessive non-syndromic Cx26 mutants (R32H and R184P) were retained in intracellular vesicles including early endosomes and did not co-localize with Cx30. As might be predicted, none of the Cx26 mutants prevented Cx43 gap junction plaque formation in Cx43-rich HEI-OC1 cells while Cx43-ablation had little effect on the expression of reference genes linked to auditory cell differentiation. We conclude from our studies in cochlear-relevant cells that the selected Cx26 mutants likely evoke hearing loss via three unique connexin defects that are independent of Cx43 status.
Collapse
Affiliation(s)
- Rianne Beach
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Julia M. Abitbol
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian L. Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Yu X, Lin Y, Xu J, Che T, Li L, Yang T, Wu H. Molecular epidemiology of Chinese Han deaf patients with bi-allelic and mono-allelic GJB2 mutations. Orphanet J Rare Dis 2020; 15:29. [PMID: 31992338 PMCID: PMC6986010 DOI: 10.1186/s13023-020-1311-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recessive mutations in GJB2 is the most common cause of genetic hearing loss worldwide. The aim of this study is to determine the spectrum and frequency of GJB2 variants in Chinese Han deaf patients and to investigate the underlying causative genes in patients with mono-allelic GJB2 mutations. Methods We analyzed the mutation screening results of GJB2 in 1852 Chinese Han probands with apparently autosomal-recessive hearing loss in our laboratory. Targeted next-generation sequencing of 139 known deafness-related genes were performed in 44 probands with mono-allelic GJB2 mutations. Results Bi-allelic GJB2 mutations was identified in 25.65% of patients, in which the c.235delC (p.L79Cfs*3) mutation is the most frequent cause for both severe-to-profound (84.93%) and mild-to-moderate hearing loss (54.05%), while the c.109G > A (p.V37I) mutation is another frequent cause for mild-to-moderate hearing loss (40.54%). In 3.89% of patients only one mutant allele can be identified in GJB2. Targeted next generation sequencing in 44 such probands revealed digenic heterozygous mutations in GJB2/GJB6 and GJB2/GJB3 as the likely pathogenic mechanism in three probands. In 13 probands, on the other hand, pathogenic mutations in other deafness-associated genes (STRC, EYA1, MITF, PCDH15, USH2A, MYO15A, CDH23, OTOF, SLC26A4, SMPX, and TIMM8A) can be identified as the independent genetic cause, suggesting that the mono-allelic GJB2 mutations in those probands is likely co-incidental. Conclusions Our results demonstrated that GJB2 should be a primary target for mutation screening in Chinese Han deaf patients, and those with mono-allelic GJB2 mutations should be further screened by next generation sequencing.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tuanjie Che
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, 730030, China
| | - Lin Li
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China
| | - Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Hao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
34
|
Jeng JY, Ceriani F, Hendry A, Johnson SL, Yen P, Simmons DD, Kros CJ, Marcotti W. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea. J Physiol 2019; 598:151-170. [PMID: 31661723 PMCID: PMC6972525 DOI: 10.1113/jp279012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Key points Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+‐induced action potentials (APs) during immature stages of development, which are driven by CaV1.3 Ca2+ channels. We also showed that the development of low‐ and high‐frequency hair cells is differentially regulated during pre‐hearing stages, with the former cells being more strongly dependent on experience‐independent Ca2+ action potential activity.
