1
|
Duda JM, Moser AD, Ironside M, Null KE, Holsen LM, Zuo CS, Du F, Esfand SM, Chen X, Perlo S, Richards CE, Lobien R, Alexander M, Misra M, Goldstein JM, Pizzagalli DA. Effects of GABA, Sex, and Stress on Reward Learning in Current and Remitted Major Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:606-615. [PMID: 38417785 PMCID: PMC11156537 DOI: 10.1016/j.bpsc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Neurocognitive factors including aberrant reward learning, blunted GABA (gamma-aminobutyric acid), and potentiated stress sensitivity have been linked to anhedonia, a hallmark depressive symptom, possibly in a sex-dependent manner. However, previous research has not investigated the putative associations among these factors or the extent to which they represent trait- or state-based vulnerabilities for depression. METHODS Young adults with current major depressive disorder (MDD) (n = 44), remitted MDD (n = 42), and healthy control participants (HCs) (n = 44), stratified by sex assigned at birth, underwent magnetic resonance spectroscopy to assess macromolecular contaminated GABA (GABA+) and then a reward learning task before and after acute stress. We assessed changes in reward learning after stress and associations with GABA+. RESULTS Results revealed blunted baseline reward learning in participants with remitted MDD versus participants with current MDD and HCs but, surprisingly, no differences between participants with current MDD and HCs. Reward learning was reduced following acute stress regardless of depressive history. GABA+ in the rostral anterior cingulate cortex, but not the dorsolateral prefrontal cortex, was associated with reduced baseline reward learning only in female participants. GABA+ did not predict stress-related changes in reward learning. CONCLUSIONS To our knowledge, this is the first study to investigate associations among GABA, reward learning, and stress reactivity in current versus past depression. Hypothesized depression-related differences in reward learning did not emerge, precluding claims about state versus trait vulnerabilities. However, our finding that blunted GABA was associated with greater reward learning in female participants provides novel insights into sex-selective associations between the frontal GABAergic inhibitory system and reward processing.
Collapse
Affiliation(s)
- Jessica M Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology, Yale University, New Haven, Connecticut
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Laura M Holsen
- Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chun S Zuo
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Fei Du
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Shiba M Esfand
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Xi Chen
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Christine E Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Rachel Lobien
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Madeline Alexander
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Madhusmita Misra
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jill M Goldstein
- Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
2
|
Liu WZ, Wang CY, Wang Y, Cai MT, Zhong WX, Liu T, Wang ZH, Pan HQ, Zhang WH, Pan BX. Circuit- and laminar-specific regulation of medial prefrontal neurons by chronic stress. Cell Biosci 2023; 13:90. [PMID: 37208769 DOI: 10.1186/s13578-023-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Chronic stress exposure increases the risk of mental health problems such as anxiety and depression. The medial prefrontal cortex (mPFC) is a hub for controlling stress responses through communicating with multiple limbic structures, including the basolateral amygdala (BLA) and nucleus accumbens (NAc). However, considering the complex topographical organization of the mPFC neurons in different subregions (dmPFC vs. vmPFC) and across multiple layers (Layer II/III vs. Layer V), the exact effects of chronic stress on these distinct mPFC output neurons remain largely unknown. RESULTS We first characterized the topographical organization of mPFC neurons projecting to BLA and NAc. Then, by using a typical mouse model of chronic restraint stress (CRS), we investigated the effects of chronic stress on the synaptic activity and intrinsic properties of the two mPFC neuronal populations. Our results showed that there was limited collateralization of the BLA- and NAc-projecting pyramidal neurons, regardless of the subregion or layer they were situated in. CRS significantly reduced the inhibitory synaptic transmission onto the BLA-projecting neurons in dmPFC layer V without any effect on the excitatory synaptic transmission, thus leading to a shift of the excitation-inhibition (E-I) balance toward excitation. However, CRS did not affect the E-I balance in NAc-projecting neurons in any subregions or layers of mPFC. Moreover, CRS also preferentially increased the intrinsic excitability of the BLA-projecting neurons in dmPFC layer V. By contrast, it even caused a decreasing tendency in the excitability of NAc-projecting neurons in vmPFC layer II/III. CONCLUSION Our findings indicate that chronic stress exposure preferentially modulates the activity of the mPFC-BLA circuit in a subregion (dmPFC) and laminar (layer V) -dependent manner.
Collapse
Affiliation(s)
- Wei-Zhu Liu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chun-Yan Wang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yu Wang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Mei-Ting Cai
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Wei-Xiang Zhong
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tian Liu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhi-Hao Wang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China.
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang, 330031, China.
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Adeyemo T, Jaiyesimi A, Bumgardner JG, Lohr C, Banerjee A, McKenna MC, Waddell J. Choline Improves Neonatal Hypoxia-Ischemia Induced Changes in Male but Not Female Rats. Int J Mol Sci 2022; 23:13983. [PMID: 36430459 PMCID: PMC9694200 DOI: 10.3390/ijms232213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Choline is an essential nutrient with many roles in brain development and function. Supplementation of choline in early development can have long-lasting benefits. Our experiments aimed to determine the efficacy of choline supplementation in a postnatal day (PND) 10 rat model of neonatal hypoxia ischemia (HI) at term using both male and female rat pups. Choline (100 mg/kg) or saline administration was initiated the day after birth and given daily for 10 or 14 consecutive days. We determined choline's effects on neurite outgrowth of sex-specific cultured cerebellar granule cells after HI with and without choline. The magnitude of tissue loss in the cerebrum was determined at 72 h after HI and in adult rats. The efficacy of choline supplementation in improving motor ability and learning, tested using eyeblink conditioning, were assessed in young adult male and female rats. Overall, we find that choline improves neurite outgrowth, short-term histological measures and learning ability in males. Surprisingly, choline did not benefit females, and appears to exacerbate HI-induced changes.
