1
|
Novo DP, Gao M, Yu J, Barrett JM, Shepherd GMG. Cortical dynamics in hand/forelimb S1 and M1 evoked by brief photostimulation of the mouse's hand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626335. [PMID: 39677687 PMCID: PMC11642753 DOI: 10.1101/2024.12.02.626335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spiking activity along synaptic circuits linking primary somatosensory (S1) and motor (M1) areas is fundamental for sensorimotor integration in cortex. Circuits along the ascending somatosensory pathway through mouse hand/forelimb S1 and M1 were recently described in detail (Yamawaki et al., 2021). Here, we characterize the peripherally evoked spiking dynamics in these two cortical areas in the same system. Brief (5 ms) optogenetic photostimulation of the hand generated short (~25 ms) barrages of activity first in S1 (onset latency 15 ms) then M1 (10 ms later). The estimated propagation speed was 20-fold faster from hand to S1 than from S1 to M1. Response amplitudes in M1 were strongly attenuated to approximately a third of those in S1. Responses were typically triphasic, with suppression and rebound following the initial peak. Parvalbumin (PV) inhibitory interneurons were involved in each phase, accounting for three-quarters of the initial spikes generated in S1, and their selective photostimulation sufficed to evoke suppression and rebound in both S1 and M1. Partial silencing of S1 by PV activation during hand stimulation reduced the M1 sensory responses. These results provide quantitative measures of spiking dynamics of cortical activity along the hand/forelimb-related transcortical loop; demonstrate a prominent and mechanistic role for PV neurons in each phase of the response; and, support a conceptual model in which somatosensory signals reach S1 via high-speed subcortical circuits to generate characteristic barrages of cortical activity, then reach M1 via densely polysynaptic corticocortical circuits to generate a similar but delayed and attenuated profile of activity.
Collapse
Affiliation(s)
- Daniela Piña Novo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianing Yu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - John M. Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gordon M. G. Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
González-Pereyra P, Sánchez-Lobato O, Martínez-Montalvo MG, Ortega-Romero DI, Pérez-Díaz CI, Merchant H, Tellez LA, Rueda-Orozco PE. Preconfigured cortico-thalamic neural dynamics constrain movement-associated thalamic activity. Nat Commun 2024; 15:10185. [PMID: 39582075 PMCID: PMC11586408 DOI: 10.1038/s41467-024-54742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Neural preconfigured activity patterns (nPAPs), conceptualized as organized activity parcellated into groups of neurons, have been proposed as building blocks for cognitive and sensory processing. However, their existence and function in motor networks have been scarcely studied. Here, we explore the possibility that nPAPs are present in the motor thalamus (VL/VM) and their potential contribution to motor-related activity. To this end, we developed a preparation where VL/VM multiunitary activity could be robustly recorded in mouse behavior evoked by primary motor cortex (M1) optogenetic stimulation and forelimb movements. VL/VM-evoked activity was organized as rigid stereotypical activity patterns at the single and population levels. These activity patterns were unable to dynamically adapt to different temporal architectures of M1 stimulation. Moreover, they were experience-independent, present in virtually all animals, and pairs of neurons with high correlations during M1-stimulation also presented higher correlations during spontaneous activity, confirming their preconfigured nature. Finally, subpopulations expressing specific M1-evoked patterns also displayed specific movement-related patterns. Our data demonstrate that the behaviorally related identity of specific neural subpopulations is tightly linked to nPAPs.