Abstract Sound amplification within the mammalian cochlea depends upon specialized hair cells, the outer hair cells (OHCs), which possess both sensory and motile capabilities. In various altricial rodents, OHCs become functionally competent from around postnatal day 7 (P7), before the primary sensory inner hair cells (IHCs), which become competent at about the onset of hearing (P12). The mechanisms responsible for the maturation of OHCs and their synaptic specialization remain poorly understood. We report that spontaneous Ca2+ activity in the immature cochlea, which is generated by CaV1.3 Ca2+ channels, differentially regulates the maturation of hair cells along the cochlea. Under near‐physiological recording conditions we found that, similar to IHCs, immature OHCs elicited spontaneous Ca2+ action potentials (APs), but only during the first few postnatal days. Genetic ablation of these APs in vivo, using CaV1.3−/− mice, prevented the normal developmental acquisition of mature‐like basolateral membrane currents in low‐frequency (apical) hair cells, such as IK,n (carried by KCNQ4 channels), ISK2 and IACh (α9α10nAChRs) in OHCs and IK,n and IK,f (BK channels) in IHCs. Electromotility and prestin expression in OHCs were normal in CaV1.3−/− mice. The maturation of high‐frequency (basal) hair cells was also affected in CaV1.3−/− mice, but to a much lesser extent than apical cells. However, a characteristic feature in CaV1.3−/− mice was the reduced hair cell size irrespective of their cochlear location. We conclude that the development of low‐ and high‐frequency hair cells is differentially regulated during development, with apical cells being more strongly dependent on experience‐independent Ca2+ APs. Outer hair cells (OHCs) enhance the sensitivity and the frequency tuning of the mammalian cochlea. Similar to the primary sensory receptor, the inner hair cells (IHCs), the mature functional characteristics of OHCs are acquired before hearing onset. We found that OHCs, like IHCs, fire spontaneous Ca2+‐induced action potentials (APs) during immature stages of development, which are driven by CaV1.3 Ca2+ channels. We also showed that the development of low‐ and high‐frequency hair cells is differentially regulated during pre‐hearing stages, with the former cells being more strongly dependent on experience‐independent Ca2+ action potential activity.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Piece Yen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Corné J Kros
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
35
|
Johnson SL, Safieddine S, Mustapha M, Marcotti W. Hair Cell Afferent Synapses: Function and Dysfunction. Cold Spring Harb Perspect Med 2019; 9:a033175. [PMID: 30617058 PMCID: PMC6886459 DOI: 10.1101/cshperspect.a033175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Saaid Safieddine
- UMRS 1120, Institut Pasteur, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, Complexité du Vivant, Paris, France
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, California 94035
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
36
|
Singh MB, White JA, McKimm EJ, Milosevic MM, Antic SD. Mechanisms of Spontaneous Electrical Activity in the Developing Cerebral Cortex-Mouse Subplate Zone. Cereb Cortex 2019; 29:3363-3379. [PMID: 30169554 PMCID: PMC7963116 DOI: 10.1093/cercor/bhy205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/28/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Subplate (SP) neurons exhibit spontaneous plateau depolarizations mediated by connexin hemichannels. Postnatal (P1-P6) mice show identical voltage pattern and drug-sensitivity as observed in slices from human fetal cortex; indicating that the mouse is a useful model for studying the cellular physiology of the developing neocortex. In mouse SP neurons, spontaneous plateau depolarizations were insensitive to blockers of: synaptic transmission (glutamatergic, GABAergic, or glycinergic), pannexins (probenecid), or calcium channels (mibefradil, verapamil, diltiazem); while highly sensitive to blockers of gap junctions (octanol), hemichannels (La3+, lindane, Gd3+), or glial metabolism (DLFC). Application of La3+ (100 μM) does not exert its effect on electrical activity by blocking calcium channels. Intracellular application of Gd3+ determined that Gd3+-sensitive pores (putative connexin hemichannels) reside on the membrane of SP neurons. Immunostaining of cortical sections (P1-P6) detected connexins 26, and 45 in neurons, but not connexins 32 and 36. Vimentin-positive glial cells were detected in the SP zone suggesting a potential physiological interaction between SP neurons and radial glia. SP spontaneous activity was reduced by blocking glial metabolism with DFLC or by blocking purinergic receptors by PPADS. Connexin hemichannels and ATP release from vimentin-positive glial cells may underlie spontaneous plateau depolarizations in the developing mammalian cortex.
