1
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. Mol Cell 2023; 83:3852-3868.e6. [PMID: 37852256 PMCID: PMC10841713 DOI: 10.1016/j.molcel.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Mikaila I Sass
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Theresa M Smith
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ethan J Carter
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Nathan E Gladden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Margot Riggi
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Janet H Iwasa
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA.
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539424. [PMID: 37205387 PMCID: PMC10187262 DOI: 10.1101/2023.05.04.539424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mikaila I. Sass
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - W. Grant Ludlam
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Theresa M. Smith
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Ethan J. Carter
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Nathan E. Gladden
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Margot Riggi
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Peter S. Shen
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States,*Correspondence: Clint L. Makino,
| |
Collapse
|
4
|
De Nittis P, Efthymiou S, Sarre A, Guex N, Chrast J, Putoux A, Sultan T, Raza Alvi J, Ur Rahman Z, Zafar F, Rana N, Rahman F, Anwar N, Maqbool S, Zaki MS, Gleeson JG, Murphy D, Galehdari H, Shariati G, Mazaheri N, Sedaghat A, Lesca G, Chatron N, Salpietro V, Christoforou M, Houlden H, Simonds WF, Pedrazzini T, Maroofian R, Reymond A. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J Med Genet 2021; 58:815-831. [PMID: 33172956 PMCID: PMC8639930 DOI: 10.1136/jmedgenet-2020-107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.
Collapse
Affiliation(s)
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Audrey Putoux
- Service de Génétique, Hopital Femme Mere Enfant, Bron, France
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Zia Ur Rahman
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, La Jolla, California, USA
| | - David Murphy
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - William F Simonds
- Metabolic Diseases Branch/NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne, Lausanne, Switzerland
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
6
|
Abstract
OBJECTIVE To report a unique retinal signaling defect in GNB5-related disease. METHODS A 3-year-old female child underwent detailed systemic and ophthalmological evaluation. The eye examination included fundus photography, spectral domain optical coherence tomography and an extended protocol full-field electroretinography (ERG) including the ISCEV recommended standard steps. The dark-adapted (DA) ERGs were performed to a series of white flashes (range 0.006-30.0 cd s m-2) and two red flashes. The DA ERGs to higher stimulus intensities (3.0, 10.0 and 30.0 cd s m-2) were tested using a range of inter-stimulus intervals (ISI) of up to 60 s. In addition to standard light-adapted (LA) ERGs, a short-duration (0.5 s) LA 3.0 30-Hz flicker ERG and a long-duration LA ON-OFF ERG were also performed. Genetic testing included microarray, mitochondrial genome testing and whole exome sequencing. RESULTS The child was diagnosed to have status epilepticus and bradycardia at 6 months of age. Subsequently, she was diagnosed to have global developmental delay and hypotonia. On ophthalmological evaluation, the child fixes and follows light. Fundus evaluation showed mild optic disk pallor; macular SD-OCT was normal. The dim flash DA ERGs (DA 0.006 and DA 0.01 cd s m-2) were non-detectable. DA red flash ERGs showed the presence of an x-wave (cone component) and no rod component. The DA 3.0, 10.0 and 30.0 ERGs showed electronegative configuration regardless of the ISI; the averaged a-wave amplitude (4 flashes) was smaller at shorter ISI but became normal at a prolonged ISI (60 s). The LA 30-Hz flicker ERG was severely reduced but detectable for the initial 0.5 s; this became non-detectable after 5 s of averaging. The LA 3.0 2-Hz ERG showed markedly reduced a- and b-wave amplitudes and a reduced b:a ratio; the LA ON-OFF ERGs were non-detectable. WES identified a homozygous null mutation in G protein subunit beta 5 (GNB5; c.1032C>A/p.Tyr344*). CONCLUSION This report identifies for the first time a unique retinopathy associated with biallelic mutations in GNB5. The observed phenotype is consistent with a dual retinal signaling defect reminiscent of features of bradyopsia and rod ON-bipolar dysfunction.
Collapse
|
7
|
Scherer SL, Cain MD, Kanai SM, Kaltenbronn KM, Blumer KJ. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα 13. J Biol Chem 2017; 292:9906-9918. [PMID: 28432124 DOI: 10.1074/jbc.m116.771923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2016] [Revised: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of Gi/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated Gi/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα13·R7-RGS complexes. Because Gα13/R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ5 with or without R7BP. We found that neurite retraction evoked by Gα12/13-dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα12/13 but not Gαi/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function.
Collapse
Affiliation(s)
- Stephanie L Scherer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Matthew D Cain
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stanley M Kanai
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kevin M Kaltenbronn
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kendall J Blumer
- From the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
8
|
Rose K, Walston ST, Chen J. Separation of photoreceptor cell compartments in mouse retina for protein analysis. Mol Neurodegener 2017; 12:28. [PMID: 28399904 PMCID: PMC5387348 DOI: 10.1186/s13024-017-0171-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Light exposure triggers movement of certain signaling proteins within the cellular compartments of the highly polarized rod photoreceptor cell. This redistribution of proteins between the inner and outer segment compartments affects the performance and physiology of the rod cell. In addition, newly synthesized phototransduction proteins traverse from the site of their synthesis in the inner segment, through the thin connecting cilium, to reach their destination in the outer segment. Processes that impede normal trafficking of these abundant proteins lead to cell death. The study of movement and unique localization of biomolecules within the different compartments of the rod cell would be greatly facilitated by techniques that reliably separate these compartments. Ideally, these methods can be applied to the mouse retina due to the widespread usage of transgenic mouse models in the investigation of basic visual processes and disease mechanisms that affect vision. Although the retina is organized in distinct layers, the small and highly curved mouse retina makes physical separation of retinal layers a challenge. We introduce two peeling methods that efficiently and reliably isolate the rod outer segment and other cell compartments for Western blots to examine protein movement across these compartments. METHODS The first separation method employs Whatman® filter paper to successively remove the rod outer segments from isolated, live mouse retinas. The second method utilizes ScotchTM tape to peel the rod outer segment layer and the rod inner segment layer from lyophilized mouse retinas. Both procedures can be completed within one hour. RESULTS We utilize these two protocols on dark-adapted and light-exposed retinas of C57BL/6 mice and subject the isolated tissue layers to Western blots to demonstrate their effectiveness in detecting light-induced translocation of transducin (GNAT1) and rod arrestin (ARR1). Furthermore, we provide evidence that RGS9 does not undergo light-induced translocation. CONCLUSIONS These results demonstrate the effectiveness of the two different peeling protocols for the separation of the layered compartments of the mouse retina and their utility for investigations of protein compositions within these compartments.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven T Walston
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. .,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
9
|
Abstract
Gβγ subunits play key roles in modulation of canonical effectors in G protein-coupled receptor (GPCR)-dependent signalling at the cell surface. However, a number of recent studies of Gβγ function have revealed that they regulate a large number of molecules at distinct subcellular sites. These novel, non-canonical Gβγ roles have reshaped our understanding of how important Gβγ signalling is compared to our original notion of Gβγ subunits as simple negative regulators of Gα subunits. Gβγ dimers have now been identified as regulators of transcription, anterograde and retrograde trafficking and modulators of second messenger molecule generation in intracellular organelles. Here, we review some recent advances in our understanding of these novel non-canonical roles of Gβγ.
