1
|
Ávila-Gámiz F, Pérez-Cano AM, Pérez-Berlanga JM, Zambrana-Infantes EN, Mañas-Padilla MC, Gil-Rodríguez S, Tronel S, Santín LJ, Ladrón de Guevara-Miranda D. Sequential physical and cognitive training disrupts cocaine-context associations via multi-level stimulation of adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111148. [PMID: 39284561 DOI: 10.1016/j.pnpbp.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.
Collapse
Affiliation(s)
- Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - José Manuel Pérez-Berlanga
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Emma N Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - M Carmen Mañas-Padilla
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sara Gil-Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain
| | - Sophie Tronel
- University of Bordeaux, INSERM, Magendie, U1215, F-33000 Bordeaux, France
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain.
| |
Collapse
|
2
|
Martínez-Rivera FJ, Holt LM, Minier-Toribio A, Estill M, Yeh SY, Tofani S, Futamura R, Browne CJ, Mews P, Shen L, Nestler EJ. Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584637. [PMID: 38559084 PMCID: PMC10980003 DOI: 10.1101/2024.03.12.584637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Substance use disorder is characterized by a maladaptive imbalance wherein drug seeking persists despite negative consequences or drug unavailability. This imbalance correlates with neurobiological alterations some of which are amplified during forced abstinence, thereby compromising the capacity of extinction-based approaches to prevent relapse. Cocaine use disorder (CUD) exemplifies this phenomenon in which neurobiological modifications hijack brain reward regions such as the nucleus accumbens (NAc) to manifest craving and withdrawal-like symptoms. While increasing evidence links transcriptional changes in the NAc to specific phases of addiction, genome-wide changes in gene expression during withdrawal vs. extinction (WD/Ext) have not been examined in a context- and NAc-subregion-specific manner. Here, we used cocaine self-administration (SA) in rats combined with RNA-sequencing (RNA-seq) of NAc subregions (core and shell) to transcriptionally profile the impact of experiencing withdrawal in the home cage or in the previous drug context or experiencing extinction training. As expected, home-cage withdrawal maintained drug seeking in the previous drug context, whereas extinction training reduced it. By contrast, withdrawal involving repetitive exposure to the previous drug context increased drug-seeking behavior. Bioinformatic analyses of RNA-seq data revealed gene expression patterns, networks, motifs, and biological functions specific to these behavioral conditions and NAc subregions. Comparing transcriptomic analysis of the NAc of patients with CUD highlighted conserved gene signatures, especially with rats that were repetitively exposed to the previous drug context. Collectively, these behavioral and transcriptional correlates of several withdrawal-extinction settings reveal fundamental and translational information about potential molecular mechanisms to attenuate drug-associated memories.
Collapse
|
3
|
Chesworth R, Visini G, Karl T. Impaired extinction of operant cocaine in a genetic mouse model of schizophrenia risk. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06386-8. [PMID: 37233814 DOI: 10.1007/s00213-023-06386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Individuals with schizophrenia have high rates of comorbid substance use problems. One potential explanation for this comorbidity is similar neuropathophysiology in substance use and schizophrenia, which may arise from shared genetic risk factors between the two disorders. Here we investigated if genetic risk for schizophrenia could affect drug reward and reinforcement for cocaine in an established mouse model of genetic risk for schizophrenia, the neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mouse. METHODS We examined drug-induced locomotor sensitization and conditioned place preference for several cocaine doses (5, 10, 20, 30 mg/kg) in male adult Nrg1 TM HET and wild-type-like (WT) littermates. We also investigated intravenous self-administration of and motivation for cocaine (doses 0.1, 0.5, 1 mg/kg/infusion), as well as extinction and cue-induced reinstatement of cocaine. In a follow-up experiment, we examined self-administration, extinction and cue-induced reinstatement of a natural reward, oral sucrose. RESULTS Cocaine preference was similar between Nrg1 TM HET mice and WT littermates at all doses tested. Locomotor sensitization to cocaine was not affected by Nrg1 genotype at any dose. Although self-administration and motivation for cocaine was unaffected, extinction of cocaine self-administration was impaired in Nrg1 TM HET compared to WT controls, and cue-induced reinstatement was greater in Nrg1 mutants in the middle of the reinstatement session. Sucrose self-administration and extinction thereof was not affected by genotype, but inactive lever responding was elevated during cue-induced reinstatement for operant sucrose in Nrg1 TM HET mice compared to WTs. DISCUSSION These results suggest impaired response inhibition for cocaine in Nrg1 TM HET mice and suggests Nrg1 mutation may contribute to behaviours which can limit control over cocaine use.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Gabriela Visini
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
4
