1
|
De la Torre K, Cerbón MA, Molina-Salinas G, Suárez-Santiago JE, Morin JP, Roldán-Roldán G, Picazo O. Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats. Hormones (Athens) 2024; 23:321-329. [PMID: 38625627 DOI: 10.1007/s42000-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The neuroprotective actions of the ovarian hormone 17β-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density. METHODS Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR). RESULTS On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival. CONCLUSION Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.
Collapse
Affiliation(s)
- Karen De la Torre
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
| | - Marco Antonio Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladys Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Eduardo Suárez-Santiago
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
- Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México.
| |
Collapse
|
2
|
Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiol Dis 2022; 174:105895. [DOI: 10.1016/j.nbd.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
3
|
Victor TR, Hage Z, Tsirka SE. Prophylactic administration of cannabidiol reduces microglial inflammatory response to kainate-induced seizures and neurogenesis. Neuroscience 2022; 500:1-11. [PMID: 35700815 DOI: 10.1016/j.neuroscience.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Microglia, the dynamic innate immune cells of the central nervous system, become activated in epilepsy. The process of microglial activation in epilepsy results in the creation of an inflammatory environment around the site of seizure onset, which contributes to the epileptogenic process and epilepsy progression. Cannabidiol (CBD) has been effective for use as an adjunctive treatment for two severe pediatric seizure disorders. Newly recognized as an Food and Drug Administration (FDA)-approved drug treatment in epilepsy, it has gained in popularity primarily for pain management. Although CBD is readily available in stores and online retailers, its mechanism of action and specifically its effects on microglia and their functions are yet fully understood. In this study, we examine the effects of commercially available CBD on microglia inflammatory activation and neurogenic response, in the presence and absence of seizures. We use systemic administration of kainate to elicit seizures in mice, which are assessed behaviorally. Artisanal CBD is given in different modes of administration and timing to dissect its effect on seizure intensity, microglial activation and aberrant seizure-related neurogenesis. CBD significantly dampens microglial migration and accumulation to the hippocampus. While long term artisanal CBD use does not prevent or lessen seizure severity, CBD is a promising adjunctive partner for its ability to depress epileptogenic processes. These studies indicate that artisanal CBD is beneficial as it both decreases inflammation in the CNS and reduces the number of ectopic neurons deposited in the hippocampal area post seizure.
Collapse
Affiliation(s)
- Tanya R Victor
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Zachary Hage
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
4
|
Venugopal C, Shobha K, Rai KS, Dhanushkodi A. Neurogenic and cognitive enhancing effects of human dental pulp stem cells and its secretome in animal model of hippocampal neurodegeneration. Brain Res Bull 2022; 180:46-58. [PMID: 34979238 DOI: 10.1016/j.brainresbull.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/11/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022]
Abstract
Progressive hippocampal neuronal losses, neuroinflammation, declined neurogenesis and impaired hippocampal functions are pathological features of Alzheimer's disease and temporal lobe epilepsy (TLE). Halting neuroinflammation and progressive neurodegeneration in the hippocampus is a major challenge in treating such disease conditions which, if unsuccessful would lead to learning/memory dysfunction and co-morbidities like anxiety/depression. Mesenchymal stem cells (MSCs) therapy provides hope for treating neurodegenerative diseases by either replacing lost neurons by transplantation of MSCs which might differentiate into appropriate neuronal phenotypes or by stimulating the resident neural stem cells for proliferation/differentiation. In this current study, we demonstrate that the intrahippocampal transplantation of ectoderm originated dental pulp stem cells (DPSCs) or intrahippocampal injection of DPSCs condition medium (DPSCs-CM) in a mouse model of hippocampal neurodegeneration could efficiently prevent neurodegeneration, neuroinflammation, enhance hippocampal neurogenesis and spatial learning and memory functions much superior to commonly used bone marrow mesenchymal stem cells (BM-MSCs) or its secretome. Probing the possible mechanisms of neuroprotection revealed that DPSCs/DPSCs-CM treatment upregulated an array of hosts' endogenous neural survival factors expression, reduced pro-apoptotic caspase activity and upregulated the anti-apoptotic factors BCL-2 and phosphorylated PI3K prominently than BM-MSCs/BM-MSCs-CM, suggesting that among MSCs, neural crest originated DPSCs might be a better adult stem cell candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaitra Venugopal
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - K Shobha
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Kiranmai S Rai
- Dept. of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher, Education, Manipal, Karnataka, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
5
|
ATP1A3-related epilepsy: Report of seven cases and literature-based analysis of treatment response. J Clin Neurosci 2020; 72:31-38. [PMID: 31959558 DOI: 10.1016/j.jocn.2020.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022]
Abstract
ATP1A3 related disease is a clinically heterogeneous condition currently classified as alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss. Recently, it has become apparent that a remarkably large subgroup is suffering from often difficult-to-treat epilepsy. The aim of the present study was to assess the prevalence and efficacy of commonly used anti-epileptic-drugs (AEDs) in patients with ATP1A3 related seizures. Therefore, we performed a retrospective study of patients in combination with a systematic literature-based review. Inclusion criteria were: verified ATP1A3 mutation, seizures and information about AED treatment. The literature review yielded records for 188 epileptic ATP1A3 patients. For 14/188 cases, information about anti-epileptic treatment was available. Combined with seven unpublished records of ATP1A3 patients, a sample size of 21 patients was reached. Most used AED were levetiracetam (n = 9), phenobarbital (n = 8), valproic acid (n = 7), and topiramate (n = 5). Seizure reduction was reported for 57% of patients (n = 12). No individual AEDs used (either alone or combined) had a success rate over 50%. There was no significant difference in the response rate between various AEDs. Ketogenic diet was effective in 2/4 patients. 43% of patients (n = 9) did not show any seizure relief. Even though Epilepsy is a significant clinical issue in ATP1A3 patients, only a minority of publications provide any information about patients' anti-epileptic treatment. The findings of treatment effectiveness in only 57% (or lower) of patients, and the non-existence of a clear first-line AED in ATP1A3 related epilepsy stresses the need for further research.