Collapse
|
10
|
Ahlers KE, Chakravarti B, Fisher RA. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS JOURNAL 2016; 18:560-72. [PMID: 27002730 DOI: 10.1208/s12248-016-9899-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Bandana Chakravarti
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Rory A Fisher
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA. .,Department of Internal Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
11
|
Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein. J Biol Chem 2016; 291:9133-47. [PMID: 26895961 DOI: 10.1074/jbc.m115.694075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners.
Collapse
Affiliation(s)
- Junior Tayou
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Qiang Wang
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Alexey N Pronin
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Cesare Orlandi
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- the Department of Neuroscience, Scripps Research Institute, Jupiter, Florida 33458
| | - John W Crabb
- the Cole Eye Institute Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Vladlen Z Slepak
- From the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136,
| |
Collapse
|
12
|
Khan SM, Min A, Gora S, Houranieh GM, Campden R, Robitaille M, Trieu P, Pétrin D, Jacobi AM, Behlke MA, Angers S, Hébert TE. Gβ 4 γ 1 as a modulator of M3 muscarinic receptor signalling and novel roles of Gβ 1 subunits in the modulation of cellular signalling. Cell Signal 2015; 27:1597-608. [DOI: 10.1016/j.cellsig.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
|
13
|
Chen CKJ. RGS Protein Regulation of Phototransduction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:31-45. [PMID: 26123301 DOI: 10.1016/bs.pmbts.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
First identified in yeast and worm and later in other species, the physiological importance of Regulators of G-protein Signaling (RGS) in mammals was first demonstrated at the turn of the century in mouse retinal photoreceptors, in which RGS9 is needed for timely recovery of rod phototransduction. The role of RGS in vision has also been established a synapse away in retinal depolarizing bipolar cells (DBCs), where RGS7 and RGS11 work redundantly and in a complex with Gβ5-S as GAPs for Goα in the metabotropic glutamate receptor 6 pathway situated at DBC dendritic tips. Much less is known on how RGS protein subserves vision in the rest of the visual system. The research into the roles of RGS proteins in vision holds great potential for many exciting new discoveries.
Collapse
Affiliation(s)
- Ching-Kang Jason Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
14
|
Stewart A, Maity B, Fisher RA. Two for the Price of One: G Protein-Dependent and -Independent Functions of RGS6 In Vivo. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:123-51. [PMID: 26123305 DOI: 10.1016/bs.pmbts.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Regulator of G protein signaling 6 (RGS6) is unique among the members of the RGS protein family as it remains the only protein with the demonstrated capacity to control G protein-dependent and -independent signaling cascades in vivo. RGS6 inhibits signaling mediated by γ-aminobutyric acid B receptors, serotonin 1A receptors, μ opioid receptors, and muscarinic acetylcholine 2 receptors. RGS6 deletion triggers distinct behavioral phenotypes resulting from potentiated signaling by these G protein-coupled receptors namely ataxia, a reduction in anxiety and depression, enhanced analgesia, and increased parasympathetic tone, respectively. In addition, RGS6 possesses potent proapoptotic and growth suppressive actions. In heart, RGS6-dependent reactive oxygen species (ROS) production promotes doxorubicin (Dox)-induced cardiomyopathy, while in cancer cells RGS6/ROS signaling is necessary for activation of the ataxia telangiectasia mutated/p53/apoptosis pathway required for the chemotherapeutic efficacy of Dox. Further, by facilitating Tip60 (trans-acting regulator protein of HIV type 1-interacting protein 60 kDa)-dependent DNA methyltransferase 1 degradation, RGS6 suppresses cellular transformation in response to oncogenic Ras. The culmination of these G protein-independent actions results in potent tumor suppressor actions of RGS6 in the murine mammary epithelium. This work summarizes evidence from human genetic studies and model animals implicating RGS6 in normal physiology, disease, and the pharmacological actions of multiple drugs. Though efforts by multiple laboratories have contributed to the ever-growing RGS6 oeuvre, the pleiotropic nature of this gene will likely lead to additional work detailing the importance of RGS6 in neuropsychiatric disorders, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
15
|
Ye Y, Sun Z, Guo A, Song LS, Grobe JL, Chen S. Ablation of the GNB3 gene in mice does not affect body weight, metabolism or blood pressure, but causes bradycardia. Cell Signal 2014; 26:2514-20. [PMID: 25093805 DOI: 10.1016/j.cellsig.2014.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
G protein β3 (Gβ3) is an isoform of heterotrimeric G protein β subunits involved in transducing G protein coupled receptor (GPCR) signaling. Polymorphisms in Gβ3 (GNB3) are associated with many human disorders (e.g. hypertension, diabetes and obesity) but the role of GNB3 in these pathogeneses remains unclear. Here, Gβ3-null mice (GNB3(-/-)) were characterized to determine how Gβ3 functions to regulate blood pressure, body weight and metabolism. We found Gβ3 expression restricted to limited types of tissues, including the retina, several regions of the brain and heart ventricles. Gβ3-deficient mice were normal as judged by body weight gain by age or by feeding with high-fat diet (HFD); glucose tolerance and insulin sensitivity; baseline blood pressure and angiotensin II infusion-induced hypertension. During tail-cuff blood pressure measurements, however, Gβ3-null mice had slower heart rates (~450 vs ~500 beats/min). This bradycardia was not observed in isolated and perfused Gβ3-null mouse hearts. Moreover, mouse hearts isolated from GNB3(-/-) and controls responded equivalently to muscarinic receptor- and β-adrenergic receptor-stimulated bradycardia and tachycardia, respectively. Since no difference was seen in isolated hearts, Gβ3 is unlikely to be involved directly in the GPCR signaling activity that controls heart pacemaker activity. These results demonstrate that although Gβ3 appears dispensable in mice for the regulation of blood pressure, body weight and metabolic features associated with obesity and diabetes, Gβ3 may regulate heart rate.