Collapse
Affiliation(s)
- Mandakini B Singh
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Jesse A White
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Eric J McKimm
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Milena M Milosevic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT, USA
| |
Collapse
|
37
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
38
|
Eckrich S, Hecker D, Sorg K, Blum K, Fischer K, Münkner S, Wenzel G, Schick B, Engel J. Cochlea-Specific Deletion of Ca v1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Front Cell Neurosci 2019; 13:225. [PMID: 31178698 PMCID: PMC6538774 DOI: 10.3389/fncel.2019.00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Inner hair cell (IHC) Cav1.3 Ca2+ channels are multifunctional channels mediating Ca2+ influx for exocytosis at ribbon synapses, the generation of Ca2+ action potentials in pre-hearing IHCs and gene expression. IHCs of deaf systemic Cav1.3-deficient (Cav1.3-/-) mice stay immature because they fail to up-regulate voltage- and Ca2+-activated K+ (BK) channels but persistently express small conductance Ca2+-activated K+ (SK2) channels. In pre-hearing wildtype mice, cholinergic neurons from the superior olivary complex (SOC) exert efferent inhibition onto spontaneously active immature IHCs by activating their SK2 channels. Because Cav1.3 plays an important role for survival, health and function of SOC neurons, SK2 channel persistence and lack of BK channels in systemic Cav1.3-/- IHCs may result from malfunctioning neurons of the SOC. Here we analyze cochlea-specific Cav1.3 knockout mice with green fluorescent protein (GFP) switch reporter function, Pax2::cre;Cacna1d-eGFPflex/flexand Pax2::cre;Cacna1d-eGFPflex/-. Profound hearing loss, lack of BK channels and persistence of SK2 channels in Pax2::cre;Cacna1d-eGFPflex/- mice recapitulated the phenotype of systemic Cav1.3-/- mice, indicating that in wildtype mice, regulation of SK2 and BK channel expression is independent of Cav1.3 expression in SOC neurons. In addition, we noticed dose-dependent GFP toxicity leading to death of basal coil IHCs of Pax2::cre;Cacna1d-eGFPflex/flex mice, likely because of high GFP concentration and small repair capacity. This and the slower time course of Pax2-driven Cre recombinase in switching two rather than one Cacna1d-eGFPflex allele lead us to study Pax2::cre;Cacna1d-eGFPflex/- mice. Notably, control Cacna1d-eGFPflex/- IHCs showed a significant reduction in Cav1.3 channel cluster sizes and currents, suggesting that the intronic construct interfered with gene translation or splicing. These pitfalls are likely to be a frequent problem of many genetically modified mice with complex or multiple gene-targeting constructs or fluorescent proteins. Great caution and appropriate controls are therefore required.
Collapse
Affiliation(s)
- Stephanie Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Katharina Sorg
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Fischer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Stefan Münkner
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gentiana Wenzel
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Saarland University, Homburg, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
39
|
Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019; 135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ10, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
40
|
Leitner MG, Oliver D. A choreography of intracellular Ca 2+ and extracellular ATP to refine auditory nociceptors before hearing. EMBO J 2019; 38:embj.2019101980. [PMID: 30975689 DOI: 10.15252/embj.2019101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael G Leitner
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
41
|
Xia H, Huang X, Xu H, Zhou YA, Gong L, Yang Z, Lv J, Deng H. GJB2 c.235delC variant associated with autosomal recessive nonsyndromic hearing loss and auditory neuropathy spectrum disorder. Genet Mol Biol 2019; 42:48-51. [PMID: 30816908 PMCID: PMC6428124 DOI: 10.1590/1678-4685-gmb-2017-0318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/19/2018] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is a genetically heterogeneous neurosensory disorder, usually characterized by congenital or prelingual hearing loss. We report a Han Chinese male, born to consanguineous parents, presenting with nonsyndromic sensorineural hearing loss, whose clinical phenotype was also consistent with auditory neuropathy spectrum disorder (ANSD). After exome sequencing, a gap junction protein beta 2 gene (GJB2) c.235delC variant in the homozygous state was detected in the patient. Both parents were heterozygous for this variant, as documented by Sanger sequencing. The known pathogenic GJB2 c.235delC variant was not detected in 200 healthy controls. It is predicted to be a disease-causing alteration by generating a truncated protein p.(L79Cfs*3), disturbing the appropriate folding and/or oligomerization of connexins and leading to defective gap junction channels. This study shows that the association of homozygosity of the GJB2 c.235delC variant with ARNSHL and ANSD in a patient.
Collapse
Affiliation(s)
- Hong Xia
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- First Affiliated Hospital, Department of General Surgery, Hunan University, Changsha, Hunan, China
| | - Hongbo Xu
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Yong-An Zhou
- Second Affiliated Hospital, Department of Blood Transfusion, Shaanxi Normal University, Taiyuan, Shanxi, China
| | - Lina Gong
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Zhijian Yang
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Jingyan Lv
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Third Xiangya Hospital, Center for Experimental Medicine and Department of Neurology, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Ceriani F, Hendry A, Jeng JY, Johnson SL, Stephani F, Olt J, Holley MC, Mammano F, Engel J, Kros CJ, Simmons DD, Marcotti W. Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. EMBO J 2019; 38:embj.201899839. [PMID: 30804003 PMCID: PMC6484507 DOI: 10.15252/embj.201899839] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine‐tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non‐sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non‐sensory cells of the greater epithelial ridge cause, via ATP‐induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience‐independent Ca2+ signals from sensory and non‐sensory cells.