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
5
|
Knouse MC, McGrath AG, Deutschmann AU, Rich MT, Zallar LJ, Rajadhyaksha AM, Briand LA. Sex differences in the medial prefrontal cortical glutamate system. Biol Sex Differ 2022; 13:66. [PMID: 36348414 PMCID: PMC9641904 DOI: 10.1186/s13293-022-00468-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulation in the prefrontal cortex underlies a variety of psychiatric illnesses, including substance use disorder, depression, and anxiety. Despite the established sex differences in prevalence and presentation of these illnesses, the neural mechanisms driving these differences are largely unexplored. Here, we investigate potential sex differences in glutamatergic transmission within the medial prefrontal cortex (mPFC). The goal of these experiments was to determine if there are baseline sex differences in transmission within this region that may underlie sex differences in diseases that involve dysregulation in the prefrontal cortex. METHODS Adult male and female C57Bl/6J mice were used for all experiments. Mice were killed and bilateral tissue samples were taken from the medial prefrontal cortex for western blotting. Both synaptosomal and total GluA1 and GluA2 levels were measured. In a second set of experiments, mice were killed and ex vivo slice electrophysiology was performed on prepared tissue from the medial prefrontal cortex. Spontaneous excitatory postsynaptic currents and rectification indices were measured. RESULTS Females exhibit higher levels of synaptosomal GluA1 and GluA2 in the mPFC compared to males. Despite similar trends, no statistically significant differences are seen in total levels of GluA1 and GluA2. Females also exhibit both a higher amplitude and higher frequency of spontaneous excitatory postsynaptic currents and greater inward rectification in the mPFC compared to males. CONCLUSIONS Overall, we conclude that there are sex differences in glutamatergic transmission in the mPFC. Our data suggest that females have higher levels of glutamatergic transmission in this region. This provides evidence that the development of sex-specific pharmacotherapies for various psychiatric diseases is important to create more effective treatments.
Collapse
Affiliation(s)
- Melissa C. Knouse
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Anna G. McGrath
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Andre U. Deutschmann
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
| | - Matthew T. Rich
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Lia J. Zallar
- Department of Pharmacology, Weill Cornell Medicine of Cornell University, New York, NY USA
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York, NY USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY USA
| | - Lisa A. Briand
- Department of Psychology, Temple University, Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122 USA
- Neuroscience Program, Temple University, Philadelphia, USA
| |
Collapse
|
6
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|
7
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
8
|
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc. Mol Psychiatry 2022; 27:2136-2145. [PMID: 35079125 PMCID: PMC9829124 DOI: 10.1038/s41380-022-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Collapse
|
9
|
Rabin RA, Mackey S, Parvaz MA, Cousijn J, Li C, Pearlson G, Schmaal L, Sinha R, Stein E, Veltman D, Thompson PM, Conrod P, Garavan H, Alia‐Klein N, Goldstein RZ. Common and gender-specific associations with cocaine use on gray matter volume: Data from the ENIGMA addiction working group. Hum Brain Mapp 2022; 43:543-554. [PMID: 32857473 PMCID: PMC8675419 DOI: 10.1002/hbm.25141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022] Open
Abstract
Gray matter volume (GMV) in frontal cortical and limbic regions is susceptible to cocaine-associated reductions in cocaine-dependent individuals (CD) and is negatively associated with duration of cocaine use. Gender differences in CD individuals have been reported clinically and in the context of neural responses to cue-induced craving and stress reactivity. The variability of GMV in select brain areas between men and women (e.g., limbic regions) underscores the importance of exploring interaction effects between gender and cocaine dependence on brain structure. Therefore, voxel-based morphometry data derived from the ENIGMA Addiction Consortium were used to investigate potential gender differences in GMV in CD individuals compared to matched controls (CTL). T1-weighted MRI scans and clinical data were pooled from seven sites yielding 420 gender- and age-matched participants: CD men (CDM, n = 140); CD women (CDW, n = 70); control men (CTLM, n = 140); and control women (CTLW, n = 70). Differences in GMV were assessed using a 2 × 2 ANCOVA, and voxelwise whole-brain linear regressions were conducted to explore relationships between GMV and duration of cocaine use. All analyses were corrected for age, total intracranial volume, and site. Diagnostic differences were predominantly found in frontal regions (CD < CTL). Interestingly, gender × diagnosis interactions in the left anterior insula and left lingual gyrus were also documented, driven by differences in women (CDW < CTLW). Further, lower right hippocampal GMV was associated with greater cocaine duration in CDM. Given the importance of the anterior insula to interoception and the hippocampus to learning contextual associations, results may point to gender-specific mechanisms in cocaine addiction.