Collapse
Affiliation(s)
- Yuanchao Ye
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhizeng Sun
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ang Guo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Justin L Grobe
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
The Gβ5 protein regulates sensitivity to TRAIL-induced cell death in colon carcinoma. Oncogene 2014; 34:2753-63. [PMID: 25043307 DOI: 10.1038/onc.2014.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2013] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Aberrant signaling via G protein-coupled receptors (GPCRs) is implicated in numerous diseases including colon cancer. The heterotrimeric G proteins transduce signals from GPCRs to various effectors. So far, the G protein subunit Gβ5 has not been studied in the context of cancer. Here we demonstrate that Gβ5 protects colon carcinoma cells from apoptosis induced by the death ligand TRAIL via different routes. The Gβ5 protein (i) causes a decrease in the cell surface expression of the TRAIL-R2 death receptor, (ii) induces the expression of the anti-apoptotic protein XIAP and (iii) activates the NF-κB signaling pathway. The intrinsic resistance to TRAIL-triggered apoptosis of colon cancer cells is overcome by antagonization of Gβ5. Based on these results, targeting of G proteins emerges as a novel therapeutic approach in the experimental treatment of colon cancer.
Collapse
|
17
|
Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors. PLoS One 2013; 8:e58832. [PMID: 23555598 PMCID: PMC3610756 DOI: 10.1371/journal.pone.0058832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2013] [Accepted: 02/07/2013] [Indexed: 01/09/2023] Open
Abstract
The transducin GTPase-accelerating protein complex, which determines the photoresponse duration of photoreceptors, is composed of RGS9-1, Gβ5L and R9AP. Here we report that RGS9-1 and Gβ5L change their distribution in rods during light/dark adaptation. Upon prolonged dark adaptation, RGS9-1 and Gβ5L are primarily located in rod inner segments. But very dim-light exposure quickly translocates them to the outer segments. In contrast, their anchor protein R9AP remains in the outer segment at all times. In the dark, Gβ5L's interaction with R9AP decreases significantly and RGS9-1 is phosphorylated at S(475) to a significant degree. Dim light exposure leads to quick de-phosphorylation of RGS9-1. Furthermore, after prolonged dark adaptation, RGS9-1 and transducin Gα are located in different cellular compartments. These results suggest a previously unappreciated mechanism by which prolonged dark adaptation leads to increased light sensitivity in rods by dissociating RGS9-1 from R9AP and redistributing it to rod inner segments.
Collapse
|
18
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen J, Sampath AP. Structure and Function of Rod and Cone Photoreceptors. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
20
|
Gross OP, Pugh EN, Burns ME. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 2012; 76:370-82. [PMID: 23083739 PMCID: PMC3594095 DOI: 10.1016/j.neuron.2012.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/02/2012] [Indexed: 11/26/2022]
Abstract
Rod photoreceptors generate amplified, reproducible responses to single photons via a G protein signaling cascade. Surprisingly, genetic perturbations that dramatically alter the deactivation of the principal signal amplifier, the GPCR rhodopsin (R∗), do not much alter the amplitude of single-photon responses (SPRs). These same perturbations, when crossed into a line lacking calcium feedback regulation of cGMP synthesis, produced much larger alterations in SPR amplitudes. Analysis of SPRs from rods with and without feedback reveal that the consequences of trial-to-trial fluctuations in R∗ lifetime in normal rods are also dampened by feedback regulation of cGMP synthesis. Thus, calcium feedback trumps the mechanisms of R∗ deactivation in determining the SPR amplitude, attenuating responses arising from longer R∗ lifetimes to a greater extent than those arising from shorter ones. As a result, rod SPRs achieve a more stereotyped amplitude, a characteristic considered important for reliable transmission through the visual system.
