1
|
Deng Z, Oosterboer S, Wei W. Short-term plasticity and context-dependent circuit function: Insights from retinal circuitry. SCIENCE ADVANCES 2024; 10:eadp5229. [PMID: 39303044 PMCID: PMC11414732 DOI: 10.1126/sciadv.adp5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Changes in synaptic strength across timescales are integral to algorithmic operations of neural circuits. However, pinpointing synaptic loci that undergo plasticity in intact brain circuits and delineating contributions of synaptic plasticity to circuit function remain challenging. The whole-mount retina preparation provides an accessible platform for measuring plasticity at specific synapses while monitoring circuit-level behaviors during visual processing ex vivo. In this review, we discuss insights gained from retina studies into the versatile roles of short-term synaptic plasticity in context-dependent circuit functions. Plasticity at single synapse level greatly expands the algorithms of common microcircuit motifs and contributes to diverse circuit-level behaviors such as gain modulation, selective gating, and stimulus-dependent excitatory/inhibitory balance. Examples in retinal circuitry offer unequivocal support that synaptic plasticity increases the computational capacity of hardwired neural circuitry.
Collapse
Affiliation(s)
- Zixuan Deng
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL 60637, USA
| | - Swen Oosterboer
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Estay SF, Morales-Moraga C, Vielma AH, Palacios-Muñoz A, Chiu CQ, Chávez AE. Non-canonical type 1 cannabinoid receptor signaling regulates night visual processing in the inner rat retina. iScience 2024; 27:109920. [PMID: 38799553 PMCID: PMC11126983 DOI: 10.1016/j.isci.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.
Collapse
Affiliation(s)
- Sebastián F. Estay
- Programa de Doctorado en Ciencias, Mención Neurociencia, Valparaíso 2340000, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Camila Morales-Moraga
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Chiayu Q. Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Li X, Sedlacek M, Nath A, Szatko KP, Grimes WN, Diamond JS. A metabotropic glutamate receptor agonist enhances visual signal fidelity in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591881. [PMID: 38746092 PMCID: PMC11092665 DOI: 10.1101/2024.04.30.591881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. In rd10 mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist l-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After making in vivo electroretinogram recordings in rd10 mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recording in vitro light-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequent in vitro recordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized in rd10 retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.
Collapse
Affiliation(s)
- Xiaoyi Li
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA 21218
| | - Miloslav Sedlacek
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Klaudia P. Szatko
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
4
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-101322-111204. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- 1Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; ; https://orcid.org/0000-0001-7104-042X
| | - David Zenisek
- 2Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA; ; https://orcid.org/0000-0001-6052-0348
| |
Collapse
|
5
|
Wakeham CM, Shi Q, Ren G, Haley TL, Duvoisin RM, von Gersdorff H, Morgans CW. Trophoblast glycoprotein is required for efficient synaptic vesicle exocytosis from retinal rod bipolar cells. Front Cell Neurosci 2023; 17:1306006. [PMID: 38099150 PMCID: PMC10720453 DOI: 10.3389/fncel.2023.1306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Rod bipolar cells (RBCs) faithfully transmit light-driven signals from rod photoreceptors in the outer retina to third order neurons in the inner retina. Recently, significant work has focused on the role of leucine-rich repeat (LRR) proteins in synaptic development and signal transduction at RBC synapses. We previously identified trophoblast glycoprotein (TPBG) as a novel transmembrane LRR protein localized to the dendrites and axon terminals of RBCs. Methods We examined the effects on RBC physiology and retinal processing of TPBG genetic knockout in mice using immunofluorescence and electron microscopy, electroretinogram recording, patch-clamp electrophysiology, and time-resolved membrane capacitance measurements. Results The scotopic electroretinogram showed a modest increase in the b-wave and a marked attenuation in oscillatory potentials in the TPBG knockout. No effect of TPBG knockout was observed on the RBC dendritic morphology, TRPM1 currents, or RBC excitability. Because scotopic oscillatory potentials primarily reflect RBC-driven rhythmic activity of the inner retina, we investigated the contribution of TPBG to downstream transmission from RBCs to third-order neurons. Using electron microscopy, we found shorter synaptic ribbons in TPBG knockout axon terminals in RBCs. Time-resolved capacitance measurements indicated that TPBG knockout reduces synaptic vesicle exocytosis and subsequent GABAergic reciprocal feedback without altering voltage-gated Ca2+ currents. Discussion TPBG is required for normal synaptic ribbon development and efficient neurotransmitter release from RBCs to downstream cells. Our results highlight a novel synaptic role for TPBG at RBC ribbon synapses and support further examination into the mechanisms by which TPBG regulates RBC physiology and circuit function.
Collapse
Affiliation(s)
- Colin M. Wakeham
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Qing Shi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Gaoying Ren
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Tammie L. Haley
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| | - Henrique von Gersdorff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Catherine W. Morgans
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
6
|
Kim MH, Strazza P, Puthussery T, Gross OP, Taylor WR, von Gersdorff H. Functional maturation of the rod bipolar to AII-amacrine cell ribbon synapse in the mouse retina. Cell Rep 2023; 42:113440. [PMID: 37976158 PMCID: PMC11560284 DOI: 10.1016/j.celrep.2023.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Retinal ribbon synapses undergo functional changes after eye opening that remain uncharacterized. Using light-flash stimulation and paired patch-clamp recordings, we examined the maturation of the ribbon synapse between rod bipolar cells (RBCs) and AII-amacrine cells (AII-ACs) after eye opening (postnatal day 14) in the mouse retina at near physiological temperatures. We find that light-evoked excitatory postsynaptic currents (EPSCs) in AII-ACs exhibit a slow sustained component that increases in magnitude with advancing age, whereas a fast transient component remains unchanged. Similarly, paired recordings reveal a dual-component EPSC with a slower sustained component that increases during development, even though the miniature EPSC (mEPSC) amplitude and kinetics do not change significantly. We thus propose that the readily releasable pool of vesicles from RBCs increases after eye opening, and we estimate that a short light flash can evoke the release of ∼4,000 vesicles onto a single mature AII-AC.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Paulo Strazza
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Teresa Puthussery
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Owen P Gross
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physics, Reed College, Portland, OR 97202, USA
| | - W Rowland Taylor
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Herbert Wertheim School of Optometry & Vision Science, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Nath A, Grimes WN, Diamond JS. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep 2023; 42:113390. [PMID: 37930888 PMCID: PMC10769003 DOI: 10.1016/j.celrep.2023.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.