Collapse
Affiliation(s)
- Perla González-Pereyra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Sánchez-Lobato
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Mario G Martínez-Montalvo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Diana I Ortega-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Claudia I Pérez-Díaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Hugo Merchant
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Luis A Tellez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Pavel E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
3
|
Puzzo CD, Martinez-Garcia RI, Liu H, Dyson LF, Gilbert WO, Cruikshank SJ. Integration of distinct cortical inputs to primary and higher order inhibitory cells of the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618039. [PMID: 39416152 PMCID: PMC11482941 DOI: 10.1101/2024.10.12.618039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties. Here, we investigated top-down neocortical control over primary and HO neurons of somatosensory TRN. Projections from layer 6 of somatosensory cortex evoked stronger and more state-dependent activity in primary than in HO TRN, driven by more robust synaptic inputs and potent T-type calcium currents. However, HO TRN received additional, physiologically distinct, inputs from motor cortex and layer 5 of S1. Thus, in a departure from the canonical focused sensory layer 6 innervation characteristic of primary TRN, HO TRN integrates broadly from multiple corticothalamic systems, with unique state-dependence, extending the range of mechanisms for top-down control.
Collapse
|
4
|
Papale AE, Harish M, Paletzki RF, O'Connor NJ, Eastwood BS, Seal RP, Williamson RS, Gerfen CR, Hooks BM. Symmetry in Frontal But Not Motor and Somatosensory Cortical Projections. J Neurosci 2024; 44:e1195232024. [PMID: 38937102 PMCID: PMC11326871 DOI: 10.1523/jneurosci.1195-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 06/29/2024] Open
Abstract
The neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision-making, where lateralization of function may be less important. This study contrasted the topographic precision of cell-type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes. While sensory cortical areas had strongly topographic outputs to the ipsilateral cortex and striatum, they were weaker and not as topographically precise to contralateral targets. The motor cortex had somewhat stronger projections but still relatively weak contralateral topography. In contrast, frontal cortical areas had high degrees of topographic similarity for both ipsilateral and contralateral projections to the cortex and striatum. Corticothalamic organization is mainly ipsilateral, with weaker, more medial contralateral projections. Corticostriatal computations might integrate input outside closed basal ganglia loops using contralateral projections, enabling the two hemispheres to act as a unit to converge on one result in motor planning and decision-making.
Collapse
Affiliation(s)
- Andrew E Papale
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Madhumita Harish
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ross S Williamson
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
5
|
Koster KP, Sherman SM. Convergence of inputs from the basal ganglia with layer 5 of motor cortex and cerebellum in mouse motor thalamus. eLife 2024; 13:e97489. [PMID: 38856045 PMCID: PMC11208046 DOI: 10.7554/elife.97489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi), and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5. Separately, we also demonstrate that, perhaps unexpectedly, GABAergic GPi and SNr inputs converge with those from the Cb. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - S Murray Sherman
- Department of Neurobiology, University of ChicagoChicagoUnited States
| |
Collapse
|
6
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Lakshminarasimhan KJ, Xie M, Cohen JD, Sauerbrei BA, Hantman AW, Litwin-Kumar A, Escola S. Specific connectivity optimizes learning in thalamocortical loops. Cell Rep 2024; 43:114059. [PMID: 38602873 PMCID: PMC11104520 DOI: 10.1016/j.celrep.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Thalamocortical loops have a central role in cognition and motor control, but precisely how they contribute to these processes is unclear. Recent studies showing evidence of plasticity in thalamocortical synapses indicate a role for the thalamus in shaping cortical dynamics through learning. Since signals undergo a compression from the cortex to the thalamus, we hypothesized that the computational role of the thalamus depends critically on the structure of corticothalamic connectivity. To test this, we identified the optimal corticothalamic structure that promotes biologically plausible learning in thalamocortical synapses. We found that corticothalamic projections specialized to communicate an efference copy of the cortical output benefit motor control, while communicating the modes of highest variance is optimal for working memory tasks. We analyzed neural recordings from mice performing grasping and delayed discrimination tasks and found corticothalamic communication consistent with these predictions. These results suggest that the thalamus orchestrates cortical dynamics in a functionally precise manner through structured connectivity.