Collapse
Affiliation(s)
- Rachel A. Rabin
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Scott Mackey
- Departments of Psychiatry and PsychologyUniversity of VermontBurlingtonVermontUSA
| | - Muhammad A. Parvaz
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janna Cousijn
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Chiang‐shan Li
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Godfrey Pearlson
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia and Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Rajita Sinha
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Elliot Stein
- Intramural Research Program—Neuroimaging Research BranchNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - Dick Veltman
- Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands
| | - Paul M. Thompson
- Imaging Genetics Center, Department of Neurology Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Patricia Conrod
- Department of PsychiatryUniversité de Montreal, CHU Ste Justine HospitalMontrealQuebecCanada
| | - Hugh Garavan
- Departments of Psychiatry and PsychologyUniversity of VermontBurlingtonVermontUSA
| | - Nelly Alia‐Klein
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Rita Z. Goldstein
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
10
|
Duan Y, Meng Y, Du W, Li M, Zhang J, Liang J, Li Y, Sui N, Shen F. Increased cocaine motivation in tree shrews is modulated by striatal dopamine D1 receptor-mediated upregulation of Ca v 1.2. Addict Biol 2021; 26:e13053. [PMID: 33987939 DOI: 10.1111/adb.13053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 12/01/2022]
Abstract
The progressively increased motivation for cocaine during abstinence is closely associated with the dysfunction of dopamine (DA) system. As DA receptors also dynamically regulate L-type calcium channels (LTCCs), in this study we examined how DA receptors (D1R or D2R) and LTCCs (Cav 1.2 or Cav 1.3) exert their influences on cocaine-seeking in a tree shrew (Tupaia belangeri chinensis) model. First, we demonstrated the 'incubation' effect by showing tree shrews exhibited a significantly higher seeking behaviour on withdrawal day (WD) 45 than on WD1. Then, we confirmed that longer abstinence period induced higher D1R expression in the nucleus accumbens (NAc). Next, we showed that LTCCs in the NAc participated in drug seeking. Moreover, Cav 1.2 expression in the NAc was increased on WD45, and disruption of the Cav 1.2 inhibited drug seeking. Finally, we found that D1R antagonist blocked the increase of Cav 1.2 on drug-seeking test. Collectively, these findings suggest that D1R-mediated upregulation of Cav 1.2 is involved in the incubation of cocaine craving.
Collapse
Affiliation(s)
- Ying Duan
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yiming Meng
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wenjie Du
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of Psychology University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
11
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
12
|
An S, Wang J, Zhang X, Duan Y, Xu Y, Lv J, Wang D, Zhang H, Richter-Levin G, Klavir O, Yu B, Cao X. αCaMKII in the lateral amygdala mediates PTSD-Like behaviors and NMDAR-Dependent LTD. Neurobiol Stress 2021; 15:100359. [PMID: 34258335 PMCID: PMC8252123 DOI: 10.1016/j.ynstr.2021.100359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals. However, its molecular and cellular mechanisms remain largely unexplored. Here, we found PTSD susceptible mice exhibited significant up-regulation of alpha-Ca2+/calmodulin-dependent kinase II (αCaMKII) in the lateral amygdala (LA). Consistently, increasing αCaMKII in the LA not only caused PTSD-like behaviors such as impaired fear extinction and anxiety-like behaviors, but also attenuated N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at thalamo-lateral amygdala (T-LA) synapses, and reduced GluA1-Ser845/Ser831 dephosphorylation and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Suppressing the elevated αCaMKII to normal levels completely rescued both PTSD-like behaviors and the impairments in LTD, GluA1-Ser845/Ser831 dephosphorylation, and AMPAR internalization. Intriguingly, deficits in GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization were detected not only after impaired fear extinction, but also after attenuated LTD. Our results suggest that αCaMKII in the LA may be a potential molecular determinant of PTSD. We further demonstrate for the first time that GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links between fear extinction and LTD.