Collapse
|
6
|
Chavoshinezhad S, Mohseni Kouchesfahani H, Ahmadiani A, Dargahi L. Interferon beta ameliorates cognitive dysfunction in a rat model of Alzheimer's disease: Modulation of hippocampal neurogenesis and apoptosis as underlying mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109661. [PMID: 31152860 DOI: 10.1016/j.pnpbp.2019.109661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis and impaired hippocampal neurogenesis are major players in cognitive/memory dysfunctions including Alzheimer's disease (AD). Interferon beta (IFNβ) is a cytokine with anti-apoptotic and neuroprotective properties on the central nervous system (CNS) cells which specifically affects neural progenitor cells (NPCs) even in the adult brain. In this study, we examined the effect of IFNβ on memory impairment as well as hippocampal neurogenesis and apoptosis in a rat model of AD. AD model was induced by lentiviral-mediated overexpression of mutant APP in the hippocampus of adult rats. Intranasal (IN) administration of IFNβ (0.5 μg/kg and 1 μg/kg doses) was started from day 23 after virus injection and continued every other day to the final day of experiments. The expression levels of APP, neurogenesis (Nestin, Ki67, DCX, and Reelin) and apoptosis (Bax/Bcl-2 ratio, cleaved-caspase-3 and seladin-1) markers were evaluated by immunohistochemistry, real-time PCR, immunofluorescence and western blotting. Moreover, thioflavin T and Nissl stainings were used to assess Aβ plaque levels and neuronal degeneration in the hippocampus, respectively. Our results showed that IFNβ treatment reduced APP expression and Aβ plaque formation, and concomitantly ameliorated spatial learning and memory deficits examined in Y-maze and Morris water maze tests. Moreover, in parallel with reducing apoptosis and neural loss in the hippocampal subfields, IFNβ decreased ectopic neurogenesis in the CA1 and CA3 regions of the AD rat hippocampus. However, IFNβ increased neurogenesis in the dentate gyrus neurogenic niche. Our findings suggest that IFNβ exerts neuroprotective effects at least partly by inhibition of apoptosis and modulation of neurogenesis. Taken together, IFNβ can be a promising therapeutic approach to improve cognitive performance in AD-like neurodegenerative context.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Aguilar-Arredondo A, Zepeda A. Memory retrieval-induced activation of adult-born neurons generated in response to damage to the dentate gyrus. Brain Struct Funct 2018; 223:2859-2877. [PMID: 29663136 DOI: 10.1007/s00429-018-1664-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Collapse
Affiliation(s)
- Andrea Aguilar-Arredondo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico.
| |
Collapse
|
8
|
Azevedo H, Amato Khaled N, Santos P, Bernardi Bertonha F, Moreira-Filho CA. Temporal analysis of hippocampal CA3 gene coexpression networks in a rat model of febrile seizures. Dis Model Mech 2018; 11:dmm.029074. [PMID: 29196444 PMCID: PMC5818071 DOI: 10.1242/dmm.029074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity. Summary: We carried out a temporal analysis of hippocampal gene coexpression networks to identify relevant genes in a rat model of hyperthermic seizures. These genes were mostly related to immune response, cell adhesion and neurogenesis.
Collapse
Affiliation(s)
- Hatylas Azevedo
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Nathália Amato Khaled
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Paula Santos
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina, University of São Paulo (FMUSP), São Paulo, 05403-000, Brazil
| | | |
Collapse
|
9
|
Guo JW, Guan PP, Ding WY, Wang SL, Huang XS, Wang ZY, Wang P. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145:106-127. [PMID: 28865290 DOI: 10.1016/j.biomaterials.2017.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is characterized by the loss of neurogenesis and excessive induction of apoptosis. The induction of neurogenesis and inhibition of apoptosis may be a promising therapeutic approach to combating the disease. Celecoxib (CB), a cyclooxygenase-2 specific inhibitor, could offer neuroprotection. Specifically, the CB-encapsulated erythrocyte membranes (CB-RBCMs) sustained the release of CB over a period of 72 h in vitro and exhibited high brain biodistribution efficiency following intranasal administration, which resulted in the clearance of aggregated β-amyloid proteins (Aβ) in neurons. The high accumulation of the CB-RBCMs in neurons resulted in a decrease in the neurotoxicity of CB and an increase in the migratory activity of neurons, and alleviated cognitive decline in APP/PS1 transgenic (Tg) mice. Indeed, COX-2 metabolic products including prostaglandin E2 (PGE2) and PGD2, PGE2 induced neurogenesis by enhancing the expression of SOD2 and 14-3-3ζ, and PGD2 stimulated apoptosis by increasing the expression of BIK and decreasing the expression of ARRB1. To this end, the CB-RBCMs achieved better effects on concurrently increasing neurogenesis and decreasing apoptosis than the phospholipid membrane-encapsulated CB liposomes (CB-PSPD-LPs), which are critical for the development and progression of AD. Therefore, CB-RBCMs provide a rational design to treat AD by promoting the self-repairing capacity of the brain.
Collapse
Affiliation(s)
- Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wei-Yan Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Ling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
10
|
Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochem Res 2016; 41:1559-69. [DOI: 10.1007/s11064-016-1869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/22/2016] [Accepted: 02/10/2016] [Indexed: 02/08/2023]
|
11
|
Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease. Neural Regen Res 2016; 11:1976-1980. [PMID: 28197195 PMCID: PMC5270437 DOI: 10.4103/1673-5374.197141] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 mL/kg saline. Behavioral test (the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hashemi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
12
|
Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A. Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice. Mol Neurobiol 2015; 53:5818-5832. [DOI: 10.1007/s12035-015-9505-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/19/2015] [Indexed: 01/27/2023]
|
13
|
Vagus Nerve Stimulation has Antidepressant Effects in the Kainic Acid Model for Temporal Lobe Epilepsy. Brain Stimul 2015; 8:13-20. [DOI: 10.1016/j.brs.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
|
14
|
Dunleavy M, Schindler CK, Shinoda S, Crilly S, Henshall DC. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2014; 6:199-208. [PMID: 25755841 PMCID: PMC4348706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis.