Collapse
Affiliation(s)
- Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Friederike Stephani
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Jutta Engel
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Ramineni AK, Burgess T, Cruickshanks P, Coman D. A novel familial 9q31.2q32 microdeletion: Muscle cramping, somnolence, fatigue, sensorineural hearing loss, pubertal delay, and short stature. Clin Case Rep 2019; 7:304-310. [PMID: 30847195 PMCID: PMC6389485 DOI: 10.1002/ccr3.1970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 02/01/2023] Open
Abstract
We report a novel 9q31.2q32 (chr9: 109195179-113974353, hg 18) microdeletion characterized by fatigue, muscle cramps, short stature, delayed puberty, sensorineural hearing loss, and mild developmental delay. Overlapping microdeletions reported in this region also demonstrate facial dysmorphism, skeletal anomalies, cleft palate, and cardiac valvular abnormalities. In comparing these cases, we suggest critical region of chr9: 109711873-113407621 (hg 18).
Collapse
Affiliation(s)
- Anand K. Ramineni
- Department of PaediatricsThe Wesley HospitalBrisbaneQueenslandAustralia
- Discipline of PaediatricsUnitingCare Clinical SchoolBrisbaneQueenslandAustralia
- Department of NeurosciencesLady Cilento Children's HospitalBrisbaneQueenslandAustralia
- School of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Trent Burgess
- Victorian Clinical Genetics ServicesParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Penny Cruickshanks
- Department of PaediatricsSunshine Coast University HospitalSunshine CoastQueenslandAustralia
| | - David Coman
- Department of PaediatricsThe Wesley HospitalBrisbaneQueenslandAustralia
- Discipline of PaediatricsUnitingCare Clinical SchoolBrisbaneQueenslandAustralia
- Department of NeurosciencesLady Cilento Children's HospitalBrisbaneQueenslandAustralia
- School of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
- School of MedicineGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
44
|
Kelly JJ, Abitbol JM, Hulme S, Press ER, Laird DW, Allman BL. The connexin 30 A88V mutant reduces cochlear gap junction expression and confers long-term protection against hearing loss. J Cell Sci 2019; 132:jcs.224097. [PMID: 30559251 DOI: 10.1242/jcs.224097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in the genes that encode the gap junction proteins connexin 26 (Cx26, encoded by GJB2) and Cx30 (GJB6) are the leading cause of hereditary hearing loss. That said, the Cx30 p.Ala88Val (A88V) mutant causes Clouston syndrome, but not hearing loss. Here, we report that the Cx30-A88V mutant, despite being toxic to inner ear-derived HEI-OC1 cells, conferred remarkable long-term protection against age-related high frequency hearing loss in Cx30A88V/A88V mice. During early development, there were no overt structural differences in the cochlea between genotypes, including a normal complement of hair cells; however, the supporting cell Cx30 gap junction plaques in mutant mice were reduced in size. In adulthood, Cx30A88V/A88V mutant mice had a reduction of cochlear Cx30 mRNA and protein, yet a full complement of hair cells. Conversely, the age-related high frequency hearing loss in Cx30+/+ and Cx30+/A88V mice was due to extensive loss of outer hair cells. Our data suggest that the Cx30-A88V mutant confers long-term hearing protection and prevention of hair cell death, possibly via a feedback mechanism that leads to the reduction of total Cx30 gap junction expression in the cochlea.
Collapse
Affiliation(s)
- John J Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julia M Abitbol
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephanie Hulme
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Eric R Press
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
45
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
46
|
Kros CJ. Wake up your ears! ATP sculpts development along the auditory system. J Physiol 2018; 595:1019-1020. [PMID: 28198016 DOI: 10.1113/jp273722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
47
|
Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nat Commun 2018; 9:4015. [PMID: 30275467 PMCID: PMC6167318 DOI: 10.1038/s41467-018-06307-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals. Mechanoelectrical transducer (MET) channels on the tips of inner hair cells are essential for transducing auditory sensory information. Here, the authors show that disrupting MET channel function also prevents the preservation of normal inner hair cell identity in adult mice.