Collapse
Affiliation(s)
- Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Shrestha AP, Rameshkumar N, Boff JM, Rajmanna R, Chandrasegaran T, Frederick CE, Zenisek D, Vaithianathan T. The Effects of Aging on Rod Bipolar Cell Ribbon Synapses. Cells 2023; 12:2385. [PMID: 37830599 PMCID: PMC10572008 DOI: 10.3390/cells12192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The global health concern posed by age-related visual impairment highlights the need for further research focused on the visual changes that occur during the process of aging. To date, multiple sensory alterations related to aging have been identified, including morphological and functional changes in inner hair cochlear cells, photoreceptors, and retinal ganglion cells. While some age-related morphological changes are known to occur in rod bipolar cells in the retina, their effects on these cells and on their connection to other cells via ribbon synapses remain elusive. To investigate the effects of aging on rod bipolar cells and their ribbon synapses, we compared synaptic calcium currents, calcium dynamics, and exocytosis in zebrafish (Danio rerio) that were middle-aged (MA,18 months) or old-aged (OA, 36 months). The bipolar cell terminal in OA zebrafish exhibited a two-fold reduction in number of synaptic ribbons, an increased ribbon length, and a decrease in local Ca2+ signals at the tested ribbon location, with little change in the overall magnitude of the calcium current or exocytosis in response to brief pulses. Staining of the synaptic ribbons with antibodies specific for PKCa revealed shortening of the inner nuclear and plexiform layers (INL and IPL). These findings shed light on age-related changes in the retina that are related to synaptic ribbons and calcium signals.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nirujan Rameshkumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rhea Rajmanna
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Courtney E. Frederick
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - David Zenisek
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA (D.Z.)
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Jo A, Deniz S, Xu J, Duvoisin RM, DeVries SH, Zhu Y. A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina. Nat Commun 2023; 14:5937. [PMID: 37741839 PMCID: PMC10517963 DOI: 10.1038/s41467-023-41638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Songco-Aguas A, Grimes WN, Rieke F. Rod-cone signal interference in the retina shapes perception in primates. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1230084. [PMID: 38983027 PMCID: PMC11182321 DOI: 10.3389/fopht.2023.1230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 07/11/2024]
Abstract
Linking the activity of neurons, circuits and synapses to human behavior is a fundamental goal of neuroscience. Meeting this goal is challenging, in part because behavior, particularly perception, often masks the complexity of the underlying neural circuits, and in part because of the significant behavioral differences between primates and animals like mice and flies in which genetic manipulations are relatively common. Here we relate circuit-level processing of rod and cone signals in the non-human primate retina to a known break in the normal seamlessness of human vision - a surprising inability to see high contrast flickering lights under specific conditions. We use electrophysiological recordings and perceptual experiments to identify key mechanisms that shape the retinal integration of rod- and cone-generated retinal signals. We then incorporate these mechanistic insights into a predicti\ve model that accurately captures the cancellation of rod- and cone-mediated responses and can explain the perceptual insensitivity to flicker.
Collapse
Affiliation(s)
| | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Beltrán-Matas P, Hartveit E, Veruki ML. Functional properties of GABA A receptors of AII amacrine cells of the rat retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1134765. [PMID: 38983040 PMCID: PMC11182327 DOI: 10.3389/fopht.2023.1134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2024]
Abstract
Amacrine cells are a highly diverse group of inhibitory retinal interneurons that sculpt the responses of bipolar cells, ganglion cells, and other amacrine cells. They integrate excitatory inputs from bipolar cells and inhibitory inputs from other amacrine cells, but for most amacrine cells, little is known about the specificity and functional properties of their inhibitory inputs. Here, we have investigated GABAA receptors of the AII amacrine, a critical neuron in the rod pathway microcircuit, using patch-clamp recording in rat retinal slices. Puffer application of GABA evoked robust responses, but, surprisingly, spontaneous GABAA receptor-mediated postsynaptic currents were not observed, neither under control conditions nor following application of high-K+ solution to facilitate release. To investigate the biophysical and pharmacological properties of GABAA receptors in AIIs, we therefore used nucleated patches and a fast application system. Both brief and long pulses of GABA (3 mM) evoked GABAA receptor-mediated currents with slow, multi-exponential decay kinetics. The average weighted time constant (τw) of deactivation was ~163 ms. Desensitization was even slower, with τw ~330 ms. Non-stationary noise analysis of patch responses and directly observed channel gating yielded a single-channel conductance of ~23 pS. Pharmacological investigation suggested the presence of α2 and/or α3 subunits, as well as the γ2 subunit. Such subunit combinations are typical of GABAA receptors with slow kinetics. If synaptic GABAA receptors of AII amacrines have similar functional properties, the slow deactivation and desensitization kinetics will facilitate temporal summation of GABAergic inputs, allowing effective summation and synaptic integration to occur even for relatively low frequencies of inhibitory inputs.
Collapse
Affiliation(s)
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
13
|
Davison A, Gierke K, Brandstätter JH, Babai N. Synaptic vesicle release during ribbon synapse formation of cone photoreceptors. Front Cell Neurosci 2022; 16:1022419. [PMID: 36406751 PMCID: PMC9672513 DOI: 10.3389/fncel.2022.1022419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/20/2022] [Indexed: 08/14/2023] Open
Abstract
Mammalian cone photoreceptors enable through their sophisticated synapse the high-fidelity transfer of visual information to second-order neurons in the retina. The synapse contains a proteinaceous organelle, called the synaptic ribbon, which tethers synaptic vesicles (SVs) at the active zone (AZ) close to voltage-gated Ca2+ channels. However, the exact contribution of the synaptic ribbon to neurotransmission is not fully understood, yet. In mice, precursors to synaptic ribbons appear within photoreceptor terminals shortly after birth as free-floating spherical structures, which progressively elongate and then attach to the AZ during the following days. Here, we took advantage of the process of synaptic ribbon maturation to study their contribution to SV release. We performed whole-cell patch-clamp recordings from cone photoreceptors at three postnatal (P) development stages (P8-9, P12-13, >P30) and measured evoked SV release, SV replenishment rate, recovery from synaptic depression, domain organization of voltage-sensitive Ca2+ channels, and Ca2+-sensitivity of exocytosis. Additionally, we performed electron microscopy to determine the density of SVs at ribbon-free and ribbon-occupied AZs. Our results suggest that ribbon attachment does not organize the voltage-sensitive Ca2+ channels into nanodomains or control SV release probability. However, ribbon attachment increases SV density at the AZ, increases the pool size of readily releasable SVs available for evoked SV release, facilitates SV replenishment without changing the SV pool refilling time, and increases the Ca2+- sensitivity of glutamate release.