Collapse
Affiliation(s)
- Mark Dunleavy
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
| | - Clara K Schindler
- Robert S. Dow Neurobiology Laboratories, Legacy ResearchPortland, OR, USA
| | - Sachiko Shinoda
- Robert S. Dow Neurobiology Laboratories, Legacy ResearchPortland, OR, USA
- Department of Neurosurgery, Mie University School of MedicineMie, Tsu, Japan
| | - Shane Crilly
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin, Ireland
- Irish Centre for Fetal and Neonatal Translational ResearchCork, Ireland
| |
Collapse
|
15
|
Lakhina V, Subramanian L, Huilgol D, Shetty AS, Vaidya VA, Tole S. Seizure evoked regulation of LIM-HD genes and co-factors in the postnatal and adult hippocampus. F1000Res 2013; 2:205. [PMID: 25110573 PMCID: PMC4111125 DOI: 10.12688/f1000research.2-205.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/03/2022] Open
Abstract
The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity. We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed. We report a distinct and field-specific regulation of LIM-HD genes
Lhx1,Lhx2, and
Lhx9, LIM-only gene
Lmo4, and cofactor
Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals. Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Lewis Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Lakshmi Subramanian
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Department of Neurology, University of California, San Francisco, CA, USA
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Cold Spring Harbor Laboratory, NY, USA
| | - Ashwin S Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
16
|
ZHENG SQ, AN LX, CHENG X, WANG YJ. Sevoflurane causes neuronal apoptosis and adaptability changes of neonatal rats. Acta Anaesthesiol Scand 2013; 57:1167-74. [PMID: 23889296 DOI: 10.1111/aas.12163] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neonatal exposure to sevoflurane can induce neurodegeneration and learning deficits in developing brain. We hypothesised that with the increase in the concentration and duration of sevoflurane, neurodegeneration of neonatal rats aggravates and causes behaviour changes as the rats grow. METHODS Twenty-one post-natal day (P)7 Wistar rats were randomly divided into seven groups. Blood analysis was performed after anaesthesia. According to the results, 120 P7 Wistar rats were randomly divided into five groups: Con sham anaesthesia; Sevo 1%-2 h: exposed to 1% sevoflurane for 2 h; Sevo 1%-4 h, Sevo 2%-2 h and Sevo 2%-4 h. Caspase-3 positive cells in brain were detected by immunohistochemistry at 6 h after the end of anaesthesia. The cleaved poly(ADP-ribose) polymerase (c-PARP-1) in cortex and hippocampus was detected by Western blot analysis. Behavioural tests such as Morris water maze and Open-field Test were performed when the rats were 5-week old, 8-week old, and 14-week old. RESULTS Three per cent sevoflurane induced carbon dioxide accumulation. The level of c-PARP-1 in hippocampus area was significantly increased in Group 2%-4h. The number of caspase-3 positive cells in Group Sevo 1%-2h, Group Sevo 2%-2h and Group Sevo 2%-4h was greater than that in Group Con. Rats exposed to sevoflurane had longer travel distance and time in open field when they were 5 weeks old. Animals from different groups had similar performance in Morris water maze. CONCLUSION Exposure to 2% sevoflurane causes neuronal apoptosis of neonatal rats, and long-time exposure aggravates that. The adaptability in new environment is transiently decreased when the anaesthesia rats are 5 weeks old.
Collapse
Affiliation(s)
| | - L. X. AN
- Department of Anesthesiology; Beijing TianTan Hospital, Capital Medical University; Beijing; China
| | - X. CHENG
- Department of Anesthesiology; Beijing TianTan Hospital, Capital Medical University; Beijing; China
| | | |
Collapse
|
17
|
Wang H, Gondré-Lewis MC. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats. PLoS One 2013; 8:e65517. [PMID: 23785432 PMCID: PMC3681797 DOI: 10.1371/journal.pone.0065517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
| | - Marjorie C. Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
18
|
Laurén HB, Ruohonen S, Kukko-Lukjanov TK, Virta JE, Grönman M, Lopez-Picon FR, Järvelä JT, Holopainen IE. Status epilepticus alters neurogenesis and decreases the number of GABAergic neurons in the septal dentate gyrus of 9-day-old rats at the early phase of epileptogenesis. Brain Res 2013; 1516:33-44. [PMID: 23623775 DOI: 10.1016/j.brainres.2013.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/20/2013] [Accepted: 04/14/2013] [Indexed: 01/03/2023]
Abstract
The effects of a prolonged seizure, i.e. status epilepticus (SE), on neurogenesis of dentate granule cells (DGCs) in the immature dentate gyrus (DG) and possible changes in the phenotypes of the newborn neurons have remained incompletely characterized. We have now studied neurogenesis of DGCs in 9-day-old (postnatal, P9) rats 1 week after kainate (KA)-induced SE using 5-bromo-2-deoxyuridine (BrdU) immunostaining. The phenotype characterization of the newborn cells was carried out by immunofluorescence double labeling using doublecortin (DCX) and nestin as markers for immature cells, and glial fibrillary acid protein (GFAP) as a marker for glial cells. Newborn GABAergic neurons were further identified with antibodies for parvalbumin, glutamate decarboxylase 67 (GAD67), and the GABAA receptor α1 subunit, and mRNA expression of GABAergic and immature neurons was measured with quantitative real-time PCR (qPCR) in the DG. Our results show that the number of newborn as well as GABAergic neurons was significantly decreased after SE in the superior blade of the septal DG. The majority of the newborn BrdU-stained neurons co-expressed DCX, but neither nestin nor GFAP. In both experimental groups, newborn neurons were frequently localized in close contact, but not co-localized, with the cells positively stained for the GABAergic cell markers. Nestin and calretinin mRNA expression were significantly increased after SE. Our results suggest that SE-induced disruption of DGC neurogenesis and decreased number of GABAergic neurons could modify the connectivity between these cells and disturb the maturation of the GABAergic neurotransmission in the immature DG at the early epileptogenic phase.