Collapse
Affiliation(s)
- Shuming An
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jiayue Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xuliang Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yiqiong Xu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Huan Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Gal Richter-Levin
- “Sagol” Department of Neurobiology, University of Haifa, Haifa, 31905, Israel
| | - Oded Klavir
- Department of Psychology, Brain and Psychopathology Division, University of Haifa, Haifa, 31905, Israel
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
- Corresponding author.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Corresponding author.
| |
Collapse
|
13
|
Shang Q, Xiao J, Gao B, Liang M, Wang J, Qian H, Xi Z, Li T, Liu X. D1R/PP2A/p-CaMKIIα signaling in the caudate putamen is involved in acute methamphetamine-induced hyperlocomotion. Neurosci Lett 2021; 760:136102. [PMID: 34237414 DOI: 10.1016/j.neulet.2021.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Drug addiction is underscored by the transition from experimental use to dependent use of addictive drugs. Acute use of methamphetamine (METH) causes a range of clinical symptoms, including hyperlocomotion. Dopamine D1 receptor (D1R)-mediated negative regulation of phosphorylated calcium/calmodulin-dependent protein kinase IIα (p-CaMKIIα, threonine [Thr] 286) is involved in the acute effects induced by single METH administration. Protein phosphatase 2A (PP2A) is a potential bridge that links D1R and p-CaMKIIα (Thr 286) after acute METH administration. However, the mechanisms underlying hyperlocomotion induced by single METH administration remain unclear. In this study, SCH23390 (a D1R inhibitor) and LB100 (a PP2A inhibitor) were administered to examine the involvement of D1R and PP2A signaling in acute METH-induced hyperlocomotion in mice. The protein levels of methylated PP2A-C (m-PP2A-C, leucine [Leu] 309), phosphorylated PP2A-C (p-PP2A-C, tyrosine [Tyr] 307), PP2A-C, p-CaMKIIα (Thr 286), and CaMKIIα in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were measured. Administration of 0.5 mg/kg SCH23390 reversed the acute METH-induced increase in protein levels of m-PP2A-C (Leu 309) and the decrease in protein levels of p-PP2A-C (Tyr 307) in the CPu, but not in the PFC and NAc. Moreover, prior administration of 0.1 mg/kg LB100 attenuated hyperlocomotion induced by single METH administration and reversed the decrease in protein levels of p-CaMKII (Thr 286) in the PFC, NAc, and CPu. Collectively, these results indicate that the D1R/PP2A/p-CaMKIIα signaling cascade in the CPu may be involved in hyperlocomotion after a single administration of METH.
Collapse
Affiliation(s)
- Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Zhijia Xi
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, People's Republic of China.
| |
Collapse
|
14
|
Sridharan PS, Lu Y, Rice RC, Pieper AA, Rajadhyaksha AM. Loss of Cav1.2 channels impairs hippocampal theta burst stimulation-induced long-term potentiation. Channels (Austin) 2021; 14:287-293. [PMID: 32799605 PMCID: PMC7515572 DOI: 10.1080/19336950.2020.1807851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CACNA1 C, which codes for the Cav1.2 isoform of L-type Ca2+ channels (LTCCs), is a prominent risk gene in neuropsychiatric and neurodegenerative conditions. A role forLTCCs, and Cav1.2 in particular, in transcription-dependent late long-term potentiation (LTP) has long been known. Here, we report that elimination of Cav1.2 channels in glutamatergic neurons also impairs theta burst stimulation (TBS)-induced LTP in the hippocampus, known to be transcription-independent and dependent on N-methyl D-aspartate receptors (NMDARs) and local protein synthesis at synapses. Our expansion of the established role of Cav1.2channels in LTP broadens understanding of synaptic plasticity and identifies a new cellular phenotype for exploring treatment strategies for cognitive dysfunction.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center , Cleveland, OH, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University , Cleveland, OH, USA
| | - Yuan Lu
- Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City, IA, USA
| | - Richard C Rice
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University , New York, NY, USA.,Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University , New York, NY, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center , Cleveland, OH, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University , Cleveland, OH, USA.,Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City, IA, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University , New York, NY, USA.,Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center , Cleveland, OH, USA
| | - Anjali M Rajadhyaksha