Collapse
Affiliation(s)
| | | | | | - Norbert Babai
- Division of Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Percival KA, Gayet J, Khanjian R, Taylor WR, Puthussery T. Calcium-permeable AMPA receptors on AII amacrine cells mediate sustained signaling in the On-pathway of the primate retina. Cell Rep 2022; 41:111484. [PMID: 36223749 PMCID: PMC10518213 DOI: 10.1016/j.celrep.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022] Open
Abstract
Midget and parasol ganglion cells (GCs) represent the major output channels from the primate eye to the brain. On-type midget and parasol GCs exhibit a higher background spike rate and thus can respond more linearly to contrast changes than their Off-type counterparts. Here, we show that a calcium-permeable AMPA receptor (CP-AMPAR) antagonist blocks background spiking and sustained light-evoked firing in On-type GCs while preserving transient light responses. These effects are selective for On-GCs and are occluded by a gap-junction blocker suggesting involvement of AII amacrine cells (AII-ACs). Direct recordings from AII-ACs, cobalt uptake experiments, and analyses of transcriptomic data confirm that CP-AMPARs are expressed by primate AII-ACs. Overall, our data demonstrate that under some background light levels, CP-AMPARs at the rod bipolar to AII-AC synapse drive sustained signaling in On-type GCs and thus contribute to the more linear contrast signaling of the primate On- versus Off-pathway.
Collapse
Affiliation(s)
- Kumiko A Percival
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Gayet
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Roupen Khanjian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
15
|
Gaynes JA, Budoff SA, Grybko MJ, Hunt JB, Poleg-Polsky A. Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nat Commun 2022; 13:5575. [PMID: 36163249 PMCID: PMC9512824 DOI: 10.1038/s41467-022-32761-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Antagonistic interactions between center and surround receptive field (RF) components lie at the heart of the computations performed in the visual system. Circularly symmetric center-surround RFs are thought to enhance responses to spatial contrasts (i.e., edges), but how visual edges affect motion processing is unclear. Here, we addressed this question in retinal bipolar cells, the first visual neuron with classic center-surround interactions. We found that bipolar glutamate release emphasizes objects that emerge in the RF; their responses to continuous motion are smaller, slower, and cannot be predicted by signals elicited by stationary stimuli. In our hands, the alteration in signal dynamics induced by novel objects was more pronounced than edge enhancement and could be explained by priming of RF surround during continuous motion. These findings echo the salience of human visual perception and demonstrate an unappreciated capacity of the center-surround architecture to facilitate novel object detection and dynamic signal representation.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
16
|
Abstract
Voltage-gated Ca2+ (Cav) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Cav channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Cav channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Wesley Maddox
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| | - Amy Lee
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| |
Collapse
|
17
|
Zhang G, Liu JB, Yuan HL, Chen SY, Singer JH, Ke JB. Multiple Calcium Channel Types with Unique Expression Patterns Mediate Retinal Signaling at Bipolar Cell Ribbon Synapses. J Neurosci 2022; 42:6487-6505. [PMID: 35896423 PMCID: PMC9410755 DOI: 10.1523/jneurosci.0183-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Retinal bipolar cells (BCs) compose the canonical vertical excitatory pathway that conveys photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through voltage-gated Ca2+ (CaV) channels mediating L-type currents, the molecular identity of CaV channels in BCs is uncertain. Therefore, we combined molecular and functional analyses to determine the expression profiles of CaV α1, β, and α2δ subunits in mouse rod bipolar (RB) cells, BCs from which the dynamics of synaptic transmission are relatively well-characterized. We found significant heterogeneity in CaV subunit expression within the RB population from mice of either sex, and significantly, we discovered that transmission from RB synapses was mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, we found both CaV1.3 and CaV1.4 proteins located near presynaptic ribbon-type active zones in RB axon terminals, indicating that the L-type conductance is mediated by multiple CaV1 subtypes. Similarly, CaV3 α1, β, and α2δ subunits also appear to obey a "multisubtype" rule, i.e., we observed a combination of multiple subtypes, rather than a single subtype as previously thought, for each CaV subunit in individual cells.SIGNIFICANCE STATEMENT Bipolar cells (BCs) transmit photoreceptor output to inner retinal neurons. Although synaptic transmission from BC terminals is thought to rely almost exclusively on Ca2+ influx through L-type voltage-gated Ca2+ (CaV) channels, the molecular identity of CaV channels in BCs is uncertain. Here, we report unexpectedly high molecular diversity of CaV subunits in BCs. Transmission from rod bipolar (RB) cell synapses can be mediated by Ca2+ influx through P/Q-type (CaV2.1) and N-type (CaV2.2) conductances as well as the previously-described L-type (CaV1) and T-type (CaV3) conductances. Furthermore, CaV1, CaV3, β, and α2δ subunits appear to obey a "multisubtype" rule, i.e., a combination of multiple subtypes for each subunit in individual cells, rather than a single subtype as previously thought.
Collapse
Affiliation(s)
- Gong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jun-Bin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He-Lan Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Si-Yun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jiang-Bin Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China,
| |
Collapse
|
18
|
Ganczer A, Szarka G, Balogh M, Hoffmann G, Tengölics ÁJ, Kenyon G, Kovács-Öller T, Völgyi B. Transience of the Retinal Output Is Determined by a Great Variety of Circuit Elements. Cells 2022; 11:cells11050810. [PMID: 35269432 PMCID: PMC8909309 DOI: 10.3390/cells11050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.
Collapse
Affiliation(s)
- Alma Ganczer
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Márton Balogh
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Jonatán Tengölics
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Garrett Kenyon
- Los Alamos National Laboratory, Computer & Computational Science Division, Los Alamos, NM 87545, USA;
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
19
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Grabner CP, Moser T. The mammalian rod synaptic ribbon is essential for Ca v channel facilitation and ultrafast synaptic vesicle fusion. eLife 2021; 10:63844. [PMID: 34617508 PMCID: PMC8594941 DOI: 10.7554/elife.63844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild-type and ribbonless (Ribeye-ko) mice. Wild-type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ<0.4 ms. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven scotopic light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.