Collapse
Affiliation(s)
- Tayo Adeyemo
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jill G. Bumgardner
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Charity Lohr
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Montoya ZT, Uhernik AL, Smith JP. Comparison of cannabidiol to citalopram in targeting fear memory in female mice. J Cannabis Res 2020; 2:48. [PMID: 33526146 PMCID: PMC7819293 DOI: 10.1186/s42238-020-00055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cannabidiol (CBD) and selective serotonin reuptake inhibitors (SSRIs) are currently used to treat post-traumatic stress disorder (PTSD). However, these drugs are commonly studied after dosing just prior to extinction training, and there are gaps in our understanding of how they affect fear memory formation, their comparative effects on various types of memory, and of sexual dimorphisms in effects. Also, more studies involving female subjects are needed to balance the gender-inequality in the literature. Therefore, the purpose of this study was to directly compare the effects of CBD to citalopram in affecting the formation of auditory cued, contextual, and generalized fear memory, and to evaluate how extinction of these different memories was altered by pre-acquisition treatment in female mice. We also evaluated the impact of the estrous cycle on each of these. Methods Auditory-cued trace fear conditioning was conducted shortly after dosing female C57BL/6 mice, with either CBD or citalopram (10 mg/kg each), by pairing auditory tones with mild foot shocks. Auditory-cued, contextual, and generalized fear memory was assessed by measuring freezing responses, with an automated fear conditioning system, 24 h after conditioning. Each memory type was then evaluated every 24 h, over a 4-day period in total, to create an extinction profile. Freezing outcomes were statistically compared by ANOVA with Tukey HSD post hoc analysis, N = 12 mice per experimental group. Evaluation of sexual dimorphism was by comparison to historical data from male mice. Results Auditory cue-associated fear memory was not affected with CBD or citalopram; however, contextual memory was reduced with CBD by 11%, p < 0.05, but not citalopram, and generalized fear memory was reduced with CBD and citalopram, 20% and 22%, respectively, p < 0.05. Extinction learning was enhanced with CBD and citalopram, but, there was considerable memory-type variability between drug effects, with freezing levels reduced at the end of training by 9 to 17% for CBD, and 10 to 12% with citalopram. The estrous cycle did not affect any outcomes. Conclusions Both drugs are potent modifiers of fear memory formation; however, there is considerable divergence in their targeting of different memory types which, overall, could support the use of CBD as an alternative to SSRIs for treating PTSD in females, but not males. A limitation of the study was that it compared data from experiments done at different times to evaluate sexual dimorphism. Overall, this suggests that more research is necessary to guide any therapeutic approach involving CBD.
Collapse
Affiliation(s)
- Zackary T Montoya
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Amy L Uhernik
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jeffrey P Smith
- Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA.
| |
Collapse
|
5
|
Stephenson E, Haskell MJ. The Use of a "Go/Go" Cognitive Bias Task and Response to a Novel Object to Assess the Effect of Housing Enrichment in Sheep ( Ovis aries). J APPL ANIM WELF SCI 2020; 25:62-74. [PMID: 33054369 DOI: 10.1080/10888705.2020.1824786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It is widely acknowledged that environmental enrichment can improve animals' welfare and emotional state. This study used cognitive bias and response to a novel object to assess the effect of enriched housing on emotional state in sheep. Eighteen sheep were trained to discriminate between high-quality and low-quality reward locations using a go/go task. Sheep were allocated to a housing treatment (enriched or standard) for three weeks. Judgment bias tests were conducted using three ambiguous, unrewarded locations across three days, followed by assessing responses to a novel object. Effects of anxiety levels shown in training on responses to ambiguous locations and to the presence of a novel object were assessed. Enriched-housed sheep tended to have shorter latencies to approach ambiguous positions than standard-housed sheep (P = 0.08), particularly to the near and middle locations. Sheep from standard housing tended to have shorter latencies to approach food with the novel object present than sheep from enriched hosing (P = 0.06). This study shows that enrichment can affect emotional state and that go/go tasks can be successful in sheep and should be considered in future studies of emotional state.
Collapse
Affiliation(s)
- Emma Stephenson
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Veterinary Centre, Roslin, UK
| | - Marie J Haskell
- Animal and Veterinary Sciences Research Group, SRUC (Scotland's Rural College), Edinburgh, UK
| |
Collapse
|
6
|
Sellers KJ, Denley MCS, Saito A, Foster EM, Salgarella I, Delogu A, Kamiya A, Srivastava DP. Brain-synthesized oestrogens regulate cortical migration in a sexually divergent manner. Eur J Neurosci 2020; 52:2646-2663. [PMID: 32314480 DOI: 10.1111/ejn.14755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023]
Abstract
Oestrogens play an important role in brain development where they have been implicated in controlling various cellular processes. Several lines of evidence have been presented showing that oestrogens can be synthesized locally within the brain. Studies have demonstrated that aromatase, the enzyme responsible for the conversion of androgens to oestrogens, is expressed during early development in both male and female cortices. Furthermore, 17β-oestradiol has been measured in foetal brain tissue from multiple species. 17β-oestradiol regulates neural progenitor proliferation as well as the development of early neuronal morphology. However, what role locally derived oestrogens play in regulating cortical migration and, moreover, whether these effects are the same in males and females are unknown. Here, we investigated the impact of knockdown expression of Cyp19a1, which encodes aromatase, between embryonic day (E) 14.5 and postnatal day 0 (P0) had on neural migration within the cortex. Aromatase was expressed in the developing cortex of both sexes, but at significantly higher levels in male than female mice. Under basal conditions, no obvious differences in cortical migration between male and female mice were observed. However, knockdown of Cyp19a1 resulted in an increase in cells within the cortical plate, and a concurrent decrease in the subventricular zone/ventricular zone in P0 male mice. Interestingly, the opposite effect was observed in females, who displayed a significant reduction in cells migrating to the cortical plate. Together, these findings indicate that brain-derived oestrogens regulate radial migration through distinct mechanisms in males and females.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Matthew C S Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Atsushi Saito
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evangeline M Foster
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Irene Salgarella
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Atsushi Kamiya
- The Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
7
|
Angulo R, Bustamante J, Estades V, Ramírez V, Jorquera B. Sex Differences in Cue Competition Effects With a Conditioned Taste Aversion Preparation. Front Behav Neurosci 2020; 14:107. [PMID: 32655385 PMCID: PMC7325977 DOI: 10.3389/fnbeh.2020.00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to test whether male and female rats might show differences in cue competition effects in a conditioned taste aversion (CTA) model. Experiment 1 tested for sex differences in overshadowing. After conditioning of a flavored compound AB or only one simple flavor A (being A and B a solution of sugar 10% and salt 1%, counterbalanced), consumption of the A solution at test was larger in the former than in the latter case only in males. Thus, the usual effect of overshadowing was observed in males but not in females. Experiment 2 examined sex differences in blocking with the same stimuli used in Experiment 1. After conditioning of AB, the consumption of B was larger for the animals that previously received a single conditioning trial with A than for those that received unpaired presentations of A and the illness. As observed in Experiment 1, the typical blocking effect appeared only in males but not in females. The present findings thus support the hypothesis that sex dimorphism might be expressed in classical conditioning, or at least, in cue competition effects such as overshadowing and blocking with a taste aversion model.