Collapse
Affiliation(s)
| | - Marjorie Xie
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jeremy D Cohen
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27559, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam W Hantman
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27559, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Sean Escola
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
8
|
Zolnik TA, Bronec A, Ross A, Staab M, Sachdev RNS, Molnár Z, Eickholt BJ, Larkum ME. Layer 6b controls brain state via apical dendrites and the higher-order thalamocortical system. Neuron 2024; 112:805-820.e4. [PMID: 38101395 DOI: 10.1016/j.neuron.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/11/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo. We found powerful output in the higher-order thalamus and apical dendrites of L5 pyramidal neurons, via L1a and L5a, as well as in superior colliculus and L6 interneurons. L6b subpopulations with distinct morphologies and short- and long-term plasticities project to these diverse targets. The L1a-targeting subpopulation triggered powerful NMDA-receptor-dependent spikes that elicited burst firing in L5. We conclude that orexin/hypocretin-activated cortical neurons form a multifaceted, fine-tuned circuit for the sustained control of the higher-order thalamocortical system.
Collapse
Affiliation(s)
- Timothy Adam Zolnik
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| | - Anna Bronec
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Annemarie Ross
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Marcel Staab
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Robert N S Sachdev
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Zoltán Molnár
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Sherrington Building, Oxford OX1 3PT, UK
| | | | - Matthew Evan Larkum
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| |
Collapse
|
9
|
Rodríguez-Urgellés E, Casas-Torremocha D, Sancho-Balsells A, Ballasch I, García-García E, Miquel-Rio L, Manasanch A, Del Castillo I, Chen W, Pupak A, Brito V, Tornero D, Rodríguez MJ, Bortolozzi A, Sanchez-Vives MV, Giralt A, Alberch J. Thalamic Foxp2 regulates output connectivity and sensory-motor impairments in a model of Huntington's Disease. Cell Mol Life Sci 2023; 80:367. [PMID: 37987826 PMCID: PMC10663254 DOI: 10.1007/s00018-023-05015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Anna Sancho-Balsells
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iván Ballasch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Esther García-García
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Del Castillo
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wanqi Chen
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anika Pupak
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Veronica Brito
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Tornero
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain
| | - Manuel J Rodríguez
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Giralt
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| | - Jordi Alberch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
10
|
Liu L, Yun Z, Manubens-Gil L, Chen H, Xiong F, Dong H, Zeng H, Hawrylycz M, Ascoli GA, Peng H. Neuronal Connectivity as a Determinant of Cell Types and Subtypes. RESEARCH SQUARE 2023:rs.3.rs-2960606. [PMID: 37398060 PMCID: PMC10312949 DOI: 10.21203/rs.3.rs-2960606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Classifications of single neurons at brain-wide scale is a powerful way to characterize the structural and functional organization of a brain. We acquired and standardized a large morphology database of 20,158 mouse neurons, and generated a whole-brain scale potential connectivity map of single neurons based on their dendritic and axonal arbors. With such an anatomy-morphology-connectivity mapping, we defined neuron connectivity types and subtypes (both called "c-types" for simplicity) for neurons in 31 brain regions. We found that neuronal subtypes defined by connectivity in the same regions may share statistically higher correlation in their dendritic and axonal features than neurons having contrary connectivity patterns. Subtypes defined by connectivity show distinct separation with each other, which cannot be recapitulated by morphology features, population projections, transcriptomic, and electrophysiological data produced to date. Within this paradigm, we were able to characterize the diversity in secondary motor cortical neurons, and subtype connectivity patterns in thalamocortical pathways. Our finding underscores the importance of connectivity in characterizing the modularity of brain anatomy, as well as the cell types and their subtypes. These results highlight that c-types supplement conventionally recognized transcriptional cell types (t-types), electrophysiological cell types (e-types), and morphological cell types (m-types) as an important determinant of cell classes and their identities.
Collapse
Affiliation(s)
- Lijuan Liu
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Zhixi Yun
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Linus Manubens-Gil
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | | | - Feng Xiong
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Hongwei Dong
- UCLA Brain Research and Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Giorgio A. Ascoli
- Center for Neural Informatics, Bioengineering Department, and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Hanchuan Peng
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures. Neurobiol Dis 2023; 178:106025. [PMID: 36731682 DOI: 10.1016/j.nbd.2023.106025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.