Collapse
Affiliation(s)
- H B Laurén
- Department of Pharmacology, Drug Development and Therapeutics, Itäinen Pitkäkatu 4 B, 20014 University of Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakamura K, Ito M, Liu Y, Seki T, Suzuki T, Arai H. Effects of single and repeated electroconvulsive stimulation on hippocampal cell proliferation and spontaneous behaviors in the rat. Brain Res 2013; 1491:88-97. [DOI: 10.1016/j.brainres.2012.10.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022]
|
20
|
Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayır H, Jenkins LW, Clark RSB, Tisherman SA, Kochanek PM. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 2012; 29:2192-208. [PMID: 22738159 DOI: 10.1089/neu.2011.2303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. Our hypothesis was that a brief, severe period of pressure-controlled HS after TBI in mice will exacerbate functional deficits and neuropathology versus TBI or HS alone. C57BL6 male mice were randomized into four groups (n=10/group): sham, HS, controlled cortical impact (CCI), and CCI+HS. We used a pressure-controlled shock phase (mean arterial pressure [MAP]=25-27 mm Hg for 35 min) and its treatment after mild to moderate CCI including, a 90 min pre-hospital phase, during which lactated Ringer's solution was given to maintain MAP >70 mm Hg, and a hospital phase, when the shed blood was re-infused. On days 14-20, the mice were evaluated in the Morris water maze (MWM, hidden platform paradigm). On day 21, the lesion and hemispheric volumes were quantified. Neuropathology and hippocampal neuron counts (hematoxylin and eosin [H&E], Fluoro-Jade B, and NeuN) were evaluated in the mice (n=60) at 24 h, 7 days, or 21 days (n=5/group/time point). HS reduced MAP during the shock phase in the HS and CCI+HS groups (p<0.05). Fluid requirements during the pre-hospital phase were greatest in the CCI+HS group (p<0.05), and were increased in HS versus sham and CCI animals (p<0.05). MWM latency was increased on days 14 and 15 after CCI+HS (p<0.05). Swim speed and visible platform latency were impaired in the CCI+HS group (p<0.05). CCI+HS animals had increased contusion volume versus the CCI group (p<0.05). Hemispheric volume loss was increased 33.3% in the CCI+HS versus CCI group (p<0.05). CA1 cell loss was seen in CCI+HS and CCI animals at 24 h and 7 days (p<0.05). CA3 cell loss was seen after CCI+HS (p<0.05 at 24 h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.
Collapse
Affiliation(s)
- Joseph N Hemerka
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Coleman LG, Oguz I, Lee J, Styner M, Crews FT. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis. Alcohol 2012; 46:603-12. [PMID: 22572057 DOI: 10.1016/j.alcohol.2012.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 01/05/2012] [Accepted: 01/23/2012] [Indexed: 12/19/2022]
Abstract
Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill CB# 7178, Chapel Hill, NC 27599-7178, USA
| | | | | | | | | |
Collapse
|
22
|
Sharma S, Darland D, Lei S, Rakoczy S, Brown-Borg HM. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:609-20. [PMID: 21544578 PMCID: PMC3337943 DOI: 10.1007/s11357-011-9253-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/15/2011] [Indexed: 05/08/2023]
Abstract
In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Diane Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202 USA
| | - Saobo Lei
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Holly M. Brown-Borg
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| |
Collapse
|
23
|
Puckett RE, Lubin FD. Epigenetic mechanisms in experience-driven memory formation and behavior. Epigenomics 2012; 3:649-64. [PMID: 22126252 DOI: 10.2217/epi.11.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior.
Collapse
Affiliation(s)
- Rosemary E Puckett
- Evelyn F McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
24
|
Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat. Brain Struct Funct 2012; 218:437-53. [PMID: 22481229 DOI: 10.1007/s00429-012-0407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/14/2012] [Indexed: 01/20/2023]
Abstract
The adult brain is highly plastic and tends to undergo substantial reorganization after injury to compensate for the lesion effects. It has been shown that such reorganization mainly relies on anatomical and biochemical modifications of the remaining cells which give rise to a network rewiring without reinstating the original morphology of the damaged region. However, few studies have analyzed the neurorepair potential of a neurogenic structure. Thus, the aim of this work was to analyze if the DG could restore its original morphology after a lesion and to establish if the structural reorganization is accompanied by behavioral and electrophysiological recovery. Using a subepileptogenic injection of kainic acid (KA), we induced a focal lesion in the DG and assessed in time (1) the loss and recovery of dependent and non dependent DG cognitive functions, (2) the anatomical reorganization of the DG using a stereological probe and immunohistochemical markers for different neuronal maturation stages and, (3) synaptic plasticity as assessed through the induction of in vivo long-term potentiation (LTP) in the mossy fiber pathway (CA3-DG). Our results show that a DG focal lesion with KA leads to a well delimited region of neuronal loss, disorganization of the structure, the loss of associated mnemonic functions and the impairment to elicit LTP. However, behavioral and synaptic plasticity expression occurs in a time dependent fashion and occurs along the morphological restoration of the DG. These results provide novel information on neural plasticity events associated to functional reorganization after damage.