Collapse
Affiliation(s)
- Rocio Angulo
- Instituto de Ciencias Sociales, Universidad de O’Higgins, Rancagua, Chile
| | | | | | | | | |
Collapse
|
8
|
Lecei A, van Winkel R. Hippocampal pattern separation of emotional information determining risk or resilience in individuals exposed to childhood trauma: Linking exposure to neurodevelopmental alterations and threat anticipation. Neurosci Biobehav Rev 2020; 108:160-170. [DOI: 10.1016/j.neubiorev.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
|
9
|
Wu GY, Liu SL, Yao J, Li X, Wu B, Ye JN, Sui JF. Optogenetic Inhibition of Medial Prefrontal Cortex-Pontine Nuclei Projections During the Stimulus-free Trace Interval Impairs Temporal Associative Motor Learning. Cereb Cortex 2019; 28:3753-3763. [PMID: 28968654 DOI: 10.1093/cercor/bhx238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 11/13/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is closely involved in many higher-order cognitive functions, including learning to associate temporally discontiguous events (called temporal associative learning). However, direct evidence for the role of mPFC and the neural pathway underlying modulation of temporal associative motor learning is sparse. Here, we show that optogenetic inhibition of the mPFC or its axon terminals at the pontine nuclei (PN) during trace intervals or whole trial period significantly impaired the trace eyeblink conditioning (TEC), but had no significant effects on TEC during the conditioned stimulus or intertrial interval period. Our results suggest that activities associated with the mPFC-PN projection during trace intervals is crucial for trace associative motor learning. This finding is of great importance in understanding the mechanisms and the relevant neural pathways underlying mPFC modulation of temporal associative motor learning.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shu-Lei Liu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jian-Ning Ye
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
A mosaic of sex-related structural changes in the human brain following exposure to real-life stress. Brain Struct Funct 2019; 225:461-466. [DOI: 10.1007/s00429-019-01995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
|
11
|
Blume SR, Padival M, Urban JH, Rosenkranz JA. Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats. Sci Rep 2019; 9:12292. [PMID: 31444385 PMCID: PMC6707149 DOI: 10.1038/s41598-019-48683-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Stress is a precipitating factor in depression and anxiety disorders. Patients with these disorders often show amygdala abnormalities. The basolateral amygdala (BLA) is integral in mood and emotion, and is sensitive to stress. While much is known about effects of stress on BLA neuron activity and morphology in males, less is known in females. We tested whether repeated stress exerts distinct effects on BLA in vivo neuronal activity and morphology of Golgi-stained BLA neurons [lateral (LAT) and basal (BA) nuclei] in adult female rats. Repeated restraint stress increased BLA neuronal firing and caused hypertrophy of BLA neurons in males, while it decreased LAT and BA neuronal firing and caused hypotrophy of neurons in the LAT of females. BLA neuronal activity and function, such as fear conditioning, shifts across the estrous cycle. Repeated stress disrupted this pattern of BLA activity and fear expression over the estrous cycle. The disruptive effects of stress on the pattern of BLA function across estrous may produce behavior that is non-optimal for a specific phase of the estrous cycle. The contrasting effects of stress may contribute to sex differences in the effects of stress on mood and psychiatric disorders.
Collapse
Affiliation(s)
- Shannon R Blume
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - Janice H Urban
- Discipline of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.
| |
Collapse
|
12
|
Wu GY, Liu SL, Yao J, Sun L, Wu B, Yang Y, Li X, Sun QQ, Feng H, Sui JF. Medial Prefrontal Cortex-Pontine Nuclei Projections Modulate Suboptimal Cue-Induced Associative Motor Learning. Cereb Cortex 2019; 28:880-893. [PMID: 28077515 DOI: 10.1093/cercor/bhw410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse and powerful mechanisms have evolved to enable organisms to modulate learning and memory under a variety of survival conditions. Cumulative evidence has shown that the prefrontal cortex (PFC) is closely involved in many higher-order cognitive functions. However, when and how the medial PFC (mPFC) modulates associative motor learning remains largely unknown. Here, we show that delay eyeblink conditioning (DEC) with the weak conditioned stimulus (wCS) but not the strong CS (sCS) elicited a significant increase in the levels of c-Fos expression in caudal mPFC. Both optogenetic inhibition and activation of the bilateral caudal mPFC, or its axon terminals at the pontine nucleus (PN) contralateral to the training eye, significantly impaired the acquisition, recent and remote retrieval of DEC with the wCS but not the sCS. However, direct optogenetic activation of the contralateral PN had no significant effect on the acquisition, recent and remote retrieval of DEC. These results are of great importance in understanding the elusive role of the mPFC and its projection to PN in subserving the associative motor learning under suboptimal learning cue.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shu-Lei Liu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Lin Sun
- Institute of Physical Education, Southwest University, Chongqing400715, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation. Neurobiol Learn Mem 2019; 161:26-36. [PMID: 30851433 DOI: 10.1016/j.nlm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
The association of a sensory cue and an aversive footshock that are separated in time, as in trace fear conditioning, requires persistent activity in prelimbic cortex during the cue-shock interval. The activation of muscarinic acetylcholine receptors has been shown to facilitate persistent firing of cortical cells in response to brief stimulation, and muscarinic antagonists in the prefrontal cortex impair working memory. It is unknown, however, if the acquisition of associative trace fear conditioning is dependent on muscarinic signaling in the prefrontal cortex. Here, we delivered the muscarinic receptor antagonist scopolamine to the prelimbic cortex of rats prior to trace fear conditioning and tested their memories of the cue and training context the following day. The effect of scopolamine on working memory performance was also tested using a spatial delayed non-match to sample task. Male and female subjects were included to examine potential sex differences in the modulation of memory formation, as we have previously observed for pituitary adenylate cyclase-activating polypeptide signaling in the prefrontal cortex (Kirry et al., 2018). We found that pre-training administration of intra-prelimbic scopolamine impaired the formation of cued and contextual fear memories in males, but not females at a dose that impairs spatial working memory in both sexes. Fear memory formation in females was impaired by a higher dose of scopolamine and this impairment was gated by estrous cycle stage: scopolamine failed to impair memory in rats in the diestrus or proestrus stages of the estrous cycle. These findings add to the growing body of evidence that the prefrontal cortex is sexually dimorphic in learning and memory and additionally suggest that males and females differentially engage prefrontal neuromodulatory systems in support of learning.