Collapse
|
13
|
Shim HJ, Im GH, Jung WB, Moon HS, Dinh TNA, Lee JY, Kim SG. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields. STAR Protoc 2022; 3:101846. [PMID: 36595930 PMCID: PMC9768354 DOI: 10.1016/j.xpro.2022.101846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mouse optogenetic functional magnetic resonance imaging (opto-fMRI) is critical for linking genes and functions and for mapping cell-type-specific neural circuits in the whole brain. Herein, we describe how opto-fMRI images can be reliably obtained in anesthetized mice with minimal distortions at ultrahigh magnetic fields. The protocol includes surgical and anesthesia procedures, animal cradle modification, animal preparation and setup, animal physiology maintenance, and pilot fMRI scanning. This protocol will enable reproducible mouse opto-fMRI experiments. For complete details on the use and execution of this protocol, please refer to Jung et al. (2021),1 Jung et al. (2022),2 and Moon et al. (2021).3.
Collapse
Affiliation(s)
- Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Corresponding author
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeong-Yun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea,Corresponding author
| |
Collapse
|
14
|
Moberg S, Takahashi N. Neocortical layer 5 subclasses: From cellular properties to roles in behavior. Front Synaptic Neurosci 2022; 14:1006773. [PMID: 36387773 PMCID: PMC9650089 DOI: 10.3389/fnsyn.2022.1006773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.
Collapse
Affiliation(s)
- Sara Moberg
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
15
|
Borges FS, Moreira JVS, Takarabe LM, Lytton WW, Dura-Bernal S. Large-scale biophysically detailed model of somatosensory thalamocortical circuits in NetPyNE. Front Neuroinform 2022; 16:884245. [PMID: 36213546 PMCID: PMC9536213 DOI: 10.3389/fninf.2022.884245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch and related sensorimotor behaviors. In 2015, the Blue Brain Project (BBP) developed a groundbreaking rat S1 microcircuit simulation with over 31,000 neurons with 207 morpho-electrical neuron types, and 37 million synapses, incorporating anatomical and physiological information from a wide range of experimental studies. We have implemented this highly detailed and complex S1 model in NetPyNE, using the data available in the Neocortical Microcircuit Collaboration Portal. NetPyNE provides a Python high-level interface to NEURON and allows defining complicated multiscale models using an intuitive declarative standardized language. It also facilitates running parallel simulations, automates the optimization and exploration of parameters using supercomputers, and provides a wide range of built-in analysis functions. This will make the S1 model more accessible and simpler to scale, modify and extend in order to explore research questions or interconnect to other existing models. Despite some implementation differences, the NetPyNE model preserved the original cell morphologies, electrophysiological responses and spatial distribution for all 207 cell types; and the connectivity properties of all 1941 pathways, including synaptic dynamics and short-term plasticity (STP). The NetPyNE S1 simulations produced reasonable physiological firing rates and activity patterns across all populations. When STP was included, the network generated a 1 Hz oscillation comparable to the original model in vitro-like state. By then reducing the extracellular calcium concentration, the model reproduced the original S1 in vivo-like states with asynchronous activity. These results validate the original study using a new modeling tool. Simulated local field potentials (LFPs) exhibited realistic oscillatory patterns and features, including distance- and frequency-dependent attenuation. The model was extended by adding thalamic circuits, including 6 distinct thalamic populations with intrathalamic, thalamocortical (TC) and corticothalamic connectivity derived from experimental data. The thalamic model reproduced single known cell and circuit-level dynamics, including burst and tonic firing modes and oscillatory patterns, providing a more realistic input to cortex and enabling study of TC interactions. Overall, our work provides a widely accessible, data-driven and biophysically-detailed model of the somatosensory TC circuits that can be employed as a community tool for researchers to study neural dynamics, function and disease.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Paulo, Brazil
| | - Joao V. S. Moreira
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
| | - Lavinia M. Takarabe
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Paulo, Brazil
| | - William W. Lytton