Collapse
Affiliation(s)
- Owen P. Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Edward N. Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
21
|
|
22
|
Zhang JH, Pandey M, Seigneur EM, Panicker LM, Koo L, Schwartz OM, Chen W, Chen CK, Simonds WF. Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice. J Neurochem 2011; 119:544-54. [PMID: 21883221 PMCID: PMC3192915 DOI: 10.1111/j.1471-4159.2011.07457.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Gβ5 is a divergent member of the signal-transducing G protein β subunit family encoded by GNB5 and expressed principally in brain and neuronal tissue. Among heterotrimeric Gβ isoforms, Gβ5 is unique in its ability to heterodimerize with members of the R7 subfamily of the regulator of G protein signaling proteins that contain G protein-γ like domains. Previous studies employing Gnb5 knockout (KO) mice have shown that Gβ5 is an essential stabilizer of such regulator of G protein signaling proteins and regulates the deactivation of retinal phototransduction and the proper functioning of retinal bipolar cells. However, little is known of the function of Gβ5 in the brain outside the visual system. We show here that mice lacking Gβ5 have a markedly abnormal neurologic phenotype that includes impaired development, tiptoe-walking, motor learning and coordination deficiencies, and hyperactivity. We further show that Gβ5-deficient mice have abnormalities of neuronal development in cerebellum and hippocampus. We find that the expression of both mRNA and protein from multiple neuronal genes is dysregulated in Gnb5 KO mice. Taken together with previous observations from Gnb5 KO mice, our findings suggest a model in which Gβ5 regulates dendritic arborization and/or synapse formation during development, in part by effects on gene expression.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Erica M. Seigneur
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Leelamma M. Panicker
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lily Koo
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Owen M. Schwartz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ching-Kang Chen
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Wen Y, Locke KG, Hood DC, Birch DG. Rod photoreceptor temporal properties in retinitis pigmentosa. Exp Eye Res 2011; 92:202-8. [PMID: 21219898 DOI: 10.1016/j.exer.2010.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2010] [Revised: 12/20/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
Abstract
One of the characteristic signs of retinitis pigmentosa (RP) is the progressive loss of night vision. We have previously shown that the gain of rod photoreceptor activation is moderately reduced in some patients with RP, but this decrease in activation kinetics is not sufficient to account for the night blindness. Recently, single rod recording from animal models of RP showed rods under degeneration remain saturated for shorter periods than normal rods; i.e. are less able to sustain the rod photoresponse. Using paired-flash ERG, here we determine whether rod phototransduction inactivation parameters might also be abnormal in patients with RP. Inactivation parameters were derived from 13 subjects with normal vision, 16 patients with adRP, and 16 patients with autosomal recessive/isolate (rec/iso) RP. The adRP cases included 9 patients with rhodopsin mutations and 7 patients with peripherin/RDS mutations. The inactivation phase was derived using a double-flash paradigm, with a test flash of 2.7 log scot td-s followed at varying intervals by a 4.2 log scot td-s probe flash. Derived rod photoresponses to this just-saturating test flash in normal subjects exhibit a critical time to the initiation of recovery (T(sat)) of 525 ± 90 (SD) ms. The values of T(sat) were 336 ± 104 (SD) ms in patients with adRP (P < 0.001) and 271 ± 45 (SD) ms (P < 0.001) in patients with rec/iso RP. When T(sat) values were categorized by mutations, the values were 294 ± 91 (SD) ms (P < 0.001) for rhodopsin mutations, and 389 ± 100 (SD) ms (p = 0.01) for peripherin/RDS mutations. Overall, T(sat) in patients with RP was significantly correlated with the amplitude of ISCEV standard rod response (r = 0.56; P < 0.001) and the gain of the activation phase of phototransduction (r = 0.6, P < 0.001). T(sat) may be a useful marker for therapeutic efficacy in future clinical trials in RP.
Collapse
Affiliation(s)
- Yuquan Wen
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, 9900 N Central Expressway, Suite 400, Dallas, TX 75231, USA.
| | | | | | | |
Collapse
|
24
|
Systems biochemistry approaches to vertebrate phototransduction: towards a molecular understanding of disease. Biochem Soc Trans 2011; 38:1275-80. [PMID: 20863298 DOI: 10.1042/bst0381275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Phototransduction in vertebrates represents a paradigm of signalling pathways, in particular those mediated by G-protein-coupled receptors. The variety of protein-protein, protein-ion and protein-nucleotide interactions makes up an intricate network which is finely regulated by activating-deactivating molecules and chemical modifications. The holistic systems properties of the network allow for typical adaptation mechanisms, which ultimately result in fine adjustments of sensitivity and electrical response of the photoreceptor cells to the broad range of light stimuli. In the present article, we discuss a novel bottom-up strategy to study the phototransduction cascade in rod cells starting from the underlying biochemistry. The resulting network model can be simulated and the predicted dynamic behaviour directly compared with data from electrophysiological experiments performed on a wide range of illumination conditions. The advantage of applying procedures typical of systems theory to a well-studied signalling pathway is also discussed. Finally, the potential application to the study of the molecular basis of retinal diseases is highlighted through a practical example, namely the simulation of conditions related to Leber congenital amaurosis.
Collapse
|
25
|
Caruso G, Bisegna P, Lenoci L, Andreucci D, Gurevich VV, Hamm HE, DiBenedetto E. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse. PLoS Comput Biol 2010; 6:e1001031. [PMID: 21200415 PMCID: PMC3002991 DOI: 10.1371/journal.pcbi.1001031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2010] [Accepted: 11/11/2010] [Indexed: 12/31/2022] Open
Abstract
The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor.
Collapse
Affiliation(s)
- Giovanni Caruso
- Construction Technologies Institute, National Research Council, Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Leonardo Lenoci
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Daniele Andreucci
- Department of Mathematical Methods and Models, University of Rome La Sapienza, Rome, Italy
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health. Neuroscience 2010; 174:37-49. [PMID: 21075174 DOI: 10.1016/j.neuroscience.2010.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2010] [Revised: 10/31/2010] [Accepted: 11/06/2010] [Indexed: 12/16/2022]
Abstract
In rod photoreceptors, signaling persists as long as rhodopsin remains catalytically active. Phosphorylation by rhodopsin kinase followed by arrestin-1 binding completely deactivates rhodopsin. Timely termination prevents excessive signaling and ensures rapid recovery. Mouse rods express arrestin-1 and rhodopsin at ∼0.8:1 ratio, making arrestin-1 the second most abundant protein in the rod. The biological significance of wild type arrestin-1 expression level remains unclear. Here we investigated the effects of varying arrestin-1 expression on its intracellular distribution in dark-adapted photoreceptors, rod functional performance, recovery kinetics, and morphology. We found that rod outer segments isolated from dark-adapted animals expressing arrestin-1 at wild type or higher level contain much greater fraction of arrestin-1 than previously estimated, 15-25% of the total. The fraction of arrestin-1 residing in the outer segments (OS) in animals with low expression (4-12% of wild type) is much lower, 5-7% of the total. Only 4% of wild type arrestin-1 level in the outer segments was sufficient to maintain near-normal retinal morphology, whereas rapid recovery required at least ∼12%. Supra-physiological arrestin-1 expression improved light sensitivity and facilitated photoresponse recovery, but was detrimental for photoreceptor health, particularly in the peripheral retina. Thus, physiological level of arrestin-1 expression in rods reflects the balance between short-term functional performance of photoreceptors and their long-term health.
Collapse
Affiliation(s)
- X Song
- Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sherry DM, Murray AR, Kanan Y, Arbogast KL, Hamilton RA, Fliesler SJ, Burns ME, Moore KL, Al-Ubaidi MR. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. Eur J Neurosci 2010; 32:1461-72. [PMID: 21039965 DOI: 10.1111/j.1460-9568.2010.07431.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance.