Collapse
|
14
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
15
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats. Neuropharmacology 2018; 133:145-154. [DOI: 10.1016/j.neuropharm.2018.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/04/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022]
|
17
|
Bangasser DA, Eck SR, Telenson AM, Salvatore M. Sex differences in stress regulation of arousal and cognition. Physiol Behav 2017; 187:42-50. [PMID: 28974457 DOI: 10.1016/j.physbeh.2017.09.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023]
Abstract
There are sex differences in the prevalence and presentation of many psychiatric disorders. For example, posttraumatic stress disorder (PTSD) and major depression are more common in women than men, and women with these disorders present with more hyperarousal symptoms than men. In contrast, attention deficit hyperactivity disorder (ADHD) and schizophrenia are more common in men than women, and men with these disorders have increased cognitive deficits compared to women. A shared feature of the aforementioned psychiatric disorders is the contribution of stressful events to their onset and/or severity. Here we propose that sex differences in stress responses bias females towards hyperarousal and males towards cognitive deficits. Evidence from clinical and preclinical studies is detailed. We also describe underlying neurobiological mechanisms. For example, sex differences in stress receptor signaling and trafficking in the locus coeruleus-arousal center are detailed. In learning circuits, evidence for sex differences in dendritic morphology is provided. Finally, we describe how evaluating sex-specific mechanisms for responding to stress in female and male rodents can lead to better treatments for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Alexander M Telenson
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Madeleine Salvatore
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
18
|
Heroux NA, Robinson-Drummer PA, Sanders HR, Rosen JB, Stanton ME. Differential involvement of the medial prefrontal cortex across variants of contextual fear conditioning. ACTA ACUST UNITED AC 2017; 24:322-330. [PMID: 28716952 PMCID: PMC5516685 DOI: 10.1101/lm.045286.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association happens concurrently in standard contextual fear conditioning (sCFC). By infusing the GABAA receptor agonist muscimol into medial prefrontal cortex (mPFC) in adolescent Long-Evans rats, the current set of experiments examined the functional role of the mPFC in each phase of the CPFE and sCFC. In the CPFE, the mPFC is necessary for the following: acquisition and/or consolidation of context memory (Experiment 1), reconsolidation of a context memory to include shock (Experiment 2), and expression of contextual fear memory during a retention test (Experiment 3). In contrast to the CPFE, inactivation of the mPFC prior to conditioning in sCFC has no effect on acquisition, consolidation, or retention of a contextual fear memory (Experiment 4). Interestingly, the mPFC is not required for acquiring a context-shock association (measured by post-shock freezing) in the CPFE or sCFC (Experiment 2b and 4). Taken together, these results indicate that the mPFC is differentially recruited across stages of learning and variants of contextual fear conditioning (CPFE versus sCFC). More specifically, separating out learning about the context and the context-shock association necessitates activation of the medial prefrontal cortex during early learning and/or consolidation.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | - Hollie R Sanders
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
19
|
Robinson-Drummer PA, Heroux NA, Stanton ME. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect. Neurobiol Learn Mem 2017; 143:27-35. [PMID: 28411153 DOI: 10.1016/j.nlm.2017.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cholinergic function plays a role in a variant of context fear conditioning known as the context preexposure facilitation effect (CPFE; Robinson-Drummer, Dokovna, Heroux, & Stanton, 2016). In the CPFE, acquisition of a context representation, the context-shock association, and expression of context fear occur across successive phases, usually 24h apart. Systemic administration of scopolamine, a muscarinic acetylcholine receptor antagonist, prior to each phase (context preexposure, immediate-shock training, and testing) disrupts the CPFE in juvenile rats (Robinson-Drummer et al., 2016). Dorsal hippocampal (dHPC) cholinergic function contributes significantly to this effect, as local infusion of scopolamine into the dHPC prior to any individual phase of the CPFE produces a disruption identical to systemic administration (Robinson-Drummer et al., 2016). The current experiment extended these findings to another forebrain region implicated in the CPFE, the medial prefrontal cortex (mPFC). Adolescent rats received bilateral infusions of scopolamine (35μg/side) or PBS 10min before all three phases of the CPFE or only prior to a single phase. Intra-mPFC administration of scopolamine prior to all three phases significantly impaired fear conditioning suggesting that mPFC cholinergic function is necessary for successful CPFE performance. Analyses of the individual infusion days revealed a significant impairment of the CPFE when infusions occurred prior to preexposure or training (i.e. immediate footshock) but not prior to testing. In total, these findings suggests a role of mPFC cholinergic function in the acquisition and/or consolidation of a contextual representation and the context-shock association but not in retrieval or expression of fear memory. Implications for mPFC involvement in contextual fear conditioning and neurological dysfunction following neonatal alcohol exposure are discussed.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
20
|
Anderson LC, Petrovich GD. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 2016; 139:11-21. [PMID: 27940080 DOI: 10.1016/j.nlm.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/10/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022]
Abstract
Renewal, or reinstatement, of responding to food cues after extinction may explain the inability to resist palatable foods and change maladaptive eating habits. Previously, we found sex differences in context-dependent renewal of extinguished Pavlovian conditioned responding to food cues. Context-induced renewal involves cue-food conditioning and extinction in different contexts and the renewal of conditioned behavior is induced by return to the conditioning context (ABA renewal). Male rats showed renewal of responding while females did not. In the current study we sought to identify recruitment of key neural systems underlying context-mediated renewal and sex differences. We examined Fos induction within the ventromedial prefrontal cortex (vmPFC), hippocampal formation, thalamus and amygdala in male and female rats during the test for renewal. We found sex differences in vmPFC recruitment during renewal. Male rats in the experimental condition showed renewal of responding and had more Fos induction within the infralimbic and prelimbic vmPFC areas compared to controls that remained in the same context throughout training and testing. Females in the experimental condition did not show renewal or an increase in Fos induction. Additionally, Fos expression differed between experimental and control groups and between the sexes in the hippocampal formation, thalamus and amygdala. Within the ventral subiculum, the experimental groups of both sexes had more Fos compared to control groups. Within the dorsal CA1 and the anterior region of the paraventricular nucleus of the thalamus, in males, the experimental group had higher Fos induction, while both females groups had similar number of Fos-positive neurons. Within the capsular part of the central amygdalar nucleus, females in the experimental group had higher Fos induction, while males groups had similar amounts. The differential recruitment corresponded to the behavioral differences between males and females and suggests the medial prefrontal cortex-hippocampal-thalamic system is a critical site of sex differences during renewal of appetitive Pavlovian responding to food cues. These findings provide evidence for novel neural mechanisms underlying sex differences in food motivation and contextual processing in associative learning and memory. The results should also inform future molecular and translational work investigating sex differences and maladaptive eating habits.