Collapse
|
25
|
Collombet JM. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol 2011; 255:229-41. [DOI: 10.1016/j.taap.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/14/2023]
|
26
|
Devesa P, Reimunde P, Gallego R, Devesa J, Arce VM. Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury. Brain Inj 2011; 25:503-10. [PMID: 21456999 DOI: 10.3109/02699052.2011.559611] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PRIMARY OBJECTIVE This study was designed to investigate the effect of growth hormone treatment on the proliferation of endogenous neural progenitor cells in the dentate gyrus (DG) of the brain stimulated by kainic acid (KA)-induced neurotoxicity. RESEARCH DESIGN Neurotoxicity was induced by intraperitoneal injection of KA. GH treatment lasted 4 days, starting either immediately or after 10 days of administration of the neurotoxic insult. METHODS AND PROCEDURE Proliferating cells were immunodetected after labelling by in vivo administration of 5-bromodeoxyuridine (BrdU). GH expression was detected by in situ hybridization and immunofluorescence. MAIN OUTCOMES AND RESULTS KA administration stimulated the proliferation of hippocampal precursors and this effect was significantly enhanced by GH treatment. Hippocampal GH expression was also up-regulated in response to KA administration. CONCLUSIONS The findings support the possibility that the proliferative response observed in the hippocampus of rats treated with KA and GH is a consequence of cooperation between the exogenous and the locally-produced hormone and their synergism with other mitogenic factors generated in response to the neurotoxic damage. Therefore, GH treatment could be used to cooperate with other physiological or pathological stimuli in order to promote cell proliferation.
Collapse
Affiliation(s)
- Pablo Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
27
|
Meng L, Lu L, Murphy KM, Yuede CM, Cheverud JM, Csernansky JG, Dong H. Neuroanatomic and behavioral traits for autistic disorders in age-specific restricted index selection mice. Neuroscience 2011; 189:215-22. [PMID: 21624435 DOI: 10.1016/j.neuroscience.2011.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 01/18/2023]
Abstract
The pathogenesis of neurodevelopmental disorders such as autism is believed to be influenced by interactions between genetic and environmental factors, and appropriate animal models are needed to assess the influence of such factors on relevant neurodevelopmental phenotypes. A set of inbred mouse strains (Atchley strains) including A12 (E+L0) and A22 (E-L0) were generated by age-specific restricted index selection from a baseline random-bred ICR mouse population obtained from Harlan Sprague-Dawley [Atchley et al. (1997) Genetics 146(2):629-640; Indianapolis, IN, USA). As compared with the A22 strain, A12 mice had significantly increased early (P0-P10) body weight gain with minimal changes in late (P28-P56) body weight gain. We found that these strains also differed in brain weight, brain volume, cell proliferation, and FGF-2 levels in certain brain regions. Specifically, brain weight and volume were significantly greater in A12 mice than that in A22 mice at P10 and P28. Quantitative analysis of bromodeoxyuridine (BrdU) labeling of proliferating cells showed that the number of BrdU-positive cells in the A12 strain were significantly greater in the frontal cortex and lesser in the dentate gyrus than that in the A22 strain at P28. Western blot revealed that fibroblast growth factors-2 (FGF-2), but not brain-derived neurotrophic factor (BDNF), expression was significantly increased in the frontal cortex of A12 strain at P28. Also, A12 mice exhibited decreased intra-strain social interaction and increased repetitive stereotyped behaviors at P28. Our study suggests that A12 mice may partially mimic the anatomic and behavioral traits of patients with neurodevelopmental disorders such as autism spectrum disorders, and therefore may yield insights into the developmental mechanisms involved in their pathogenesis.
Collapse
Affiliation(s)
- L Meng
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Holopainen IE, Laurén HB. Glutamate signaling in the pathophysiology and therapy of prenatal insults. Pharmacol Biochem Behav 2011; 100:825-34. [PMID: 21443898 DOI: 10.1016/j.pbb.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
Abstract
Birth asphyxia and hypoxia-ischemia (HI) are important factors affecting the normal development and maturation of the central nervous system (CNS). Depending on the maturity of the brain, HI-induced damage at different ages is region-selective, the white matter (WM) peripheral to the lateral ventricles being selectively vulnerable to damage in premature infants. As a squeal of primary or secondary HI in the preterm infant, the brain injury comprises periventricular leukomalasia (PVL), accompanied by neuronal and axonal damage, which affects several brain regions. Premature delivery and improved neonatal intensive care have led to a survival rate of about 75% to 90% of infants weighting under 1500g both in Europe and in the United States. However, about 5-10% of these survivors exhibit cerebral palsy (CP), and many have cognitive, behavioral, attentional or socialization deficits. In this review, we first shortly discuss developmental changes in the expression of the excitatory glutamate receptors (GluRs), and then in more detail elucidate the contribution of GluRs to oligodendrocyte (OL) damage both in experimental models and in preterm human infants. Finally, therapeutic interventions targeted at GluRs at the young age are discussed in the light of results obtained from recent experimental HI animal models and from humans.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology, Drug Development and Therapeutics, and Medicity Research Laboratory, Institute of Biomedicine University of Turku, Tykistökatu 6A, 4th floor, FIN-20014 Turku, Finland.
| | | |
Collapse
|
29
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
30
|
Tasker RA, Adams-Marriott AL, Shaw CA. New animal models of progressive neurodegeneration: tools for identifying targets in predictive diagnostics and presymptomatic treatment. EPMA J 2010. [PMID: 23199060 PMCID: PMC3405326 DOI: 10.1007/s13167-010-0019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mental and neurological disorders are increasingly prevalent and constitute a major societal and economic burden worldwide. Many of these diseases and disorders are characterized by progressive deterioration over time, that ultimately results in identifiable symptoms that in turn dictate therapy. Disease-specific symptoms, however, often occur late in the degenerative process. A better understanding of presymptomatic events could allow for the development of new diagnostics and earlier interventions that could slow or stop the disease process. Such studies of progressive neurodegeneration require the use of animal models that are characterized by delayed or slowly developing disease phenotype(s). This brief review describes several examples of such animal models that have recently been developed with relevance to various neurological diseases and disorders, and delineates the potential of such models to aid in predictive diagnosis, early intervention and disease prevention.