Collapse
Affiliation(s)
- David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, BMSB 781, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Burns ME, Pugh EN. Lessons from photoreceptors: turning off g-protein signaling in living cells. Physiology (Bethesda) 2010; 25:72-84. [PMID: 20430952 DOI: 10.1152/physiol.00001.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.
Collapse
Affiliation(s)
- Marie E Burns
- Departments of Ophthalmology and Vision Science, University of California, Davis, California, USA.
| | | |
Collapse
|
29
|
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2867-80. [PMID: 19720650 DOI: 10.1098/rstb.2009.0077] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed.
Collapse
Affiliation(s)
- Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW. Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Mol Vis 2009; 15:1730-63. [PMID: 19727342 PMCID: PMC2736153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2008] [Accepted: 08/25/2009] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants, functional differences, and ocular pathophysiology. METHODS mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts. RESULTS We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression differences. These data can also be used to connect disease phenotypes with sequence variants. We demonstrate that variation in rhodopsin expression efficiently predicts candidate genes for eight uncloned retinal diseases, including WDR17 for the human RP29 locus. CONCLUSIONS The high level of strain variation in gene expression is a powerful tool that can be used to explore and test molecular networks underlying variation in structure, function, and disease susceptibility. The integration of these data into GeneNetwork provides users with a workbench to test linkages between sequence differences and eye structure and function.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| | - Lu Lu
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN
| | | | | | - Mohamed Nassr
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| | - Xusheng Wang
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN
| | - Weikuan Gu
- Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN
| | - Yan Jiao
- Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN
| | - Robert W. Williams
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN
| |
Collapse
|
31
|
Dell'Orco D, Schmidt H, Mariani S, Fanelli F. Network-level analysis of light adaptation in rod cells under normal and altered conditions. MOLECULAR BIOSYSTEMS 2009; 5:1232-46. [PMID: 19756313 DOI: 10.1039/b908123b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Photoreceptor cells finely adjust their sensitivity and electrical response according to changes in light stimuli as a direct consequence of the feedback and regulation mechanisms in the phototransduction cascade. In this study, we employed a systems biology approach to develop a dynamic model of vertebrate rod phototransduction that accounts for the details of the underlying biochemistry. Following a bottom-up strategy, we first reproduced the results of a robust model developed by Hamer et al. (Vis. Neurosci., 2005, 22(4), 417), and then added a number of additional cascade reactions including: (a) explicit reactions to simulate the interaction between the activated effector and the regulator of G-protein signalling (RGS); (b) a reaction for the reformation of the G-protein from separate subunits; (c) a reaction for rhodopsin (R) reconstitution from the association of the opsin apoprotein with the 11-cis-retinal chromophore; (d) reactions for the slow activation of the cascade by opsin. The extended network structure successfully reproduced a number of experimental conditions that were inaccessible to prior models. With a single set of parameters the model was able to predict qualitative and quantitative features of rod photoresponses to light stimuli ranging over five orders of magnitude, in normal and altered conditions, including genetic manipulations of the cascade components. In particular, the model reproduced the salient dynamic features of the rod from Rpe65(-/-) animals, a well established model for Leber congenital amaurosis and vitamin A deficiency. The results of this study suggest that a systems-level approach can help to unravel the adaptation mechanisms in normal and in disease-associated conditions on a molecular basis.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Chemistry and Dulbecco Telethon Institute, University of Modena and Reggio Emilia Via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
32
|
The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
|
33
|
Nakajima Y, Moriyama M, Hattori M, Minato N, Nakanishi S. Isolation of ON bipolar cell genes via hrGFP-coupled cell enrichment using the mGluR6 promoter. J Biochem 2009; 145:811-8. [PMID: 19270057 DOI: 10.1093/jb/mvp038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
mGluR6 expression is a characteristic property of retinal ON bipolar cells. mGluR6 is also the causal gene for a form of congenital night blindness. To elucidate physiological and pathological functions of ON bipolar cells and mGluR6, we thought it important to identify genes specifically expressed in them. We thus made transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP), under the control of the mGluR6 promoter. From their retina, we isolated hrGFP-positive cells by cell sorting, and analysed the gene-expression profile of these cells by using DNA microarray. Further analysis revealed that about half of the initially selected ON bipolar cell genes were expressed in the expected retinal layer. We confirmed previously ambiguous retinal localization of regulator of G-protein signalling 11 (RGS11) and transient receptor potential cation channel, subfamily M, member 1 (TRPM1). In addition, we showed the expression of calcium channel, voltage-dependent, alpha2/delta subunit 3 (Cacna2d3) in ON bipolar cells for the first time. Although we could not completely exclude the possibility that a small population of hrGFP-positive cells might not be ON bipolar cells, these mice as well as our strategy would be highly valuable for the further analysis of ON bipolar cells.
Collapse
Affiliation(s)
- Yoshiaki Nakajima
- Department of Biological Sciences, Faculty of Medicine, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
34
|
Huang J, Fisher RA. Chapter 5 Nuclear Trafficking of Regulator of G Protein Signaling Proteins and Their Roles in the Nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:115-56. [DOI: 10.1016/s1877-1173(09)86005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
35
|
Morhardt DR, Guido W, Chen CJ. Chapter 8 The Role of Gβ5 in Vision. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:229-48. [DOI: 10.1016/s1877-1173(09)86008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
|
36
|
Cho H, Kehrl JH. Chapter 9 Regulation of Immune Function by G Protein‐Coupled Receptors, Trimeric G Proteins, and RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:249-98. [DOI: 10.1016/s1877-1173(09)86009-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
37
|
Abstract
Two isoforms of the GTPase-activating protein, regulator of G protein signaling 9 (RGS9), control such fundamental functions as vision and behavior. RGS9-1 regulates phototransduction in rods and cones, and RGS9-2 regulates dopamine and opioid signaling in the basal ganglia. To determine their functional differences in the same intact cell, we replaced RGS9-1 with RGS9-2 in mouse rods. Surprisingly, RGS9-2 not only supported normal photoresponse recovery under moderate light conditions but also outperformed RGS9-1 in bright light. This versatility of RGS9-2 results from its ability to inactivate the G protein, transducin, regardless of its effector interactions, whereas RGS9-1 prefers the G protein-effector complex. Such versatility makes RGS9-2 an isoform advantageous for timely signal inactivation across a wide range of stimulus strengths and may explain its predominant representation throughout the nervous system.