Collapse
Affiliation(s)
- Lauren C Anderson
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
21
|
Shepard R, Page CE, Coutellier L. Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders. Neuroscience 2016; 332:1-12. [PMID: 27365172 DOI: 10.1016/j.neuroscience.2016.06.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
Stress-induced modifications of the prefrontal cortex (PFC) are believed to contribute to the onset of mood disorders, such as depression and anxiety, which are more prevalent in women. In depression, the PFC is hypoactive; however the origin of this hypoactivity remains unclear. Possibly, stress could impact the prefrontal GABAergic inhibitory system that, as a result, impairs the functioning of downstream limbic structures controlling emotions. Preclinical evidence indicates that the female PFC is more sensitive to the effects of stress. These findings suggest that exposure to stress could lead to sex-specific alterations in prefrontal GABAergic signaling, which contribute to sex-specific abnormal functioning of limbic regions. These limbic changes could promote the onset of depressive and anxiety behaviors in a sex-specific manner, providing a possible mechanism mediating sex differences in the clinical presentation of stress-related mood disorders. We addressed this hypothesis using a mouse model of stress-induced depressive-like behaviors: the unpredictable chronic mild stress (UCMS) paradigm. We observed changes in prefrontal GABAergic signaling after exposure to UCMS most predominantly in females. Increased parvalbumin (PV) expression and decreased prefrontal neuronal activity were correlated in females with severe emotionality deficit following UCMS, and with altered activity of the amygdala. In males, small changes in emotionality following UCMS were associated with minor changes in prefrontal PV expression, and with hypoactivity of the nucleus accumbens. Our data suggest that prefrontal hypoactivity observed in stress-related mood disorders could result from stress-induced increases in PV expression, particularly in females. This increased vulnerability of the female prefrontal PV system to stress could underlie sex differences in the prevalence and symptomatology of stress-related mood disorders.
Collapse
Affiliation(s)
- Ryan Shepard
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Chloe E Page
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Cortisol disrupts the neural correlates of extinction recall. Neuroimage 2016; 133:233-243. [DOI: 10.1016/j.neuroimage.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
|
23
|
Shors TJ. A trip down memory lane about sex differences in the brain. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150124. [PMID: 26833842 DOI: 10.1098/rstb.2015.0124] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2015] [Indexed: 01/06/2023] Open
Abstract
Scientific studies funded by the United States government must now include both males and females as experimental subjects. This is a welcomed change for those of us who have been reporting on sex differences for decades. That said, there are some issues to consider; I focus on one in this review: females used in animal models of mental illness and health are almost always virgins and yet most adult females around the world, irrespective of species, are not virgins. I am not advocating that all scientists include non-virgin females in laboratory studies, but rather to consider the dynamic nature of the female brain when drawing conclusions through discovery. Stressful life experiences, including those related to sexual aggression and trauma, can have a lasting impact on processes of learning related to mental health and plasticity in the female brain. Her response to stress can change rather dramatically as she emerges from puberty to become pregnant and produce offspring, as she must learn to care for those offspring. The inclusion of females in scientific research has been a long time coming but it comes with a history. Going forward, we should take advantage of that history to generate hypotheses that are both reasonable and meaningful.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
25
|
Maeng LY, Milad MR. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm Behav 2015; 76:106-17. [PMID: 25888456 PMCID: PMC4823998 DOI: 10.1016/j.yhbeh.2015.04.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/26/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic stress disorder. Despite the growing literature on this topic, the neural basis of these sex differences remains unclear, and the findings appear inconsistent. The neurobiological mechanisms of fear and stress in learning and memory processes have been extensively studied, and the crosstalk between these systems is beginning to explain the disproportionate incidence and differences in symptomatology and remission within these psychopathologies. In this review, we discuss the intersect between stress and fear mechanisms and their modulation by gonadal hormones and discuss the relevance of this information to sex differences in anxiety and fear-based disorders. Understanding these converging influences is imperative to the development of more effective, individualized treatments that take sex and hormones into account.
Collapse
Affiliation(s)
- Lisa Y Maeng
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| | - Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
26
|
Soztutar E, Colak E, Ulupinar E. Gender- and anxiety level-dependent effects of perinatal stress exposure on medial prefrontal cortex. Exp Neurol 2015; 275 Pt 2:274-84. [PMID: 26057948 DOI: 10.1016/j.expneurol.2015.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023]
Abstract
Early life stress leads to psychopathological processes correlated with the predisposition of individuals. Prolonged development of the prefrontal cortex (PFC), playing a critical role in the cognition, personality and social behavior, makes it susceptible to adverse conditions. In this study, we evaluated the dendritic morphology of medial PFC neurons in rats subjected to perinatal stress exposure. Unbiased stereological counting methods showed that total number estimation of c-Fos (+) nuclei, indicating the neuronal activation upon stressful challenge, significantly increased in high anxious animals compared with low anxious and control groups, in both gender. Golgi-Cox staining of neurons displayed anxiety level- and sex-dependent reduction in the dendritic complexity and spine density of pyramidal neurons, especially in the stressed males. While the total length of dendrites were not correlational; density of spines, specifically the mushroom subtypes, showed a negative correlation with the anxiety level of stressed animals. These results suggest that medial PFC is a critical site of neural plasticity within the stressor controllability paradigm. Outcomes of early life stress might be predicted by analyzing the density and morphology of spines in the apical dendrites of pyramidal neurons in correlation with the anxiety-like behavior of animals.