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Neurology, Kings County Hospital Center, Brooklyn, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
16
|
Conserved patterns of functional organization between cortex and thalamus in mice. Proc Natl Acad Sci U S A 2022; 119:e2201481119. [PMID: 35588455 DOI: 10.1073/pnas.2201481119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceNeuroanatomical tracing provides just a partial picture of information flow in the brain, because excitatory synapses are not all equal. Some strongly drive postsynaptic targets to transfer information, whereas others weakly modulate their responsiveness. Here, we show conserved patterns of synaptic function across somatosensory and visual thalamocortical circuits in mice involving higher-order thalamic nuclei. These nuclei serve as hubs in transthalamic or cortico-thalamo-cortical pathways. We report that feedforward transthalamic circuits in the somatosensory and visual systems operate to efficiently transmit information, whereas feedback transthalamic circuits act to modulate their target areas. These patterns may generalize to other brain systems and show how methods of synapse physiology and molecular biology can inform the exploration of brain circuitry and information processing.
Collapse
|
17
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
18
|
Blot A, Roth MM, Gasler I, Javadzadeh M, Imhof F, Hofer SB. Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron 2021; 109:1996-2008.e6. [PMID: 33979633 PMCID: PMC8221812 DOI: 10.1016/j.neuron.2021.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear. We find that responses of mouse LP neurons projecting to higher visual areas likely derive from feedforward input from primary visual cortex (V1) combined with information from many cortical and subcortical areas, including superior colliculus. Signals from LP projections to different higher visual areas are tuned to specific features of visual stimuli and their locomotor context, distinct from the signals carried by direct intracortical projections from V1. Thus, visual transthalamic pathways are functionally specific to their cortical target, different from feedforward cortical pathways, and combine information from multiple brain regions, linking sensory signals with behavioral context. Transthalamic pathway through pulvinar indirectly connects lower to higher cortical areas This pathway combines input from V1 with that of many cortical and subcortical areas Pulvinar conveys distinct visual and motor information to different higher visual areas Direct intracortical and transthalamic pathways convey different information
Collapse
Affiliation(s)
- Antonin Blot
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | | | - Ioana Gasler
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Mitra Javadzadeh
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Fabia Imhof
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat Rev Neurosci 2021; 22:389-406. [PMID: 33958775 DOI: 10.1038/s41583-021-00459-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.
Collapse
|
20
|
Yamawaki N, Raineri Tapies MG, Stults A, Smith GA, Shepherd GMG. Circuit organization of the excitatory sensorimotor loop through hand/forelimb S1 and M1. eLife 2021; 10:e66836. [PMID: 33851917 PMCID: PMC8046433 DOI: 10.7554/elife.66836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | | | - Austin Stults
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gregory A Smith
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gordon MG Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
21
|
Early fMRI responses to somatosensory and optogenetic stimulation reflect neural information flow. Proc Natl Acad Sci U S A 2021; 118:2023265118. [PMID: 33836602 PMCID: PMC7980397 DOI: 10.1073/pnas.2023265118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
fMRI has revolutionized how neuroscientists investigate human brain functions and networks. To further advance understanding of brain functions, identifying the direction of information flow, such as thalamocortical versus corticothalamic projections, is critical. Because the early hemodynamic response at microvessels near active neurons can be detected by ultrahigh field fMRI, we propose using the onset times of fMRI responses to discern the information flow. This approach was confirmed by observing the ultrahigh spatiotemporal resolution BOLD fMRI responses to bottom-up somatosensory stimulation and top-down optogenetic stimulation of the primary motor cortex in anesthetized mice. Because ultrahigh field MRI is increasingly available, ultrahigh spatiotemporal fMRI will significantly facilitate the investigation of functional circuits in humans. Blood