Collapse
Affiliation(s)
- Chad Paul Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Werginz P, Wang BY, Chen ZC, Palanker D. On optimal coupling of the 'electronic photoreceptors' into the degenerate retina. J Neural Eng 2020; 17:045008. [PMID: 32613948 PMCID: PMC10948023 DOI: 10.1088/1741-2552/aba0d2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective To restore sight in atrophic age-related macular degeneration, the lost photoreceptors can be replaced with electronic implants, which replicate their two major functions: (1) converting light into an electric signal, and (2) transferring visual information to the secondary neurons in the retinal neural network—the bipolar cells (BC). We study the selectivity of BC activation by subretinal implants and dynamics of their response to pulsatile waveforms in order to optimize the electrical stimulation scheme such that retinal signal processing with 'electronic photoreceptors' remains as close to natural as possible. Approach A multicompartmental model of a BC was implemented to simulate responses of the voltage-gated calcium channels and subsequent synaptic vesicle release under continuous and pulsatile stimuli. We compared the predicted response under various frequencies, pulse durations, and alternating gratings to the corresponding experimental measurements. In addition, electric field was computed for various electrode configurations in a 3-d finite element model to assess the stimulation selectivity via spatial confinement of the field. Main results The modeled BC-mediated retinal responses were, in general, in good agreement with previously published experimental results. Kinetics of the calcium pumps and of the neurotransmitter release in ribbon synapses, which underpin the BC's temporal filtering and rectifying functions, allow mimicking the natural BC response with high frequency pulsatile stimulation, thereby preserving features of the retinal signal processing, such as flicker fusion, adaptation to static stimuli and non-linear summation of subunits in receptive field. Selectivity of the BC stimulation while avoiding direct activation of the downstream neurons (amacrine and ganglion cells—RGCs) is improved with local return electrodes. Significance If the retinal neural network is preserved to a large extent in age-related macular degeneration, selective stimulation of BCs with proper spatial and temporal modulation of the extracellular electric field may retain many features of the natural retinal signal processing and hence allow highly functional restoration of sight.
Collapse
Affiliation(s)
- Paul Werginz
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria. Author to whom any correspondence should be adressed
| | | | | | | |
Collapse
|
22
|
Bligard GW, DeBrecht J, Smith RG, Lukasiewicz PD. Light-evoked glutamate transporter EAAT5 activation coordinates with conventional feedback inhibition to control rod bipolar cell output. J Neurophysiol 2020; 123:1828-1837. [PMID: 32233906 DOI: 10.1152/jn.00527.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the retina, modulation of the amplitude of dim visual signals primarily occurs at axon terminals of rod bipolar cells (RBCs). GABA and glycine inhibitory neurotransmitter receptors and the excitatory amino acid transporter 5 (EAAT5) modulate the RBC output. EAATs clear glutamate from the synapse, but they also have a glutamate-gated chloride conductance. EAAT5 acts primarily as an inhibitory glutamate-gated chloride channel. The relative role of visually evoked EAAT5 inhibition compared with GABA and glycine inhibition has not been addressed. In this study, we determine the contribution of EAAT5-mediated inhibition onto RBCs in response to light stimuli in mouse retinal slices. We find differences and similarities in the two forms of inhibition. Our results show that GABA and glycine mediate nearly all lateral inhibition onto RBCs, as EAAT5 is solely a mediator of RBC feedback inhibition. We also find that EAAT5 and conventional GABA inhibition both contribute to feedback inhibition at all stimulus intensities. Finally, our in silico modeling compares and contrasts EAAT5-mediated to GABA- and glycine-mediated feedback inhibition. Both forms of inhibition have a substantial impact on synaptic transmission to the postsynaptic AII amacrine cell. Our results suggest that the late phase EAAT5 inhibition acts with the early phase conventional, reciprocal GABA inhibition to modulate the rod signaling pathway between rod bipolar cells and their downstream synaptic targets.NEW & NOTEWORTHY Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.
Collapse
Affiliation(s)
- Gregory W Bligard
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - James DeBrecht
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri.,Department of Neuroscience, Washington University, St. Louis, Missouri
| |
Collapse
|
23
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
24
|
Liu LL, Alessio EJ, Spix NJ, Zhang DQ. Expression of GluA2-containing calcium-impermeable AMPA receptors on dopaminergic amacrine cells in the mouse retina. Mol Vis 2019; 25:780-790. [PMID: 31819340 PMCID: PMC6882663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/17/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose The neuromodulator dopamine plays an important role in light adaptation for the visual system. Light can stimulate dopamine release from dopaminergic amacrine cells (DACs) by activating three classes of photosensitive retinal cells: rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the synaptic mechanisms by which these photoreceptors excite DACs remain poorly understood. Our previous work demonstrated that α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptors contribute to light regulation of DAC activity. AMPA receptors are classified into Ca2+-permeable and Ca2+-impermeable subtypes. We sought to identify which subtype of AMPA receptors is involved in light regulation of DAC activity. Methods AMPA receptor-mediated light responses and miniature excitatory postsynaptic currents were recorded from genetically labeled DACs in mouse retinas with the whole-cell voltage-clamp mode. Immunostaining with antibodies against tyrosine hydroxylase, GluA2 (GluR2), and PSD-95 was performed in vertical retinal slices. Results The biophysical and pharmacological data showed that only Ca2+-impermeable AMPA receptors contribute to DAC light responses driven by ipRGCs or cones (via depolarizing bipolar cells). We further found that the same subtype of AMPA receptors mediates miniature excitatory postsynaptic currents of DACs. These findings are supported by the immunohistochemical results demonstrating that DACs express the PSD-95 with GluA2, a subunit that is essential for determining the impermeability of AMPA receptors to calcium. Conclusions The results indicated that GluA2-containing Ca2+-impermeable AMPA receptors contribute to signal transmission from photosensitive retinal cells to DACs.
Collapse
Affiliation(s)
- Lei-Lei Liu
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Nathan J Spix
- Eye Research Institute, Oakland University, Rochester, MI
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI
| |
Collapse
|
25
|
Nakamura Y. EGTA Can Inhibit Vesicular Release in the Nanodomain of Single Ca 2+ Channels. Front Synaptic Neurosci 2019; 11:26. [PMID: 31632263 PMCID: PMC6779814 DOI: 10.3389/fnsyn.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
The exogenous Ca2+ chelator EGTA (ethylene glycol tetraacetic acid) has been widely used to probe the coupling distance between Ca2+ channels and vesicular Ca2+ sensors for neurotransmitter release. Because of its slow forward rate for binding, EGTA is thought to not capture calcium ions in very proximity to a channel, whereas it does capture calcium ions at the remote distance. However, in this study, our reaction diffusion simulations (RDSs) of Ca2+ combined with a release calculation using vesicular sensor models indicate that a high concentration of EGTA decreases Ca2+ and vesicular release in the nanodomain of single channels. We found that a key determinant of the effect of EGTA on neurotransmitter release is the saturation of the vesicular sensor. When the sensor is saturated, the reduction in the Ca2+ concentration by EGTA is masked. By contrast, when the sensor is in a linear range, even a small reduction in Ca2+ by EGTA can decrease vesicular release. In proximity to a channel, the vesicular sensor is often saturated for a long voltage step, but not for a brief Ca2+ influx typically evoked by an action potential. Therefore, when EGTA is used as a diagnostic tool to probe the coupling distance, care must be taken regarding the presynaptic Ca2+ entry duration as well as the property of the vesicular Ca2+ sensor.