Collapse
Affiliation(s)
- Erdem Soztutar
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey; Interdisciplinary Neuroscience Department, Health Science Institute of Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Ertugrul Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Emel Ulupinar
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey; Interdisciplinary Neuroscience Department, Health Science Institute of Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| |
Collapse
|
27
|
Rajab E, Alqanbar B, Naiser MJ, Abdulla HA, Al‐Momen MM, Kamal A. Sex differences in learning and memory following short‐term dietary restriction in the rat. Int J Dev Neurosci 2014; 36:74-80. [DOI: 10.1016/j.ijdevneu.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ebrahim Rajab
- College of Medical & Health SciencesAhlia UniversityP.O. Box 10878ManamaBahrain
| | - Batool Alqanbar
- Physiology DepartmentCollege of Medicine and Medical SciencesArabian Gulf UniversityP.O. Box 22979ManamaBahrain
| | - Mohammed J. Naiser
- Physiology DepartmentCollege of Medicine and Medical SciencesArabian Gulf UniversityP.O. Box 22979ManamaBahrain
| | - Habib A. Abdulla
- Physiology DepartmentCollege of Medicine and Medical SciencesArabian Gulf UniversityP.O. Box 22979ManamaBahrain
| | - Monaf M. Al‐Momen
- Physiology DepartmentCollege of Medicine and Medical SciencesArabian Gulf UniversityP.O. Box 22979ManamaBahrain
| | - Amer Kamal
- Physiology DepartmentCollege of Medicine and Medical SciencesArabian Gulf UniversityP.O. Box 22979ManamaBahrain
| |
Collapse
|
28
|
Maeng LY, Shors TJ. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress. Front Neural Circuits 2013; 7:198. [PMID: 24391548 PMCID: PMC3868707 DOI: 10.3389/fncir.2013.00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/30/2013] [Indexed: 12/04/2022] Open
Abstract
Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life events.
Collapse
Affiliation(s)
- Lisa Y Maeng
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University Piscataway, NJ, USA
| | - Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University Piscataway, NJ, USA
| |
Collapse
|
29
|
Stress, anxiety, and dendritic spines: What are the connections? Neuroscience 2013; 251:108-19. [DOI: 10.1016/j.neuroscience.2012.04.021] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/11/2023]
|
30
|
Daskalakis NP, Yehuda R, Diamond DM. Animal models in translational studies of PTSD. Psychoneuroendocrinology 2013; 38:1895-911. [PMID: 23845512 DOI: 10.1016/j.psyneuen.2013.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023]
Abstract
Understanding the neurobiological mechanisms of post-traumatic stress disorder (PTSD) is of vital importance for developing biomarkers and more effective pharmacotherapy for this disorder. The design of bidirectional translational studies addressing all facets of PTSD is needed. Animal models of PTSD are needed not only to capture the complexity of PTSD behavioral characteristics, but also to address experimentally the influence of variety of factors which might determine an individual's vulnerability or resilience to trauma, e.g., genetic predisposition, early-life experience and social support. The current review covers recent translational approaches to bridge the gap between human and animal PTSD research and to create a framework for discovery of biomarkers and novel therapeutics.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division & Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, USA
| | | | | |
Collapse
|
31
|
Abstract
Appetitive behaviors such as substance use and eating are under significant regulatory control by the hypothalamic-pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Recent research has begun to examine how these systems interact to cause and maintain poor regulation of these appetitive behaviors. A range of potential molecular, neuroendocrine, and hormonal mechanisms are involved in these interactions and may explain individual differences in both risk and resilience to a range of addictions. This manuscript provides a commentary on research presented during the International Society of Psychoneuroendocrinology's mini-conference on sex differences in eating and addiction with an emphasis on how HPG and HPA axis interactions affect appetitive behaviors in classic addictions and may be used to help inform the ongoing debate about the validity of food addiction.
Collapse
|
32
|
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sajiki J, Shimizu E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. Horm Behav 2013; 63:709-16. [PMID: 23567477 DOI: 10.1016/j.yhbeh.2013.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Perinatal exposure to bisphenol A (BPA), an endocrine-disrupting chemical, affects the central nervous system, including effects on emotional responses and neurotransmitter release. In this study, we investigated the effects of BPA (250 ng/kg/day, from gestational day 10 to postnatal day 20) on fear memory and serotonin (5-HT) metabolites in the brain using contextual fear conditioning (FC) and high-performance liquid chromatography (HPLC), respectively, in adult and juvenile mice of both sexes. Furthermore, we studied the effects of BPA on the gene expression of 5-HT metabolite-related enzymes and 5-HT receptors using quantitative real-time RT PCR in the brains of juvenile females. BPA enhanced fear memory and increased serotonin metabolite (5-HIAA) levels and 5-HIAA/5-HT in the hippocampus, the striatum, the midbrain, the pons, and the medulla oblongata of juvenile female mice. In contrast, alterations in those areas were much smaller in adult females and in both juvenile and adult males. Furthermore, BPA induced increases in the expression levels of Tph2, Slc6a4, and Maoa mRNA in the hippocampus of juvenile females, indicating that BPA induces hyper 5-HT turnover in the hippocampus. Our results suggest that perinatal exposure to a low dose of BPA enhances fear memory and the 5-HTergic system in juvenile mice.