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University , New York, NY, USA.,Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University , New York, NY, USA.,Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine of Cornell University , New York, NY, USA
| |
Collapse
|
15
|
Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress. Mol Psychiatry 2021; 26:2286-2298. [PMID: 32332995 PMCID: PMC8214244 DOI: 10.1038/s41380-020-0730-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 11/08/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by persistent fear memory of remote traumatic events, mental re-experiencing of the trauma, long-term cognitive deficits, and PTSD-associated hippocampal dysfunction. Extinction-based therapeutic approaches acutely reduce fear. However, many patients eventually relapse to the original conditioned fear response. Thus, understanding the underlying molecular mechanisms of this condition is critical to developing new treatments for patients. Mutations in the neuropsychiatric risk gene CACNA1C, which encodes the Cav1.2 isoform of the L-type calcium channel, have been implicated in both PTSD and highly comorbid neuropsychiatric conditions, such as anxiety and depression. Here, we report that male mice with global heterozygous loss of cacna1c exhibit exacerbated contextual fear that persists at remote time points (up to 180 days after shock), despite successful acute extinction training, reminiscent of PTSD patients. Because dopamine has been implicated in contextual fear memory, and Cav1.2 is a downstream target of dopamine D1-receptor (D1R) signaling, we next generated mice with specific deletion of cacna1c from D1R-expressing neurons (D1-cacna1cKO mice). Notably, D1-cacna1cKO mice also show the same exaggerated remote contextual fear, as well as persistently elevated anxiety-like behavior and impaired spatial memory at remote time points, reminiscent of chronic anxiety in treatment-resistant PTSD. We also show that D1-cacna1cKO mice exhibit elevated death of young hippocampal neurons, and that treatment with the neuroprotective agent P7C3-A20 eradicates persistent remote fear. Augmenting survival of young hippocampal neurons may thus provide an effective therapeutic approach for promoting durable remission of PTSD, particularly in patients with CACNA1C mutations or other genetic aberrations that impair calcium signaling or disrupt the survival of young hippocampal neurons.
Collapse
|
16
|
Cocaine- and stress-primed reinstatement of drug-associated memories elicit differential behavioral and frontostriatal circuit activity patterns via recruitment of L-type Ca 2+ channels. Mol Psychiatry 2020; 25:2373-2391. [PMID: 31501511 PMCID: PMC7927165 DOI: 10.1038/s41380-019-0513-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
Abstract
Cocaine-associated memories are critical drivers of relapse in cocaine-dependent individuals that can be evoked by exposure to cocaine or stress. Whether these environmental stimuli recruit similar molecular and circuit-level mechanisms to promote relapse remains largely unknown. Here, using cocaine- and stress-primed reinstatement of cocaine conditioned place preference to model drug-associated memories, we find that cocaine drives reinstatement by increasing the duration that mice spend in the previously cocaine-paired context whereas stress increases the number of entries into this context. Importantly, both forms of reinstatement require Cav1.2 L-type Ca2+ channels (LTCCs) in cells of the prelimbic cortex that project to the nucleus accumbens core (PrL→NAcC). Utilizing fiber photometry to measure circuit activity in vivo in conjunction with the LTCC blocker, isradipine, we find that LTCCs drive differential recruitment of the PrL→ NAcC pathway during cocaine- and stress-primed reinstatement. While cocaine selectively activates PrL→NAcC cells prior to entry into the cocaine-paired chamber, a measure that is predictive of duration in that chamber, stress increases persistent activity of this projection, which correlates with entries into the cocaine-paired chamber. Using projection-specific chemogenetic manipulations, we show that PrL→NAcC activity is required for both cocaine- and stress-primed reinstatement, and that activation of this projection in Cav1.2-deficient mice restores reinstatement. These data indicate that LTCCs are a common mediator of cocaine- and stress-primed reinstatement. However, they engage different patterns of behavior and PrL→NAcC projection activity depending on the environmental stimuli. These findings establish a framework to further study how different environmental experiences can drive relapse, and supports further exploration of isradipine, an FDA-approved LTCC blocker, as a potential therapeutic for the prevention of relapse in cocaine-dependent individuals.