Collapse
Affiliation(s)
- Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Hartveit E, Veruki ML, Zandt B. Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: an experimental and computational study. Physiol Rep 2019; 7:e14186. [PMID: 31379117 PMCID: PMC6680060 DOI: 10.14814/phy2.14186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Exocytotic release of neurotransmitter can be quantified by electrophysiological recording from postsynaptic neurons. Alternatively, fusion of synaptic vesicles with the cell membrane can be measured as increased capacitance by recording directly from a presynaptic neuron. The "Sine + DC" technique is based on recording from an unbranched cell, represented by an electrically equivalent RC-circuit. It is challenging to extend such measurements to branching neurons where exocytosis occurs at a distance from a somatic recording electrode. The AII amacrine is an important inhibitory interneuron of the mammalian retina and there is evidence that exocytosis at presynaptic lobular dendrites increases the capacitance. Here, we combined electrophysiological recording and computer simulations with realistic compartmental models to explore capacitance measurements of rat AII amacrine cells. First, we verified the ability of the "Sine + DC" technique to detect depolarization-evoked exocytosis in physiological recordings. Next, we used compartmental modeling to demonstrate that capacitance measurements can detect increased membrane surface area at lobular dendrites. However, the accuracy declines for lobular dendrites located further from the soma due to frequency-dependent signal attenuation. For sine wave frequencies ≥1 kHz, the magnitude of the total releasable pool of synaptic vesicles will be significantly underestimated. Reducing the sine wave frequency increases overall accuracy, but when the frequency is sufficiently low that exocytosis can be detected with high accuracy from all lobular dendrites (~100 Hz), strong electrical coupling between AII amacrines compromises the measurements. These results need to be taken into account in studies with capacitance measurements from these and other electrically coupled neurons.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Bas‐Jan Zandt
- Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
28
|
Babai N, Gierke K, Müller T, Regus‐Leidig H, Brandstätter JH, Feigenspan A. Signal transmission at invaginating cone photoreceptor synaptic contacts following deletion of the presynaptic cytomatrix protein Bassoon in mouse retina. Acta Physiol (Oxf) 2019; 226:e13241. [PMID: 30554473 DOI: 10.1111/apha.13241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023]
Abstract
AIM A key feature of the mammalian retina is the segregation of visual information in parallel pathways, starting at the photoreceptor terminals. Cone photoreceptors establish synaptic contacts with On bipolar and horizontal cells at invaginating, ribbon-containing synaptic sites, whereas Off bipolar cells form flat, non-ribbon-containing contacts. The cytomatrix protein Bassoon anchors ribbons at the active zone, and its absence induces detachment of ribbons from the active zone. In this study we investigate the impact of a missing Bassoon on synaptic transmission at the first synapse of the visual system. METHODS Release properties of cone photoreceptors were studied in wild-type and mutant mouse retinae with a genetic disruption of the presynaptic cytomatrix protein Bassoon using whole-cell voltage-clamp recordings. Light and electron microscopy revealed the distribution of Ca2+ channels and synaptic vesicles, respectively, in both mouse lines. RESULTS Whole-cell recordings from postsynaptic horizontal cells of the two mouse lines showed that the presence of Bassoon (and a ribbon) enhanced the rate of exocytosis during tonic and evoked release by increasing synaptic vesicle pool size and replenishment rate, while at the same time slowing synaptic vesicle release. Furthermore, the number of Cav 1.4 channels and synaptic vesicles was significantly higher at wild-type than at Bassoon mutant synaptic sites. CONCLUSION The results of our study demonstrate that glutamate release from cone photoreceptor terminals can occur independent of a synaptic ribbon, but seems restricted to active zones, and they show the importance of a the synaptic ribbon in sustained and spatially and temporally synchronized neurotransmitter release.
Collapse
Affiliation(s)
- Norbert Babai
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Kaspar Gierke
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Tanja Müller
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | - Hanna Regus‐Leidig
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| | | | - Andreas Feigenspan
- Department of Biology, Animal Physiology FAU Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
29
|
Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. J Neurosci 2019; 39:627-650. [PMID: 30459218 PMCID: PMC6343648 DOI: 10.1523/jneurosci.2267-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.
Collapse
Affiliation(s)
- Margaret L Veruki
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Yifan Zhou
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Áurea Castilho
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Espen Hartveit
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| |
Collapse
|
30
|
Abstract
Inhibition shapes activity and signal processing in neural networks through numerous mechanisms mediated by many different cell types. Here, we examined how one type of GABAergic interneuron in the retina, the A17 amacrine cell, influences visual information processing. Our results suggest that A17s, which make reciprocal feedback inhibitory synapses onto rod bipolar cell (RBC) synaptic terminals, extend the luminance range over which RBC synapses compute temporal contrast and enhance the reliability of contrast signals over this range. Inhibition from other amacrine cells does not influence these computational features. Although A17-mediated feedback is mediated by both GABAA and GABAC receptors, the latter plays the primary role in extending the range of contrast computation. These results identify specific functions for an inhibitory interneuron subtype, as well as specific synaptic receptors, in a behaviorally relevant neural computation.