Collapse
|
38
|
Abstract
Retinal rods and cones, which are the front-end light detectors in the eye, achieve wonders together by being able to signal single-photon absorption and yet also able to adjust their function to brightness changes spanning 10(9)-fold. How these cells detect light is now quite well understood. Not surprising for almost any biological process, the intial step of seeing reveals a rich complexity as the probing goes deeper. The odyssey continues, but the knowledge gained so far is already nothing short of remarkable in qualitative and quantitative detail. It has also indirectly opened up the mystery of odorant sensing. Basic science aside, clinical ophthalmology has benefited tremendously from this endeavor as well. This article begins by recapitulating the key developments in this understanding from the mid-1960s to the late 1980s, during which period the advances were particularly rapid and fit for an intricate detective story. It then highlights some details discovered more recently, followed by a comparison between rods and cones.
Collapse
Affiliation(s)
- Dong-Gen Luo
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tian Xue
- *Solomon H. Snyder Department of Neuroscience and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - King-Wai Yau
- *Solomon H. Snyder Department of Neuroscience and
- Department of Ophthalmology and
- Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
39
|
Diffusion of the second messengers in the cytoplasm acts as a variability suppressor of the single photon response in vertebrate phototransduction. Biophys J 2008; 94:3363-83. [PMID: 18400950 DOI: 10.1529/biophysj.107.114058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The single photon response in vertebrate phototransduction is highly reproducible despite a number of random components of the activation cascade, including the random activation site, the random walk of an activated receptor, and its quenching in a random number of steps. Here we use a previously generated and tested spatiotemporal mathematical and computational model to identify possible mechanisms of variability reduction. The model permits one to separate the process into modules, and to analyze their impact separately. We show that the activation cascade is responsible for generation of variability, whereas diffusion of the second messengers is responsible for its suppression. Randomness of the activation site contributes at early times to the coefficient of variation of the photoresponse, whereas the Brownian path of a photoisomerized rhodopsin (Rh*) has a negligible effect. The major driver of variability is the turnoff mechanism of Rh*, which occurs essentially within the first 2-4 phosphorylated states of Rh*. Theoretically increasing the number of steps to quenching does not significantly decrease the corresponding coefficient of variation of the effector, in agreement with the biochemical limitations on the phosphorylated states of the receptor. Diffusion of the second messengers in the cytosol acts as a suppressor of the variability generated by the activation cascade. Calcium feedback has a negligible regulatory effect on the photocurrent variability. A comparative variability analysis has been conducted for the phototransduction in mouse and salamander, including a study of the effects of their anatomical differences such as incisures and photoreceptors geometry on variability generation and suppression.
Collapse
|
40
|
Grabowska D, Jayaraman M, Kaltenbronn KM, Sandiford SL, Wang Q, Jenkins S, Slepak VZ, Smith Y, Blumer KJ. Postnatal induction and localization of R7BP, a membrane-anchoring protein for regulator of G protein signaling 7 family-Gbeta5 complexes in brain. Neuroscience 2008; 151:969-82. [PMID: 18248908 PMCID: PMC2292831 DOI: 10.1016/j.neuroscience.2007.11.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Members of the regulator of G protein signaling 7 (RGS7) (R7) family and Gbeta5 form obligate heterodimers that are expressed predominantly in the nervous system. R7-Gbeta5 heterodimers are GTPase-activating proteins (GAPs) specific for Gi/o-class Galpha subunits, which mediate phototransduction in retina and the action of many modulatory G protein-coupled receptors (GPCRs) in brain. Here we have focused on the R7-family binding protein (R7BP), a recently identified palmitoylated protein that can bind R7-Gbeta5 complexes and is hypothesized to control the intracellular localization and function of the resultant heterotrimeric complexes. We show that: 1) R7-Gbeta5 complexes are obligate binding partners for R7BP in brain because they co-immunoprecipitate and exhibit similar expression patterns. Furthermore, R7BP and R7 protein accumulation in vivo requires Gbeta5. 2) Expression of R7BP in Neuro2A cells at levels approximating those in brain recruits endogenous RGS7-Gbeta5 complexes to the plasma membrane. 3) R7BP immunoreactivity in brain concentrates in neuronal soma, dendrites, spines or unmyelinated axons, and is absent or low in glia, myelinated axons, or axon terminals. 4) RGS7-Gbeta5-R7BP complexes in brain extracts associate inefficiently with detergent-resistant lipid raft fractions with or without G protein activation. 5) R7BP and Gbeta5 protein levels are upregulated strikingly during the first 2-3 weeks of postnatal brain development. Accordingly, we suggest that R7-Gbeta5-R7BP complexes in the mouse or rat could regulate signaling by modulatory Gi/o-coupled GPCRs in the developing and adult nervous systems.
Collapse
Affiliation(s)
- D Grabowska
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Morgans CW, Wensel TG, Brown RL, Perez-Leon JA, Bearnot B, Duvoisin RM. Gbeta5-RGS complexes co-localize with mGluR6 in retinal ON-bipolar cells. Eur J Neurosci 2007; 26:2899-905. [PMID: 18001285 PMCID: PMC2435197 DOI: 10.1111/j.1460-9568.2007.05867.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The time course of G-protein-coupled responses is largely determined by the kinetics of GTP hydrolysis by the G protein alpha subunit, which is accelerated by interaction with regulator of G-protein signaling (RGS) proteins. Light responses of ON-bipolar cells of the vertebrate retina require rapid inactivation of the G protein Galphao, which is activated in the dark by metabotropic glutamate receptor, mGluR6, in their dendritic tips. It is not yet known, however, which RGS protein(s) might be responsible for rapid inactivation kinetics. By immunofluorescence and co-immunoprecipitation, we have identified complexes of the Galphao-selective RGS proteins RGS7 and RGS11, with their obligate binding partner, Gbeta5, that are localized to the dendritic tips of murine rod and cone ON-bipolar cells, along with mGluR6. Experiments using pre- and post-synaptic markers, and a dissociated bipolar cell preparation, clearly identified the location of these complexes as the ON-bipolar cell dendritic tips and not the adjacent photoreceptor terminals or horizontal cell dendrites. In mice lacking mGluR6, the distribution of RGS11, RGS7 and Gbeta5 shifts away from the dendritic tips, implying a functional relationship with mGluR6. The precise co-localization of Gbeta5-RGS7 and Gbeta5-RGS11 with mGluR6, and the dependence of localization on the presence of mGluR6, suggests that Gbeta5-RGS7 and Gbeta5-RGS11 function specifically in the mGluR6 signal transduction pathway, where they may stimulate the GTPase activity of Galphao, thus accelerating the ON-bipolar cell light response, in a manner analogous to the acceleration of photoreceptor light responses by the Gbeta5-RGS9-1 complex.