Collapse
|
48
|
Fetoni AR, Zorzi V, Paciello F, Ziraldo G, Peres C, Raspa M, Scavizzi F, Salvatore AM, Crispino G, Tognola G, Gentile G, Spampinato AG, Cuccaro D, Guarnaccia M, Morello G, Van Camp G, Fransen E, Brumat M, Girotto G, Paludetti G, Gasparini P, Cavallaro S, Mammano F. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol 2018; 19:301-317. [PMID: 30199819 PMCID: PMC6129666 DOI: 10.1016/j.redox.2018.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2+/- mice as a model of heterozygous human carriers of 35delG. Compared to control mice, auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) worsened over time more rapidly in Gjb2+/- mice, indicating they were affected by accelerated age-related hearing loss (ARHL), or presbycusis. We linked causally the auditory phenotype of Gjb2+/- mice to apoptosis and oxidative damage in the cochlear duct, reduced release of glutathione from connexin hemichannels, decreased nutrient delivery to the sensory epithelium via cochlear gap junctions and deregulated expression of genes that are under transcriptional control of the nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal regulator of tolerance to redox stress. Moreover, a statistically significant genome-wide association with two genes (PRKCE and TGFB1) related to the Nrf2 pathway (p-value < 4 × 10-2) was detected in a very large cohort of 4091 individuals, originating from Europe, Caucasus and Central Asia, with hearing phenotype (including 1076 presbycusis patients and 1290 healthy matched controls). We conclude that (i) elements of the Nrf2 pathway are essential for hearing maintenance and (ii) their dysfunction may play an important role in the etiopathogenesis of human presbycusis.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Institute of Otolaryngology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Fabiola Paciello
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | | | | | - Giulia Crispino
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Gabriella Tognola
- CNR Institute of Electronics, Computer and Telecommunication Engineering, 20133 Milano, Italy
| | - Giulia Gentile
- CNR Institute of Neurological Sciences, 95126 Catania, Italy
| | | | - Denis Cuccaro
- CNR Institute of Neurological Sciences, 95126 Catania, Italy
| | | | | | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Erik Fransen
- Department of Biomedical Sciences, University of Antwerp, 2650 Antwerp, Belgium
| | - Marco Brumat
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy
| | - Giorgia Girotto
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy
| | - Gaetano Paludetti
- Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Institute of Otolaryngology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Paolo Gasparini
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy.
| | | | - Fabio Mammano
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; University of Padova, Department of Physics and Astronomy "G. Galilei", Padova, Italy.
| |
Collapse
|
49
|
A Cell Junctional Protein Network Associated with Connexin-26. Int J Mol Sci 2018; 19:ijms19092535. [PMID: 30150563 PMCID: PMC6163694 DOI: 10.3390/ijms19092535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
GJB2 mutations are the leading cause of non-syndromic inherited hearing loss. GJB2 encodes connexin-26 (CX26), which is a connexin (CX) family protein expressed in cochlea, skin, liver, and brain, displaying short cytoplasmic N-termini and C-termini. We searched for CX26 C-terminus binding partners by affinity capture and identified 12 unique proteins associated with cell junctions or cytoskeleton (CGN, DAAM1, FLNB, GAPDH, HOMER2, MAP7, MAPRE2 (EB2), JUP, PTK2B, RAI14, TJP1, and VCL) by using mass spectrometry. We show that, similar to other CX family members, CX26 co-fractionates with TJP1, VCL, and EB2 (EB1 paralogue) as well as the membrane-associated protein ASS1. The adaptor protein CGN (cingulin) co-immuno-precipitates with CX26, ASS1, and TJP1. In addition, CGN co-immunoprecipitation with CX30, CX31, and CX43 indicates that CX association is independent on the CX C-terminus length or sequence. CX26, CGN, FLNB, and DAMM1 were shown to distribute to the organ of Corti and hepatocyte plasma membrane. In the mouse liver, CX26 and TJP1 co-localized at the plasma membrane. In conclusion, CX26 associates with components of other membrane junctions that integrate with the cytoskeleton.
Collapse
|
50
|
Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 2018; 99:511-524.e5. [PMID: 30077356 DOI: 10.1016/j.neuron.2018.07.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022]
Abstract
Neurons in the developing auditory system exhibit spontaneous bursts of activity before hearing onset. How this intrinsically generated activity influences development remains uncertain, because few mechanistic studies have been performed in vivo. We show using macroscopic calcium imaging in unanesthetized mice that neurons responsible for processing similar frequencies of sound exhibit highly synchronized activity throughout the auditory system during this critical phase of development. Spontaneous activity normally requires synaptic excitation of spiral ganglion neurons (SGNs). Unexpectedly, tonotopic spontaneous activity was preserved in a mouse model of deafness in which glutamate release from hair cells is abolished. SGNs in these mice exhibited enhanced excitability, enabling direct neuronal excitation by supporting cell-induced potassium transients. These results indicate that homeostatic mechanisms maintain spontaneous activity in the pre-hearing period, with significant implications for both circuit development and therapeutic approaches aimed at treating congenital forms of deafness arising through mutations in key sensory transduction components.
Collapse
Affiliation(s)
- Travis A Babola
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sally Li
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexandra Gribizis
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brian J Lee
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John B Issa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Chin Wang
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dwight E Bergles
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA.
| |
Collapse
|