Collapse
Affiliation(s)
- Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Zoladz PR, Diamond DM. Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neurosci Biobehav Rev 2013; 37:860-95. [PMID: 23567521 DOI: 10.1016/j.neubiorev.2013.03.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022]
Abstract
Extensive research has identified stereotypic behavioral and biological abnormalities in post-traumatic stress disorder (PTSD), such as heightened autonomic activity, an exaggerated startle response, reduced basal cortisol levels and cognitive impairments. We have reviewed primary research in this area, noting that factors involved in the susceptibility and expression of PTSD symptoms are more complex and heterogeneous than is commonly stated, with extensive findings which are inconsistent with the stereotypic behavioral and biological profile of the PTSD patient. A thorough assessment of the literature indicates that interactions among myriad susceptibility factors, including social support, early life stress, sex, age, peri- and post-traumatic dissociation, cognitive appraisal of trauma, neuroendocrine abnormalities and gene polymorphisms, in conjunction with the inconsistent expression of the disorder across studies, confounds attempts to characterize PTSD as a monolithic disorder. Overall, our assessment of the literature addresses the great challenge in developing a behavioral and biomarker-based diagnosis of PTSD.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH, 45810, USA
| | | |
Collapse
|
34
|
Graham BM, Milad MR. Blockade of estrogen by hormonal contraceptives impairs fear extinction in female rats and women. Biol Psychiatry 2013; 73:371-8. [PMID: 23158459 PMCID: PMC3557577 DOI: 10.1016/j.biopsych.2012.09.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/24/2012] [Accepted: 09/18/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Fear extinction is a laboratory model of fear inhibition and is the basis of exposure therapy for anxiety disorders. Emerging evidence from naturally cycling female rodents and women indicates that estrogens are necessary to the consolidation of fear extinction. Hormonal contraceptives (HCs) inhibit estrogen production; yet, their effects on fear extinction are unknown. METHODS We used a cross-species translational approach to investigate the impact of HCs and estradiol supplementation on fear extinction in healthy women (n=76) and female rats (n = 140). RESULTS Women using HCs exhibited significantly poorer extinction recall compared with naturally cycling women. The extinction impairment was also apparent in HC-treated female rats and was associated with reduced serum estradiol levels. The impairment could be rescued in HC-treated rats either by terminating HC treatment after fear learning or by systemic injection of estrogen-receptor agonists before fear extinction, all of which restored serum estradiol levels. Finally, a single administration of estradiol to naturally cycling women significantly enhanced their ability to recall extinction memories. CONCLUSIONS Together, these findings suggest that HCs may impact women's ability to inhibit fear but that this impairment is not permanent and could potentially be alleviated with estrogen treatment.
Collapse
Affiliation(s)
- Bronwyn M Graham
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA,Correspondence to: Mohammed R Milad; ; 13th St; Building 149, room 2.614, Charlestown Navy Yard, MA, 02129
| |
Collapse
|
35
|
Nokia MS, Anderson ML, Shors TJ. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur J Neurosci 2012; 36:3521-30. [PMID: 23039863 DOI: 10.1111/ejn.12007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/26/2012] [Accepted: 08/30/2012] [Indexed: 12/24/2022]
Abstract
Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland.
| | | | | |
Collapse
|
36
|
Yuan Y, Chen YP, Boyd‐Kirkup J, Khaitovich P, Somel M. Accelerated aging-related transcriptome changes in the female prefrontal cortex. Aging Cell 2012; 11:894-901. [PMID: 22783978 PMCID: PMC3470704 DOI: 10.1111/j.1474-9726.2012.00859.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory for Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Vic. 3086, Australia
| | - Yi‐Ping Phoebe Chen
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Vic. 3086, Australia
| | - Jerome Boyd‐Kirkup
- Key Laboratory for Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Philipp Khaitovich
- Key Laboratory for Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D‐04103 Leipzig, Germany
| | - Mehmet Somel
- Key Laboratory for Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D‐04103 Leipzig, Germany
- Department of Integrative Biology, University of California–Berkeley, Berkeley, CA, USA
| |
Collapse
|
37
|
Wosiski-Kuhn M, Stranahan AM. Opposing effects of positive and negative stress on hippocampal plasticity over the lifespan. Ageing Res Rev 2012; 11:399-403. [PMID: 22101329 DOI: 10.1016/j.arr.2011.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/19/2022]
Abstract
Early developmental experience shapes neuronal circuits and influences the trajectory of cognitive aging. Just as adversity early in life can accelerate age-related synaptic impairments, enhancement of neuronal metabolism and function in the developing brain could potentially protect neurons against the synaptic consequences of aging. In this regard, metabolic enhancements following exercise directly oppose the deleterious consequences of adverse stress. In this review, we examine the relationship between exercise and other forms of stress over the lifespan. Exercise is a specialized form of stress in that it is predictable and voluntary, while other forms of psychological and physiological stress are unpredictable and uncontrollable, with distinct consequences for behavior and synaptic plasticity. Themes emerging from the literature surrounding the opposing effects of adversity and exercise include epigenetic mechanisms that converge on the regulation of neurotrophic factor expression and neurogenesis. These data suggest that exercise-induced neuroprotection and neuronal endangerment following adversity may both be transferable across generations, in a manner that has the potential to impact neuroplasticity over the lifespan.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Physiology Department, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | |
Collapse
|
38
|
Toledo-Rodriguez M, Pitiot A, Paus T, Sandi C. Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex. Neurobiol Learn Mem 2012; 98:93-101. [PMID: 22664720 DOI: 10.1016/j.nlm.2012.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/20/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022]
Abstract
Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether peri-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while peri-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to peri-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to peri-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific.
Collapse
|
39
|
Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J Neurosci 2012; 32:2886-99. [PMID: 22357871 DOI: 10.1523/jneurosci.5625-11.2012] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Choosing between smaller, assured rewards or larger, uncertain ones requires reconciliation of competing biases toward more certain or riskier options. We used disconnection and neuroanatomical techniques to reveal that separate, yet interconnected, neural pathways linking the medial prefrontal cortex (PFC), the basolateral amygdala (BLA), and nucleus accumbens (NAc) contribute to these different decision biases in rats. Disrupting communication between the BLA and NAc revealed that this subcortical circuit biases choice toward larger, uncertain rewards on a probabilistic discounting task. In contrast, disconnections between the BLA and PFC increased choice of the Large/Risky option. PFC-NAc disconnections did not affect choice but did increase choice latencies and trial omissions. Neuroanatomical studies confirmed that projection pathways carrying axons from BLA-to-PFC transverse a distinctly different route relative to PFC-to-BLA pathways (via the ventrolateral amydalofugal pathway and ventromedial internal capsule, respectively). We exploited these dissociable axonal pathways to selectively disrupt bottom-up and top-down communication between the BLA and PFC. Subsequent disconnection studies revealed that disruption of top-down (but not bottom-up) information transfer between the medial PFC and BLA increased choice of the larger, riskier option, suggesting that this circuit facilitates tracking of actions and outcomes to temper urges for riskier rewards as they become less profitable. These findings provide novel insight into the dynamic competition between these cortical/subcortical circuits that shape our decision biases and underlie conflicting urges when evaluating options that vary in terms of potential risks and rewards.
Collapse
|
40
|
Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012; 63:129-51. [PMID: 22129456 DOI: 10.1146/annurev.psych.121208.131631] [Citation(s) in RCA: 1030] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by a high degree of coordination between rodent and human researchers examining fear extinction. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. Research in fear extinction could serve as a model for translational research in other areas of behavioral neuroscience.