Collapse
Affiliation(s)
- R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A4P3
| | | | | |
Collapse
|
31
|
Connection between inflammatory processes and transmittor function—Modulatory effects of interleukin-1. Prog Neurobiol 2010; 90:256-62. [DOI: 10.1016/j.pneurobio.2009.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/27/2009] [Accepted: 10/09/2009] [Indexed: 12/27/2022]
|
32
|
|
33
|
Lanshakov DA, Bulygina VV, Romanova IV, Dygalo NN. Immunohistochemical analysis of active caspase-3 expression in structures of neonatal brain. Bull Exp Biol Med 2010; 147:635-8. [PMID: 19907758 DOI: 10.1007/s10517-009-0563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hippocampal fields of neonatal rats differ by the level of active caspase-3: dentate gyrus >CA3>CA1>CA2. In the dentate gyrus it was 70% of its maximum value in the cortex, while in CA2 it corresponded to the minimum level in the brain stem. Taking into account the role of caspase-3 in apoptosis, these differences can indicate different intensity of programmed cell death in different fields of the forming hippocampus.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Functional Neurogenomics, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
34
|
Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida ACG, Cavalheiro EA, Scorza FA. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav 2010; 17:33-8. [PMID: 19969506 DOI: 10.1016/j.yebeh.2009.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy.
Collapse
Affiliation(s)
- Roberta M Cysneiros
- Programa de Pós-graduação em Distúrbios do Desenvolvimento da Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B. Activin A is essential for neurogenesis following neurodegeneration. Stem Cells 2009; 27:1330-46. [PMID: 19489097 PMCID: PMC2733378 DOI: 10.1002/stem.80] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has long been proposed that excitotoxicity contributes to nerve cell death in neurodegenerative diseases. Activin A, a member of the transforming growth factor-β superfamily, is expressed by neurons following excitotoxicity. We show for the first time that this activin A expression is essential for neurogenesis to proceed following neurodegeneration. We found that intraventricular infusion of activin A increased the number of newborn neurons in the dentate gyrus, CA3, and CA1 layers of the normal adult hippocampus and also, following lipopolysaccharide administration, had a potent inhibitory effect on gliosis in vivo and on microglial proliferation in vivo and in vitro. Consistent with the role of activin A in regulating central nervous system inflammation and neurogenesis, intraventricular infusion of follistatin, an activin A antagonist, profoundly impaired neurogenesis and increased the number of microglia and reactive astrocytes following onset of kainic acid-induced neurodegeneration. These results show that inhibiting endogenous activin A is permissive for a potent underlying inflammatory response to neurodegeneration. We demonstrate that the anti-inflammatory actions of activin A account for its neurogenic effects following neurodegeneration because co-administration of nonsteroidal anti-inflammatory drugs reversed follistatin's inhibitory effects on neurogenesis in vivo. Our work indicates that activin A, perhaps working in conjunction with other transforming growth factor-β superfamily molecules, is essential for neurogenesis in the adult central nervous system following excitotoxic neurodegeneration and suggests that neurons can regulate regeneration by suppressing the inflammatory response, a finding with implications for understanding and treating acute and chronic neurodegenerative diseases.
Collapse
|
36
|
Maruoka T, Kodomari I, Yamauchi R, Wada E, Wada K. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neurosci Lett 2009; 454:28-32. [PMID: 19429048 DOI: 10.1016/j.neulet.2009.02.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/19/2023]
Abstract
The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.
Collapse
Affiliation(s)
- Takashi Maruoka
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
37
|
Abstract
The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
38
|
Smith AM, Pappalardo D, Chen WJA. Estimation of neuronal numbers in rat hippocampus following neonatal amphetamine exposure: A stereology study. Neurotoxicol Teratol 2008; 30:495-502. [DOI: 10.1016/j.ntt.2008.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/11/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
|
39
|
Tufan AC, Akdogan I, Turgut G, Adiguzel E. Increased tunel positive cells in CA1, CA2, and CA3 subfields of rat hippocampus due to copper and ethanol co-exposure. Int J Neurosci 2008; 118:647-56. [PMID: 18446581 DOI: 10.1080/00207450601046871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Copper (Cu) is an essential element for life. However, it is toxic at excessive doses, whereas exposure to ethanol (EtOH) has known to cause morphological changes, degeneration, and neuronal loss in central nervous system. A previous investigation by the authors' group showed that Cu and EtOH co-treatment cause severe hippocampal neuronal loss in CA1, CA2, and CA3 subfields of rat hippocampus. This study was designed to analyze the possible mechanism(s) of action of this effect. In addition, the possible neurogenesis in response to a potent neurodegenerative treatment in rat hippocampus was analyzed. Results demonstrated that Cu and EtOH induced neuronal loss in rat hippocampus was in correlation with the increased cell death analyzed on the basis of TdT-mediated dUTP nick end labeling (TUNEL) assay. On the other hand, neuronal regenerative activity was detectable in analyzed CA1, CA2, and CA3 subfields of the rat hippocampus analyzed on the basis of 5-bromo-2'-deoxy-uridine (BrdU) labeling assay; however, this activity in treated group was not significantly different from that of control group.
Collapse
Affiliation(s)
- A Cevik Tufan
- Department of Histology and Embryology, School of Medicine, Pamukkale University, Denizli, Turkey
| | | | | | | |
Collapse
|
40
|
Zaja-Milatovic S, Gupta RC, Aschner M, Montine TJ, Milatovic D. Pharmacologic suppression of oxidative damage and dendritic degeneration following kainic acid-induced excitotoxicity in mouse cerebrum. Neurotoxicology 2008; 29:621-7. [PMID: 18556069 PMCID: PMC2517174 DOI: 10.1016/j.neuro.2008.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/27/2008] [Accepted: 04/08/2008] [Indexed: 11/20/2022]
Abstract
Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 microl) was injected intracerebroventricularly to C57Bl/6 mice. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F2-IsoPs, F4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F2-IsoP, F4-NeuroPs and citrulline levels were found in mice pretreated with vitamin E (alpha-tocopherol, 100mg/kg, i.p.) for 3 days, or with N-tert-butyl-alpha-phenylnitrone (PBN, 200mg/kg, i.p.) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 microg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F2-IsoPs and F4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders.