Collapse
Affiliation(s)
- Nicholas W. Oesch
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892-3701
- Present address: University of California, San Diego, Department of Psychology, Department of Ophthalmology, 9500 Gilman Drive MC#0109, La Jolla, CA 92093-0109
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892-3701
| |
Collapse
|
31
|
Grimes WN, Songco-Aguas A, Rieke F. Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. Annu Rev Vis Sci 2018; 4:123-141. [PMID: 29883274 PMCID: PMC6153147 DOI: 10.1146/annurev-vision-091517-034055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We know a good deal about the operation of the retina when either rod or cone photoreceptors provide the dominant input (i.e., under very dim or very bright conditions). However, we know much less about how the retina operates when rods and cones are coactive (i.e., under intermediate lighting conditions, such as dusk). Such mesopic conditions span 20-30% of the light levels over which vision operates and encompass many situations in which vision is essential (e.g., driving at night). These lighting conditions are challenging because rod and cone signals differ substantially: Rod responses are nearing saturation, while cone responses are weak and noisy. A rich history of perceptual studies guides our investigation of how the retina operates under mesopic conditions and in doing so provides a powerful opportunity to link general issues about parallel processing in neural circuits with computation and perception. We review some of the successes and challenges in understanding the retinal basis of perceptual rod-cone interactions.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Adree Songco-Aguas
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
32
|
Chakrabarti R, Michanski S, Wichmann C. Vesicle sub-pool organization at inner hair cell ribbon synapses. EMBO Rep 2018; 19:embr.201744937. [PMID: 30201800 DOI: 10.15252/embr.201744937] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023] Open
Abstract
The afferent inner hair cell synapse harbors the synaptic ribbon, which ensures a constant vesicle supply. Synaptic vesicles (SVs) are arranged in morphologically discernable pools, linked via filaments to the ribbon or the presynaptic membrane. We propose that filaments play a major role in SV resupply and exocytosis at the ribbon. Using advanced electron microscopy, we demonstrate that SVs are organized in sub-pools defined by the filament number per vesicle and its connections. Upon stimulation, SVs increasingly linked to other vesicles and to the ribbon, whereas single-tethered SVs dominated at the membrane. Mutant mice for the hair cell protein otoferlin (pachanga, Otof Pga/Pga ) are profoundly deaf with reduced sustained release, serving as a model to investigate the SV replenishment at IHCs. Upon stimulation, multiple-tethered and docked vesicles (rarely observed in wild-type) accumulated at Otof Pga/Pga active zones due to an impairment downstream of docking. Conclusively, vesicles are organized in sub-pools at ribbon-type active zones by filaments to support vesicle supply, transport, and finally release.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Georg-August University School of Science, Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany
| |
Collapse
|
33
|
Graydon CW, Lieberman EE, Rho N, Briggman KL, Singer JH, Diamond JS. Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina. Curr Biol 2018; 28:2739-2751.e3. [PMID: 30122532 PMCID: PMC6133723 DOI: 10.1016/j.cub.2018.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 02/03/2023]
Abstract
To understand computation in a neural circuit requires a complete synaptic connectivity map and a thorough grasp of the information-processing tasks performed by the circuit. Here, we dissect a microcircuit in the mouse retina in which scotopic visual information (i.e., single photon events, luminance, contrast) is encoded by rod bipolar cells (RBCs) and distributed to parallel ON and OFF cone bipolar cell (CBC) circuits via the AII amacrine cell, an inhibitory interneuron. Serial block-face electron microscopy (SBEM) reconstructions indicate that AIIs preferentially connect to one OFF CBC subtype (CBC2); paired whole-cell patch-clamp recordings demonstrate that, depending on the level of network activation, AIIs transmit distinct components of synaptic input from single RBCs to downstream ON and OFF CBCs. These findings highlight specific synaptic and circuit-level features that allow intermediate neurons (e.g., AIIs) within a microcircuit to filter and propagate information to downstream neurons.
Collapse
Affiliation(s)
- Cole W Graydon
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Evan E Lieberman
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Nao Rho
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Wen X, Cahill AL, Barta C, Thoreson WB, Nawy S. Elevated Pressure Increases Ca 2+ Influx Through AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:162. [PMID: 29950974 PMCID: PMC6008319 DOI: 10.3389/fncel.2018.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The predominate type of AMPA receptor expressed in the CNS is impermeable to Ca2+ (CI-AMPAR). However, some AMPA receptors are permeable to Ca2+ (CP-AMPAR) and play important roles in development, plasticity and disease. In the retina, ganglion cells (RGCs) are targets of disease including glaucoma and diabetic retinopathy, but there are many types of RGCs and not all types are targeted equally. In the present study, we sought to determine if there are differences in expression of AMPARs amongst RGC subtypes, and if these differences might contribute to differential vulnerability in a model of stress. Using cultured RGCs we first show that acute exposure to elevated pressure increased expression of Ca2+-permeable AMPA receptors (CP-AMPARs) in some, but not all classes of RGCs. When RGCs were sampled without regard to subtype, AMPA currents, measured using patch clamp recording, were blocked by the CP-AMPAR blocker PhTX-74 to a greater extent in pressure-treated RGCs vs. control. Furthermore, imaging experiments revealed an increase in Ca2+ influx during AMPA application in pressure-treated RGCs. However, examination of specific RGC subtypes using reporter lines revealed striking differences in both baseline AMPAR composition and modulation of this baseline composition by stress. Notably, ON alpha RGCs identified using the Opn4 mouse line and immunohistochemistry, had low expression of CP-AMPARs. Conversely, an ON-OFF direction selective RGC and putative OFF alpha RGC each expressed high levels of CP-AMPARs. These differences between RGC subtypes were also observed in RGCs from whole retina. Elevated pressure further lowered expression of CP-AMPARs in ON alpha RGCs, but raised expression in ON-OFF and OFF RGCs. Changes in CP-AMPAR expression following challenge with elevated pressure were correlated with RGC survival: ON alpha RGCs were unaffected by application of pressure, while the number of putative OFF alpha RGCs declined by approximately 50% following challenge with pressure. Differences in expression of CP-AMPARs between RGC subtypes may form the underpinnings for subtype-specific synaptic plasticity. Furthermore, the differential responses of these RGC subtypes to elevated pressure may contribute to the reported resistance of ON alpha, and susceptibility of OFF and ON-OFF RGCs to injury in models of glaucoma.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Asia L. Cahill
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cody Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
35
|
Elgueta C, Leroy F, Vielma AH, Schmachtenberg O, Palacios AG. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells. Sci Rep 2018; 8:3123. [PMID: 29449585 PMCID: PMC5814567 DOI: 10.1038/s41598-018-21119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany.
| | - Felix Leroy
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Neuroscience department, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| |
Collapse
|
36
|
Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML. AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 2017; 223:769-804. [PMID: 28936725 DOI: 10.1007/s00429-017-1520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/10/2017] [Indexed: 10/24/2022]
Abstract
In chemical synapses, neurotransmitter molecules released from presynaptic vesicles activate populations of postsynaptic receptors that vary in functional properties depending on their subunit composition. Differential expression and localization of specific receptor subunits are thought to play fundamental roles in signal processing, but our understanding of how that expression is adapted to the signal processing in individual synapses and microcircuits is limited. At ribbon synapses, glutamate release is independent of action potentials and characterized by a high and rapidly changing rate of release. Adequately translating such presynaptic signals into postsynaptic electrical signals poses a considerable challenge for the receptor channels in these synapses. Here, we investigated the functional properties of AMPA receptors of AII amacrine cells in rat retina that receive input at spatially segregated ribbon synapses from OFF-cone and rod bipolar cells. Using patch-clamp recording from outside-out patches, we measured the concentration dependence of response amplitude and steady-state desensitization, the single-channel conductance and the maximum open probability. The GluA4 subunit seems critical for the functional properties of AMPA receptors in AII amacrines and immunocytochemical labeling suggested that GluA4 is located at synapses made by both OFF-cone bipolar cells and rod bipolar cells. Finally, we used a series of experimental observables to develop kinetic models for AII amacrine AMPA receptors and subsequently used the models to explore the behavior of the receptors and responses generated by glutamate concentration profiles mimicking those occurring in synapses. These models will facilitate future in silico modeling of synaptic signaling and processing in AII amacrine cells.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Eirik Madsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Radiology, Førde Central Hospital, Førde, Norway
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Svein Harald Mørkve
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
37
|
Beaudoin DL, Kupershtok M, Demb JB. Selective synaptic connections in the retinal pathway for night vision. J Comp Neurol 2017; 527:117-132. [PMID: 28856684 DOI: 10.1002/cne.24313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.