Collapse
Affiliation(s)
- Catherine W Morgans
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Song JH, Song H, Wensel TG, Sokolov M, Martemyanov KA. Localization and differential interaction of R7 RGS proteins with their membrane anchors R7BP and R9AP in neurons of vertebrate retina. Mol Cell Neurosci 2007; 35:311-9. [PMID: 17442586 DOI: 10.1016/j.mcn.2007.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2006] [Revised: 03/06/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022] Open
Abstract
G protein signaling in the retina is crucially regulated by the R7 family of regulators of G protein signaling (RGS) proteins, which act to stimulate the rate of G protein inactivation. Recent findings indicate that R7 RGS proteins form complexes with two newly identified membrane anchors: RGS9 Anchor Protein (R9AP) and R7 Binding Protein (R7BP), which play essential roles in modulating the expression and localization of R7 RGS proteins. Here we demonstrate that the four R7 RGS proteins: RGS6, RGS7, RGS9 and RGS11 differentially associate with two membrane anchors. R9AP was found to form complexes with RGS9 and RGS11 which were substantially enriched in the photoreceptors. In contrast, complexes of R7BP with R7 RGS proteins were predominantly localized to the synaptic projections of retina neurons, suggesting their involvement in regulation of synaptic transmission between retina neurons. Furthermore, studies of knockout mice revealed that R9AP is necessary for the expression of only RGS9 but not for RGS6, 7 or 11. Together these data suggest that R7 RGS proteins in the retina are present as macromolecular complexes with their membrane anchors that could differentially regulate their function in various retina neurons.
Collapse
Affiliation(s)
- Joseph H Song
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E. Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
44
|
Anderson GR, Semenov A, Song JH, Martemyanov KA. The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9-2. J Biol Chem 2006; 282:4772-4781. [PMID: 17158100 DOI: 10.1074/jbc.m610518200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.
Collapse
Affiliation(s)
- Garret R Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arthur Semenov
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Joseph H Song
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kirill A Martemyanov
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
45
|
Abstract
The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision.
Collapse
Affiliation(s)
- Sheila A Baker
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
46
|
Drenan RM, Doupnik CA, Jayaraman M, Buchwalter AL, Kaltenbronn KM, Huettner JE, Linder ME, Blumer KJ. R7BP augments the function of RGS7*Gbeta5 complexes by a plasma membrane-targeting mechanism. J Biol Chem 2006; 281:28222-31. [PMID: 16867977 DOI: 10.1074/jbc.m604428200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The RGS7 (R7) family of G protein regulators, Gbeta5, and R7BP form heterotrimeric complexes that potently regulate the kinetics of G protein-coupled receptor signaling. Reversible palmitoylation of R7BP regulates plasma membrane/nuclear shuttling of R7*Gbeta5*R7BP heterotrimers. Here we have investigated mechanisms whereby R7BP controls the function of the R7 family. We show that unpalmitoylated R7BP undergoes nuclear/cytoplasmic shuttling and that a C-terminal polybasic motif proximal to the palmitoylation acceptor sites of R7BP mediates nuclear localization, palmitoylation, and plasma membrane targeting. These results suggest a novel mechanism whereby palmitoyltransferases and nuclear import receptors both utilize the C-terminal domain of R7BP to determine the trafficking fate of R7*Gbeta5*R7BP heterotrimers. Analogous mechanisms may regulate other signaling proteins whose distribution between the plasma membrane and nucleus is controlled by palmitoylation. Lastly, we show that cytoplasmic RGS7*Gbeta5*R7BP heterotrimers and RGS7*Gbeta5 heterodimers are equivalently inefficient regulators of G protein-coupled receptor signaling relative to plasma membrane-bound heterotrimers bearing palmitoylated R7BP. Therefore, R7BP augments the function of the complex by a palmitoylation-regulated plasma membrane-targeting mechanism.
Collapse
Affiliation(s)
- Ryan M Drenan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The biochemical cascade which transduces light into a neuronal signal in retinal photoreceptors is a heterotrimeric GTP-binding protein (G protein) signaling pathway called phototransduction. Works from psychophysicists, electrophysiologists, biochemists, and geneticists over several decades have come together to shape our understanding of how photon absorption leads to photoreceptor membrane hyperpolarization. The insights of phototransduction provide the foundation for a mechanistic account of signaling from many other G protein-coupled receptors (GPCR) found throughout nature. The application of reverse genetic techniques has strengthened many historic findings and helped to describe this pathway at greater molecular details. However, many important questions remain to be answered.
Collapse
Affiliation(s)
- C K Chen
- Virginia Commonwealth University, Department of Biochemistry, 1101 E. Marshall Street, Rm 2-032, Richmond, 23298-0614 VA, USA.