Collapse
Affiliation(s)
| | - Ramesh C. Gupta
- Breathitt Veterinary Center, Murray State University, Hopkinsville, KY
| | - Michael Aschner
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| | | | - Dejan Milatovic
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
41
|
Spulber S, Oprica M, Bartfai T, Winblad B, Schultzberg M. Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur J Neurosci 2008; 27:549-58. [DOI: 10.1111/j.1460-9568.2008.06050.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Aniol VA, Stepanichev MY. Nitric oxide and gamma-aminobutyric acid as regulators of neurogenesis in the brain of adult mammals: Models of seizure activity. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407040010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 2007; 52:935-47. [PMID: 18093696 DOI: 10.1016/j.neuint.2007.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
Epilepsy is a common neurological disorder that occurs more frequently in children than in adults. The extent that prolonged seizure activity, i.e. status epilepticus (SE), and repeated, brief seizures affect neuronal structure and function in both the immature and mature brain has been the subject of increasing clinical and experimental research. Earlier studies suggest that seizure-induced effects in the immature brain compared with the adult brain are different. This is manifested as differences in neuronal vulnerability, cellular and synaptic reorganization and regenerative processes. The focus of this review is first to give a short overview of currently used experimental models of epilepsy in immature rats, and then discuss more thoroughly seizure-induced acute and sub-acute cellular and molecular alterations, highlight the contribution of inflammatory-like reactions and intracellular cytoskeleton to the insult, and reveal changes in the structure and function of inhibitory GABA(A) and excitatory glutamate receptors. The role of seizure-activated reparative, plastic processes, synaptic remodelling, neurogenesis as well as the long-term consequences of seizures are briefly outlined. The main emphasis is put on studies carried out in experimental animals, and the focus of interest is the hippocampus, the brain area of great vulnerability in epilepsy. In vitro studies are discussed only to limited extent. Collectively, recent studies suggest that the deleterious effects of seizures may not solely be a consequence of neuronal damage and loss per se, but could be due to the fact that seizures interfere with the highly regulated developmental processes in the immature brain.
Collapse
|
44
|
Hernández-Ortega K, Ferrera P, Arias C. Sequential expression of cell-cycle regulators and Alzheimer's disease-related proteins in entorhinal cortex after hippocampal excitotoxic damage. J Neurosci Res 2007; 85:1744-51. [PMID: 17455309 DOI: 10.1002/jnr.21301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growing evidence suggests that one of the earliest events in the neuronal degeneration of Alzheimer's disease (AD) is aberrant cell-cycle activation in postmitotic neurons, which may, in fact, be sufficient to initiate the neurodegenerative cascade. In the present study we examined whether cyclins and cyclin-dependent kinases, molecules normally associated with cell-cycle control, may be involved in delayed expression of altered Alzheimer's proteins in two interconnected areas, the entorhinal cortex (EC) and the dentate gyrus (DG), after a hippocampal excitotoxic lesion. Several cell-cycle proteins of the G1 and S phases and even of the G2 phase were found to be up-regulated in the EC after kainic acid evoked neuronal death in the hippocampus. In addition, we describe the progressive expression of two Alzheimer's-related proteins, PHF-1 and APP, which reached higher levels immediately after the increase in G1/S-phase markers. Hence, the results of the present study support the participation of cell-cycle dysregulation as a key component of the process that may ultimately lead to expression of AD proteins and neuronal death in a brain area when the target site for synaptic inputs in that area is damaged by an excitotoxic insult.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | | | | |
Collapse
|
45
|
Zemlyak I, Manley N, Sapolsky R, Gozes I. NAP protects hippocampal neurons against multiple toxins. Peptides 2007; 28:2004-8. [PMID: 17869381 DOI: 10.1016/j.peptides.2007.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 01/14/2023]
Abstract
The femtomolar-acting protective peptide NAP (NAPVSIPQ), derived from activity-dependent neuroprotective protein (ADNP), is broadly neuroprotective in vivo and in vitro in cerebral cortical cultures and a variety of cell lines. In the present study, we have extended previous results and examined the protective potential of NAP in primary rat hippocampal cultures, using microtubule-associated protein 2 (MAP2) as a measure for neuroprotection. Results showed that NAP, at femtomolar concentrations, completely protected against oxygen-glucose deprivation, and cyanide poisoning. Furthermore, NAP partially protected against kainic acid excitotoxicity. In summary, we have significantly expanded previous findings in demonstrating here direct neuroprotective effects for NAP on vital hippocampal neurons that are key participants in cognitive function in vivo.
Collapse
Affiliation(s)
- Ilona Zemlyak
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
46
|
Choi YS, Cho KO, Kim SY. Asymmetry in enhanced neurogenesis in the rostral dentate gyrus following kainic acid-induced status epilepticus in adult rats. Arch Pharm Res 2007; 30:646-52. [PMID: 17615686 DOI: 10.1007/bf02977661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurogenesis in the suprapyramidal and infrapyramidal blades of the rostral dentate gyrus was investigated following kainic acid (KA)-induced status epilepticus (SE) in adult rats. Rats were injected with KA (14 mg/kg, i.p.) or saline, with convulsions terminated by an intraperitoneal injection of diazepam. Five days after the induction of SE, the rats were injected with 5-bromo-2-deoxyuridine-5-monophosphate (BrdU; 75 mg/kg, i.p.), a marker of cell division. One day after the BrdU injection, the numbers of BrdU-labeled cells in the supra- and infrapyramidal blades were significantly higher in the KA-injected rats compared to the saline-injected rats. In the saline-injected rats, the number of BrdU-labeled cells in the infrapyramidal blade was greater than in the suprapyramidal blade. Twenty-eight days after the BrdU injection, the number of BrdU-labeled cells remained significantly higher in the KA-injected rats than the saline-injected rats, but only in the infrapyramidal blade. In addition, when the extent of cell death was examined with Fluoro-Jade B (a marker of dead and dying cells) 3 days after the induction of SE, degenerating cells were more numerous in the infrapyramidal blade than in the suprapyramidal blade. Our results suggest that there is an asymmetry of neurogenesis and cell death in the rostral dentate gyrus of rats following KA-induced SE.