Collapse
Affiliation(s)
- Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | | |
Collapse
|
41
|
Garrido P, De Blas M, Giné E, Santos Á, Mora F. Aging impairs the control of prefrontal cortex on the release of corticosterone in response to stress and on memory consolidation. Neurobiol Aging 2012; 33:827.e1-9. [DOI: 10.1016/j.neurobiolaging.2011.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/28/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022]
|
42
|
Trace and contextual fear conditioning are impaired following unilateral microinjection of muscimol in the ventral hippocampus or amygdala, but not the medial prefrontal cortex. Neurobiol Learn Mem 2012; 97:452-64. [PMID: 22469748 DOI: 10.1016/j.nlm.2012.03.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/21/2012] [Accepted: 03/18/2012] [Indexed: 11/23/2022]
Abstract
Trace fear conditioning, in which a brief empty "trace interval" occurs between presentation of the CS and UCS, differs from standard delay conditioning in that contributions from both the hippocampus and prelimbic medial prefrontal cortex (PL mPFC) are required to form a normal long term memory. Little is currently known about how the PL interacts with various temporal lobe structures to support learning across this temporal gap between stimuli. We temporarily inactivated PL along with either ventral hippocampus or amygdala in a disconnection design to determine if these structures functionally interact to acquire trace fear conditioning. Disconnection (contralateral injections) of the PL with either the ventral hippocampus or amygdala impaired trace fear conditioning; however, ipsilateral control rats were also impaired. Follow-up experiments examined the effects of unilateral inactivation of the PL, ventral hippocampus, or amygdala during conditioning. The results of this study demonstrate that unilateral inactivation of the ventral hippocampus or amygdala impairs memory, while bilateral inactivation of the PL is required to produce a deficit. Memory deficits after unilateral inactivation of the ventral hippocampus or amygdala prevent us from determining whether the mPFC functionally interacts with the medial temporal lobe using a disconnection approach. Nonetheless, our findings suggest that the trace fear network is more integrated than previously thought.
Collapse
|
43
|
Maeng LY, Shors TJ. Once a mother, always a mother: maternal experience protects females from the negative effects of stress on learning. Behav Neurosci 2011; 126:137-41. [PMID: 22181714 DOI: 10.1037/a0026707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Women experience profound hormonal fluctuations throughout their reproductive lives. They are especially susceptible to disturbances in mood and cognition during the transition from pregnancy into postpartum and motherhood (Brummelte & Galea, 2010). Their behavioral and hormonal responses to stressful stimuli are also altered during this time. These changes are not limited to humans but occur in many mammalian species. Virgin female rats express a severe learning deficit in associative eyeblink conditioning after a stressful life event (Wood, Beylin, & Shors, 2001; Wood & Shors, 1998), but lactating females or those that are caring for young learn well even after the stressor (Leuner & Shors, 2006). However, we do not know whether maternal experience persistently alters learning after a stressful event. Here we hypothesized that females that had been maternal at some time in their lives would learn well even after exposure to a stressful event. To test this hypothesis, females that had at least one brood of young and expressed a normal estrous cycle were exposed to an acute stressful event that reliably impairs learning in virgin females. Animals were trained 24 hr later with classical eyeblink conditioning. Exposure to the stressor suppressed learning in virgins but not in females that had been mothers at some time in their lives. These data suggest that maternal experience induces a protective mechanism in mothers, which promotes associative learning long after the offspring have left their care.
Collapse
Affiliation(s)
- Lisa Y Maeng
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
44
|
Abstract
In this review, the authors propose that the fear extinction model can be used as an experimental tool to cut across symptom dimensions of multiple anxiety disorders to enhance our understanding of the psychopathology of these disorders and potentially facilitate the detection of biomarkers for them. The authors evaluate evidence for this proposition from studies examining the neurocircuitry underlying fear extinction in rodents, healthy humans, and clinical populations. The authors also assess the potential use of the fear extinction model to predict vulnerability for anxiety and treatment response and to improve existing treatments or develop novel ones. Finally, the authors suggest potential directions for future research that will help to further validate extinction as a biomarker for anxiety across diagnostic categories and to bridge the gap between basic neuroscience and clinical practice.
Collapse
Affiliation(s)
| | - Mohammed R Milad
- Corresponding author: Mohammed R Milad, PhD, Department of Psychiatry, Harvard Medical School & Massachusetts General Hospital, 149 13th St, CNY 2614, Charlestown, MA 02129, , Phone: 617-724-8533, Fax: 617-726-4078
| |
Collapse
|
45
|
Srivastava DP, Waters EM, Mermelstein PG, Kramár EA, Shors TJ, Liu F. Rapid estrogen signaling in the brain: implications for the fine-tuning of neuronal circuitry. J Neurosci 2011; 31:16056-63. [PMID: 22072656 PMCID: PMC3245715 DOI: 10.1523/jneurosci.4097-11.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 12/17/2022] Open
Abstract
Rapid actions of estrogens were first described >40 years ago. However, the importance of rapid estrogen-mediated actions in the CNS is only now becoming apparent. Several lines of evidence demonstrate that rapid estrogen-mediated signaling elicits potent effects on molecular and cellular events, resulting in the "fine-tuning" of neuronal circuitry. At an ultrastructural level, the details of estrogen receptor localization and how these are regulated by the circulating hormone and age are now becoming evident. Furthermore, the mechanisms that allow membrane-associated estrogen receptors to couple with intracellular signaling pathways are also now being revealed. Elucidation of complex actions of rapid estrogen-mediated signaling on synaptic proteins, connectivity, and synaptic function in pyramidal neurons has demonstrated that this neurosteroid engages specific mechanisms in different areas of the brain. The regulation of synaptic properties most likely underlies the fine-tuning of neuronal circuitry. This in turn may influence how learned behaviors are encoded by different circuitry in male and female subjects. Importantly, as estrogens have been suggested as potential treatments of a number of disorders of the CNS, advancements in our understanding of rapid estrogen signaling in the brain will serve to aid in the development of potential novel estrogen-based treatments.
Collapse
Affiliation(s)
- Deepak P. Srivastava
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Elizabeth M. Waters
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Enikö A. Kramár
- Department of Psychiatry and Human Behavior, Irvine, California 92697
| | - Tracey J. Shors
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Feng Liu
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| |
Collapse
|