oxygenation level–dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to localize brain functions. To further advance understanding of brain functions, it is critical to understand the direction of information flow, such as thalamocortical versus corticothalamic projections. For this work, we performed ultrahigh spatiotemporal resolution fMRI at 15.2 T of the mouse somatosensory network during forepaw somatosensory stimulation and optogenetic stimulation of the primary motor cortex (M1). Somatosensory stimulation induced the earliest BOLD response in the ventral posterolateral nucleus (VPL), followed by the primary somatosensory cortex (S1) and then M1 and posterior thalamic nucleus. Optogenetic stimulation of excitatory neurons in M1 induced the earliest BOLD response in M1, followed by S1 and then VPL. Within S1, the middle cortical layers responded to somatosensory stimulation earlier than the upper or lower layers, whereas the upper cortical layers responded earlier than the other two layers to optogenetic stimulation in M1. The order of early BOLD responses was consistent with the canonical understanding of somatosensory network connections and cannot be explained by regional variabilities in the hemodynamic response functions measured using hypercapnic stimulation. Our data demonstrate that early BOLD responses reflect the information flow in the mouse somatosensory network, suggesting that high-field fMRI can be used for systems-level network analyses.
Collapse
|
22
|
Rockland KS. A Closer Look at Corticothalamic "Loops". Front Neural Circuits 2021; 15:632668. [PMID: 33603649 PMCID: PMC7884447 DOI: 10.3389/fncir.2021.632668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
24
|
Buchan MJ. A subpopulation of L6b neurons provides driver-like input to the posteromedial thalamus. J Physiol 2020; 598:5313-5315. [PMID: 32857864 DOI: 10.1113/jp280472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
|
25
|
Aru J, Suzuki M, Larkum ME. Cellular Mechanisms of Conscious Processing. Trends Cogn Sci 2020; 24:814-825. [PMID: 32855048 DOI: 10.1016/j.tics.2020.07.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in neurobiology indicate that the time is ripe to understand how cellular-level mechanisms are related to conscious experience. Here, we highlight the biophysical properties of pyramidal cells, which allow them to act as gates that control the evolution of global activation patterns. In conscious states, this cellular mechanism enables complex sustained dynamics within the thalamocortical system, whereas during unconscious states, such signal propagation is prohibited. We suggest that the hallmark of conscious processing is the flexible integration of bottom-up and top-down data streams at the cellular level. This cellular integration mechanism provides the foundation for Dendritic Information Theory, a novel neurobiological theory of consciousness.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Mototaka Suzuki
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Matthew E Larkum
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
26
|
Corticospinal Pathways and Interactions Underpinning Dexterous Forelimb Movement of the Rodent. Neuroscience 2020; 450:184-191. [PMID: 32512136 DOI: 10.1016/j.neuroscience.2020.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
In 2013, Thomas Jessell published a paper with Andrew Miri and Eiman Azim that took on the task of examining corticospinal neuron function during movement (Miri et al., 2013). They took the view that a combination of approaches would be able to shed light on corticospinal function, and that this function must be considered in the context of corticospinal connectivity with spinal circuits. In this review, we will highlight recent developments in this area, along with new information regarding inputs and cross-connectivity of the corticospinal circuit with other circuits across the rodent central nervous system. The genetic and viral manipulations available in these animals have led to new insights into descending circuit interaction and function. As species differences exist in the circuitry profile that contributes to dexterous forelimb movements (Lemon, 2008; Yoshida and Isa, 2018), highlighting important advances in one model could help to compare and contrast with what is known about other models. We will focus on the circuitry underpinning dexterous forelimb movements, including some recent developments from systems besides the corticospinal tract, to build a more holistic understanding of sensorimotor circuits and their control of voluntary movement. The rodent corticospinal system is thus a central point of reference in this review, but not the only focus.
Collapse
|