| |
Collapse
|
48
|
Struik ML, Yazulla S, Kamermans M. Cannabinoid agonist WIN 55212-2 speeds up the cone response to light offset in goldfish retina. Vis Neurosci 2006; 23:285-93. [PMID: 16638179 DOI: 10.1017/s0952523806232127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2005] [Accepted: 01/03/2006] [Indexed: 11/05/2022]
Abstract
Goldfish cones contain CB1 receptors at the synaptic terminal, selectively accumulate3H-anandamide, and contain fatty acid amide hydrolase-immunoreactivity, and voltage-gated calcium and potassium currents are modulated by CB1 ligands (Yazulla et al., 2000; Fan & Yazulla, 2003; Glaser et al., 2005). These data suggest that a retinal mechanism may account for some of the psychophysical effects of cannabis. Here, we studied the effect of a cannabinoid agonist on cone light responses. Whole-cell patch-clamp recordings were made from cones in the isolated goldfish retina. Cones were stimulated with a spot of light of variable wavelength and intensities in combination with voltage-and current-clamp protocols. Pharmacological manipulation was performed using the cannabinoid agonist WIN 55212-2 (10 μM). WIN had no effect on the absolute sensitivity of the cones or on the kinetics of the onset response. However, the light-offset response became faster, and the depolarizing overshoot was enhanced. Time constant of the offset response was reduced from 292 ± 28 ms to 180 ± 11 ms (n= 6) (P< 0.01) in the presence of WIN. Acceleration of the offset response was not affected by flash length from 200 ms to 10 s. This was found under current-clamp as well as under voltage-clamp conditions, indicating that the effect of WIN was mediated directly or indirectly by modulation of the cGMP-gated channels in the outer segment of the cones. The effects of WIN were not blocked by the CB1 antagonist SR141716A. With a train of “dark” flashes from a steady background, the photocurrent recovered toward baseline more quickly with WIN than in Control. In summary, cannabinoids speed up the dynamics of the phototransduction deactivation cascade in the cone outer segments. The functional consequence of this effect is to shorten the recovery time to the offset of bright flashes, perhaps resulting in an increase in contrast sensitivity.
Collapse
Affiliation(s)
- Mieke L Struik
- The Netherlands Ophthalmic Research Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
49
|
Pentia DC, Hosier S, Cote RH. The glutamic acid-rich protein-2 (GARP2) is a high affinity rod photoreceptor phosphodiesterase (PDE6)-binding protein that modulates its catalytic properties. J Biol Chem 2006; 281:5500-5. [PMID: 16407240 PMCID: PMC2825572 DOI: 10.1074/jbc.m507488200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The glutamic acid-rich protein-2 (GARP2) is a splice variant of the beta-subunit of the cGMP-gated ion channel of rod photoreceptors. GARP2 is believed to interact with several membrane-associated phototransduction proteins in rod photoreceptors. In this study, we demonstrated that GARP2 is a high affinity PDE6-binding protein and that PDE6 co-purifies with GARP2 during several stages of chromatographic purification. We found that hydrophobic interaction chromatography succeeds in quantitatively separating GARP2 from the PDE6 holoenzyme. Furthermore, the 17-kDa prenyl-binding protein, abundant in retinal cells, selectively released PDE6 (but not GARP2) from rod outer segment membranes, demonstrating the specificity of the interaction between GARP2 and PDE6. Purified GARP2 was able to suppress 80% of the basal activity of the nonactivated, membrane-bound PDE6 holoenzyme at concentrations equivalent to its endogenous concentration in rod outer segment membranes. However, GARP2 was unable to reverse the transducin activation of PDE6 (in contrast to a previous study) nor did it significantly alter catalysis of the fully activated PDE6 catalytic dimer. The high binding affinity of GARP2 for PDE6 and its ability to regulate PDE6 activity in its dark-adapted state suggest a novel role for GARP2 as a regulator of spontaneous activation of rod PDE6, thereby serving to lower rod photoreceptor "dark noise" and allowing these sensory cells to operate at the single photon detection limit.
Collapse
Affiliation(s)
- Dana C. Pentia
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Suzanne Hosier
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| | - Rick H. Cote
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824-2617
| |
Collapse
|
50
|
Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JLP. Toward a unified model of vertebrate rod phototransduction. Vis Neurosci 2006; 22:417-36. [PMID: 16212700 PMCID: PMC1482458 DOI: 10.1017/s0952523805224045] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2004] [Accepted: 01/27/2005] [Indexed: 11/07/2022]
Abstract
Recently, we introduced a phototransduction model that was able to account for the reproducibility of vertebrate rod single-photon responses (SPRs) (Hamer et al., 2003). The model was able to reproduce SPR statistics by means of stochastic activation and inactivation of rhodopsin (R*), transducin (G alpha ), and phosphodiesterase (PDE). The features needed to capture the SPR statistics were (1) multiple steps of R* inactivation by means of multiple phosphorylations (followed by arrestin capping) and (2) phosphorylation dependence of the affinity between R* and the three molecules competing to bind with R* (G alpha, arrestin, and rhodopsin kinase). The model was also able to account for several other rod response features in the dim-flash regime, including SPRs obtained from rods in which various elements of the cascade have been genetically disabled or disrupted. However, the model was not tested under high light-level conditions. We sought to evaluate the extent to which the multiple phosphorylation model could simultaneously account for single-photon response behavior, as well as responses to high light levels causing complete response saturation and/or significant light adaptation (LA). To date no single model, with one set of parameters, has been able to do this. Dim-flash responses and statistics were simulated using a hybrid stochastic/deterministic model and Monte-Carlo methods as in Hamer et al. (2003). A dark-adapted flash series, and stimulus paradigms from the literature eliciting various degrees of light adaptation (LA), were simulated using a full differential equation version of the model that included the addition of Ca2+-feedback onto rhodopsin kinase via recoverin. With this model, using a single set of parameters, we attempted to account for (1) SPR waveforms and statistics (as in Hamer et al., 2003); (2) a full dark-adapted flash-response series, from dim flash to saturating, bright flash levels, from a toad rod; (3) steady-state LA responses, including LA circulating current (as in Koutalos et al., 1995) and LA flash sensitivity measured in rods from four species; (4) step responses from newt rods ( Forti et al., 1989) over a large dynamic range; (5) dynamic LA responses, such as the step-flash paradigm of Fain et al. (1989), and the two-flash paradigm of Murnick and Lamb (1996); and (6) the salient response features from four knockout rod preparations. The model was able to meet this stringent test, accounting for almost all the salient qualitative, and many quantitative features, of the responses across this broad array of stimulus conditions, including SPR reproducibility. The model promises to be useful in testing hypotheses regarding both normal and abnormal photoreceptor function, and is a good starting point for development of a full-range model of cone phototransduction. Informative limitations of the model are also discussed.
Collapse
Affiliation(s)
- R D Hamer
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA.
| | | | | | | | | |
Collapse
|