Collapse
Affiliation(s)
- Yun-Sik Choi
- Department of Pharmacology, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
47
|
Yamashima T, Tonchev AB, Yukie M. Adult Hippocampal Neurogenesis in Rodents and Primates: Endogenous, Enhanced, and Engrafted. Rev Neurosci 2007; 18:67-82. [PMID: 17405451 DOI: 10.1515/revneuro.2007.18.1.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the studies of Ramon y Cajal, a central postulate in neuroscience has been the view that the adult brain lacks the ability to regenerate its neurons. This dogma has been challenged in the last few decades, and mounting evidence has accumulated showing the existence of a phenomenon designated 'adult neurogenesis'. De novo generation of neurons by neural progenitor cells in the adult brain is thought to be preserved only in restricted brain areas, such as the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. Data in the last decade coming mostly from rodent models have clearly documented that precursor cells residing in the anterior portion of SVZ and the subgranular zone of DG are responsible for adding new neurons in the olfactory bulb and DG, respectively. This raised significant interest in the clinical potential of neural progenitor cells, and recent studies have documented that brain injury is capable of activating an endogenous program of neurogenesis resulting in neuronal replacement in various cerebral regions of rodents and primates. If the newly generated neurons in the adult brain prove to be functional, it could have a tremendous impact for cell replacement therapies. Here, we summarize current knowledge of the mechanisms affecting adult hippocampal neurogenesis in both rodents and primates, and discuss its implications in developing novel strategies for the treatment of human neurological diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | | | | |
Collapse
|
48
|
Chambers RA, Conroy SK. Network modeling of adult neurogenesis: shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. J Cogn Neurosci 2007; 19:1-12. [PMID: 17214558 PMCID: PMC2887709 DOI: 10.1162/jocn.2007.19.1.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptotic and neurogenic events in the adult hippocampus are hypothesized to play a role in cognitive responses to new contexts. Corticosteroid-mediated stress responses and other neural processes invoked by substantially novel contextual changes may regulate these processes. Using elementary three-layer neural networks that learn by incremental synaptic plasticity, we explored whether the cognitive effects of differential regimens of neuronal turnover depend on the environmental context in terms of the degree of novelty in the new information to be learned. In "adult" networks that had achieved mature synaptic connectivity upon prior learning of the Roman alphabet, imposition of apoptosis/neurogenesis before learning increasingly novel information (alternate Roman < Russian < Hebrew) reveals optimality of informatic cost benefits when rates of turnover are geared in proportion to the degree of novelty. These findings predict that flexible control of rates of apoptosis-neurogenesis within plastic, mature neural systems optimizes learning attributes under varying degrees of contextual change, and that failures in this regulation may define a role for adult hippocampal neurogenesis in novelty- and stress-responsive psychiatric disorders.
Collapse
|
49
|
Motomiya M, Kobayashi M, Iwasaki N, Minami A, Matsuoka I. Activity-dependent regulation of BRINP family genes. Biochem Biophys Res Commun 2007; 352:623-9. [PMID: 17141197 DOI: 10.1016/j.bbrc.2006.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/13/2006] [Indexed: 01/23/2023]
Abstract
We previously identified a family of novel developmentally regulated genes: BRINP1, 2, and 3, which are predominantly and widely expressed in the CNS from earlier developmental stages to adulthood. In the present study, we investigated the activity-dependent regulation of BRINP expression in the CNS. Among the three BRINP genes, BRINP1-mRNA was specifically up-regulated in the dentate gyrus of mouse hippocampus by kainic acid treatment. In cultured hippocampal neurons, the induction of BRINP1-mRNA was also observed by the activation of glutamate receptors. Although BDNF-mRNA is up-regulated in a similar activity-dependent manner, BDNF itself did not induce BRINP1-mRNA. From these results, the physiological roles of the activity-dependent induction of BRINP1-mRNA are discussed.
Collapse
Affiliation(s)
- Makoto Motomiya
- Division of Innovative Research, Creative Research Initiative SOUSEI (CRIS), Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | |
Collapse
|
50
|
Bernard PB, Macdonald DS, Gill DA, Ryan CL, Tasker RA. Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 2007; 17:1121-33. [PMID: 17636548 DOI: 10.1002/hipo.20342] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously reported that serial systemic injections of low-dose (subconvulsive) domoic acid (DOM) during early postnatal development produces changes in both behavior and hippocampal cytoarchitecture in aged rats (17 months) that are similar to those seen in existing animal models of temporal lobe epilepsy. Herein we report further hippocampal changes, consisting of mossy fiber sprouting and associated changes in the trkB receptor population in young adult (3 months) rats, and further, report that these changes show regional variation throughout the septo-temporal axis of the hippocampus. Groups of Sprague Dawley rat pups were injected daily from postnatal day 8-14 with either saline (n = 23) or 20 microg/kg DOM (n = 25), tested for key indicators of neonatal neurobehavioral development, and then left undisturbed until approximately 90 days of age, at which time brain tissue was removed, hippocampi were dissected, fixed and processed using either Timm's stain to visualize hippocampal mossy fiber sprouting (MFS) or trkB immunohistochemistry to visualize full length trkB receptors. Multiple sections from dorsal, mid, and ventral hippocampus were analyzed separately and all measures were conducted using image analysis software. The results indicate significant increases in MFS in the inner molecular layer in treated animals with corresponding changes in trkB receptor density. Further we identified significant increases in trkB receptor density in the hilus of the dentate gyrus and area CA3 and report increased mossy fiber terminal density in the stratum lucidum in treated rats. The magnitude of these changes differed between sections from dorsal, mid, and ventral hippocampus. We conclude that low dose neonatal DOM produces cytoarchitectural changes indicative of abnormal development and/or synaptic plasticity that are progressive with age and show regional variation within the hippocampal formation.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | |
Collapse
|