Collapse
Affiliation(s)
- Deborah L Beaudoin
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mania Kupershtok
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
38
|
Efficient stimulus-secretion coupling at ribbon synapses requires RIM-binding protein tethering of L-type Ca 2+ channels. Proc Natl Acad Sci U S A 2017; 114:E8081-E8090. [PMID: 28874522 DOI: 10.1073/pnas.1702991114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast neurotransmitter release from ribbon synapses via Ca2+-triggered exocytosis requires tight coupling of L-type Ca2+ channels to release-ready synaptic vesicles at the presynaptic active zone, which is localized at the base of the ribbon. Here, we used genetic, electrophysiological, and ultrastructural analyses to probe the architecture of ribbon synapses by perturbing the function of RIM-binding proteins (RBPs) as central active-zone scaffolding molecules. We found that genetic deletion of RBP1 and RBP2 did not impair synapse ultrastructure of ribbon-type synapses formed between rod bipolar cells (RBCs) and amacrine type-2 (AII) cells in the mouse retina but dramatically reduced the density of presynaptic Ca2+ channels, decreased and desynchronized evoked neurotransmitter release, and rendered evoked and spontaneous neurotransmitter release sensitive to the slow Ca2+ buffer EGTA. These findings suggest that RBPs tether L-type Ca2+ channels to the active zones of ribbon synapses, thereby synchronizing vesicle exocytosis and promoting high-fidelity information transfer in retinal circuits.
Collapse
|
39
|
Datta P, Gilliam J, Thoreson WB, Janz R, Heidelberger R. Two Pools of Vesicles Associated with Synaptic Ribbons Are Molecularly Prepared for Release. Biophys J 2017; 113:2281-2298. [PMID: 28863864 DOI: 10.1016/j.bpj.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Neurons that form ribbon-style synapses are specialized for continuous exocytosis. To this end, their synaptic terminals contain numerous synaptic vesicles, some of which are ribbon associated, that have difference susceptibilities for undergoing Ca2+-dependent exocytosis. In this study, we probed the relationship between previously defined vesicle populations and determined their fusion competency with respect to SNARE complex formation. We found that both the rapidly releasing vesicle pool and the releasable vesicle pool of the retinal bipolar cell are situated at the ribbon-style active zones, where they functionally interact. A peptide inhibitor of SNARE complex formation failed to block exocytosis from either pool, suggesting that these two vesicle pools have formed the SNARE complexes necessary for fusion. By contrast, a third, slower component of exocytosis was blocked by the peptide, as was the functional replenishment of vesicle pools, indicating that few vesicles outside of the ribbon-style active zones were initially fusion competent. In cone photoreceptors, similar to bipolar cells, fusion of the initial ribbon-associated synaptic vesicle cohort was not blocked by the SNARE complex-inhibiting peptide, whereas a later phase of exocytosis, attributable to the recruitment and subsequent fusion of vesicles newly arrived at the synaptic ribbons, was blocked. Together, our results support a model in which stimulus-evoked exocytosis in retinal ribbon synapses is SNARE-dependent; where vesicles higher up on the synaptic ribbon replenish the rapidly releasing vesicle pool; and at any given time, there are sufficient SNARE complexes to support the fusion of the entire ribbon-associated cohort of vesicles. An important implication of these results is that ribbon-associated vesicles can form intervesicular SNARE complexes, providing mechanistic insight into compound fusion at ribbon-style synapses.
Collapse
Affiliation(s)
- Proleta Datta
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jared Gilliam
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas; The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
40
|
Zhao X, Wong KY, Zhang DQ. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Sci Rep 2017; 7:7920. [PMID: 28801634 PMCID: PMC5554153 DOI: 10.1038/s41598-017-08172-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
In the vertebrate retina, dopamine is synthesized and released by a specialized type of amacrine cell, the dopaminergic amacrine cell (DAC). DAC activity is stimulated by rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells upon illumination. However, the relative contributions of these three photoreceptor systems to the DAC light-induced response are unknown. Here we found that rods excite dark-adapted DACs across a wide range of stimulation intensities, primarily through connexin-36-dependent rod pathways. Similar rod-driven responses were observed in both ventral and dorsal DACs. We further found that in the dorsal retina, M-cones and melanopsin contribute to dark-adapted DAC responses with a similar threshold intensity. In the ventral retina, however, the threshold intensity for M-cone-driven responses was two log units greater than that observed in dorsal DACs, and melanopsin-driven responses were almost undetectable. We also examined the DAC response to prolonged adapting light and found such responses to be mediated by rods under dim lighting conditions, rods/M-cones/melanopsin under intermediate lighting conditions, and cones and melanopsin under bright lighting conditions. Our results elucidate the relative contributions of the three photoreceptor systems to DACs under different lighting conditions, furthering our understanding of the role these cells play in the visual system.
Collapse
Affiliation(s)
- Xiwu Zhao
- Eye Research Institute, Oakland University, Rochester, MI, United States.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI, United States.
| |
Collapse
|
41
|
Zandt BJ, Liu JH, Veruki ML, Hartveit E. AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Struct Funct 2017; 222:151-182. [PMID: 26951289 PMCID: PMC5225199 DOI: 10.1007/s00429-016-1206-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/20/2016] [Indexed: 11/01/2022]
Abstract
AII amacrine cells have been found in all mammalian retinas examined and play an important role for visual processing under both scotopic and photopic conditions. Whereas ultrastructural investigations have provided a detailed understanding of synaptic connectivity, there is little information available with respect to quantitative properties and variation of cellular morphology. Here, we performed whole-cell recordings from AII amacrine cells in rat retinal slices and filled the cells with fluorescent dyes. Multi-photon excitation microscopy was used to acquire image stacks and after deconvolution, we performed quantitative morphological reconstruction by computer-aided manual tracing. We reconstructed and performed morphometric analysis on 43 AII amacrine cells, with a focus on branching pattern, dendritic lengths and diameters, surface area, and number and distribution of dendritic varicosities. Compared to previous descriptions, the most surprising result was the considerable extent of branching, with the maximum branch order ranging from approximately 10-40. We found that AII amacrine cells conform to a recently described general structural design principle for neural arbors, where arbor density decreases proportionally to increasing territory size. We confirmed and quantified the bi-stratified morphology of AII amacrine cells by analyzing the arborizations as a function of retinal localization or with Sholl spheres. Principal component and cluster analysis revealed no evidence for morphological subtypes of AII amacrines. These results establish a database of morphometric properties important for studies of development, regeneration, degeneration, and disease processes, as well as a workflow compatible with compartmental modeling.
Collapse
Affiliation(s)
- Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Jian Hao Liu
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
42
|
Werginz P, Rattay F. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina. J Neural Eng 2016; 13:046013. [DOI: 10.1088/1741-2560/13/4/046013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Grabner CP, Ratliff CP, Light AC, DeVries SH. Mechanism of High-Frequency Signaling at a Depressing Ribbon Synapse. Neuron 2016; 91:133-45. [PMID: 27292536 DOI: 10.1016/j.neuron.2016.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 02/26/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022]
Abstract
Ribbon synapses mediate continuous release in neurons that have graded voltage responses. While mammalian retinas can signal visual flicker at 80-100 Hz, the time constant, τ, for the refilling of a depleted vesicle release pool at cone photoreceptor ribbons is 0.7-1.1 s. Due to this prolonged depression, the mechanism for encoding high temporal frequencies is unclear. To determine the mechanism of high-frequency signaling, we focused on an "Off" cone bipolar cell type in the ground squirrel, the cb2, whose transient postsynaptic responses recovered following presynaptic depletion with a τ of ∼0.1 s, or 7- to 10-fold faster than the τ for presynaptic pool refilling. The difference in recovery time course is caused by AMPA receptor saturation, where partial refilling of the presynaptic pool is sufficient for a full postsynaptic response. By limiting the dynamic range of the synapse, receptor saturation counteracts ribbon depression to produce rapid recovery and facilitate high-frequency signaling.
Collapse
Affiliation(s)
- Chad P Grabner
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Charles P Ratliff
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adam C Light
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Lv C, Stewart WJ, Akanyeti O, Frederick C, Zhu J, Santos-Sacchi J, Sheets L, Liao JC, Zenisek D. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels. Cell Rep 2016; 15:2784-95. [PMID: 27292637 DOI: 10.1016/j.celrep.2016.05.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022] Open
Abstract
Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term "ghost ribbons." Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.
Collapse
Affiliation(s)
- Caixia Lv
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - William J Stewart
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Otar Akanyeti
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - Courtney Frederick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Jie Zhu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Joseph Santos-Sacchi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Lavinia Sheets
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - James C Liao
- The Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL 32080, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; Department of Opthalmology and Visual Sciences, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
45
|
Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses. Cell Rep 2016; 15:2239-2250. [PMID: 27239031 PMCID: PMC5134263 DOI: 10.1016/j.celrep.2016.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022] Open
Abstract
Complexin (Cplx) proteins modulate the core SNARE complex to regulate exocytosis. To understand the contributions of Cplx to signaling in a well-characterized neural circuit, we investigated how Cplx3, a retina-specific paralog, shapes transmission at rod bipolar (RB) → AII amacrine cell synapses in the mouse retina. Knockout of Cplx3 strongly attenuated fast, phasic Ca2+-dependent transmission, dependent on local [Ca2+] nanodomains, but enhanced slower Ca2+-dependent transmission, dependent on global intraterminal [Ca2+] ([Ca2+]I). Surprisingly, coordinated multivesicular release persisted at Cplx3−/− synapses, although its onset was slowed. Light-dependent signaling at Cplx3−/− RB → AII synapses was sluggish, owing largely to increased asynchronous release at light offset. Consequently, propagation of RB output to retinal ganglion cells was suppressed dramatically. Our study links Cplx3 expression with synapse and circuit function in a specific retinal pathway and reveals a role for asynchronous release in circuit gain control.
Collapse
|
46
|
Abstract
Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I-III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Departments of Ophthalmology and Visual Sciences, Neuroscience, and Biomedical Engineering, Hope Center for Neurological Diseases, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
47
|
Tu HY, Chiao CC. Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina. Dev Neurobiol 2016; 76:473-86. [PMID: 26084632 DOI: 10.1002/dneu.22320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
Gap junctions are composed of connexin 36 (Cx36) and play a critical role in the rod photoreceptor signaling pathways of the vertebrate retina. Despite the fact that their connection and modulation in various rod pathways have been extensively studied in adult animals, little is known about the contribution and regulation of gap junctions to the development of the AII amacrine cell (AC)-mediated rod pathway. Using immunohistochemistry and microinjection, this study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult-like tracer-coupling pattern. Moreover, studies using dark-rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII ACs were increased when neural activity was inhibited. Our findings suggest that Cx36 expression in the AII-mediated rod pathway is activity dependent in the developing rabbit retina.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
48
|
Maxeiner S, Luo F, Tan A, Schmitz F, Südhof TC. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J 2016; 35:1098-114. [PMID: 26929012 DOI: 10.15252/embj.201592701] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon-specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca(2+)-buffer EGTA, suggesting that synaptic ribbons mediate nano-domain coupling of Ca(2+) channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano-domains that position release-ready synaptic vesicles adjacent to Ca(2+) channels.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA Department of Neuroanatomy, Institute for Anatomy and Cell Biology Medical School Saarland University, Homburg/Saar, Germany
| | - Fujun Luo
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| | - Alison Tan
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology Medical School Saarland University, Homburg/Saar, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Kim MH, von Gersdorff H. Postsynaptic Plasticity Triggered by Ca²⁺-Permeable AMPA Receptor Activation in Retinal Amacrine Cells. Neuron 2016; 89:507-20. [PMID: 26804991 DOI: 10.1016/j.neuron.2015.12.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/18/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023]
Abstract
Amacrine cells are thought to be a major locus for mechanisms of light adaptation and contrast enhancement in the retina. However, the potential for plasticity in their AMPA receptor currents remains largely unknown. Using paired patch-clamp recordings between bipolar cell terminals and amacrine cells, we have simultaneously measured presynaptic membrane capacitance changes and EPSCs. Repetitive bipolar cell depolarizations, designed to maintain the same amount of exocytosis, nevertheless significantly potentiated evoked EPSCs in a subpopulation of amacrine cells. Likewise, repetitive iontophoresis (or puffs) of glutamate (or AMPA) onto the dendrites of amacrine cells also significantly potentiated evoked currents and [Ca(2+)]i rises. However, strong postsynaptic Ca(2+) buffering with BAPTA abolished the potentiation and selective antagonists of Ca(2+)-permeable AMPA receptors also blocked the potentiation of AMPA-mediated currents. Together these results suggest that Ca(2+) influx via Ca(2+)-permeable AMPA receptors can elicit a rapid form of postsynaptic plasticity in a subgroup of amacrine cell dendrites.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
50
|
Zhou Y, Tencerová B, Hartveit E, Veruki ML. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. J Neurophysiol 2016; 115:389-403. [PMID: 26561610 PMCID: PMC4760463 DOI: 10.1152/jn.00947.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022] Open
Abstract
At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|