Collapse
|
17
|
Nazari-Serenjeh F, Zarrabian S, Azizbeigi R, Haghparast A. Effects of dopamine D1- and D2-like receptors in the CA1 region of the hippocampus on expression and extinction of morphine-induced conditioned place preference in rats. Behav Brain Res 2020; 397:112924. [PMID: 32976861 DOI: 10.1016/j.bbr.2020.112924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Considering the extent of drug use and its relapse rate worldwide, in the present study, we explored the role of intra-CA1 administration of D1-like and D2-like receptor antagonists on the expression and extinction of morphine-induced CPP. To induce morphine CPP, adult male Wistar rats received a daily subcutaneous injection of morphine (5 mg/kg) during a 3-day conditioning phase. Different doses of SCH23390 (0.25, 1 or 4 μg/0.5 μl saline), as a selective D1-like receptor antagonist, and sulpiride (0.25, 1, or 4 μg/0.5 μl DMSO), as a selective D2-like receptor antagonist, were bilaterally microinjected into the CA1 region in the expression and extinction phases 1 h before CPP evaluation. Conditioning scores and locomotor activities were recorded during the tests. Results indicated that the injection of the antagonists into the CA1 region dose-dependently attenuated the expression of the morphine-induced CPP and sulpiride revealed prominent behavioral results compared to SCH23390 in the expression phases. Furthermore, microinjections of SCH23390 and sulpiride shortened the extinction phase of the morphine-induced CPP without changing the locomotor activity. The results indicated the involvement of D1- and D2-like receptors within the CA1 region in the expression and extinction of rewarding properties of morphine.
Collapse
Affiliation(s)
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Ca v1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology 2020; 45:1506-1517. [PMID: 31905369 PMCID: PMC7360569 DOI: 10.1038/s41386-019-0597-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Cocaine-associated contextual cues can trigger relapse behavior by recruiting the hippocampus. Extinction of cocaine-associated contextual memories can reduce cocaine-seeking behavior, however the molecular mechanisms within the hippocampus that underlie contextual extinction behavior and subsequent reinstatement remain poorly understood. Here, we extend our previous findings for a role of Cav1.2 L-type Ca2+ channels in dopamine 1 receptor (D1R)-expressing cells in extinction of cocaine conditioned place preference (CPP) in adult male mice. We report that attenuated cocaine CPP extinction in mice lacking Cav1.2 channels in D1R-expressing cells (D1cre, Cav1.2fl/fl) can be rescued through chemogenetic activation of D1R-expressing cells within the dorsal dentate gyrus (dDG), but not the dorsal CA1 (dCA1). This is supported by the finding that Cav1.2 channels are required in excitatory cells of the dDG, but not in the dCA1, for cocaine CPP extinction. Examination of the role of S1928 phosphorylation of Cav1.2, a protein kinase A (PKA) site using S1928A Cav1.2 phosphomutant mice revealed no extinction deficit, likely due to homeostatic scaling up of extinction-dependent S845 GluA1 phosphorylation in the dDG. However, phosphomutant mice failed to show cocaine-primed reinstatement which can be reversed by chemogenetic manipulation of excitatory cells in the dDG during extinction training. These findings outline an essential role for the interaction between D1R, Cav1.2, and GluA1 signaling in the dDG for extinction of cocaine-associated contextual memories.
Collapse
|
19
|
Moore SJ, Murphy GG. The role of L-type calcium channels in neuronal excitability and aging. Neurobiol Learn Mem 2020; 173:107230. [PMID: 32407963 DOI: 10.1016/j.nlm.2020.107230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
Over the last two decades there has been significant progress towards understanding the neural substrates that underlie age-related cognitive decline. Although many of the exact molecular and cellular mechanisms have yet to be fully understood, there is consensus that alterations in neuronal calcium homeostasis contribute to age-related deficits in learning and memory. Furthermore, it is thought that the age-related changes in calcium homeostasis are driven, at least in part, by changes in calcium channel expression. In this review, we focus on the role of a specific class of calcium channels: L-type voltage-gated calcium channels (LVGCCs). We provide the reader with a general introduction to voltage-gated calcium channels, followed by a more detailed description of LVGCCs and how they serve to regulate neuronal excitability via the post burst afterhyperpolarization (AHP). We conclude by reviewing studies that link the slow component of the AHP to learning and memory, and discuss how age-related increases in LVGCC expression may underlie cognitive decline by mediating a decrease in neuronal excitability.
Collapse
Affiliation(s)
- Shannon J Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States
| | - Geoffrey G Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Prior cocaine self-administration impairs attention signals in anterior cingulate cortex. Neuropsychopharmacology 2020; 45:833-841. [PMID: 31775158 PMCID: PMC7075947 DOI: 10.1038/s41386-019-0578-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 01/11/2023]
Abstract
Although maladaptive decision-making is a defining feature of drug abuse and addiction, we have yet to ascertain how cocaine self-administration disrupts neural signals in anterior cingulate cortex (ACC), a brain region thought to contribute to attentional control. To address this issue, rats were trained on a reward-guided decision-making task; reward value was manipulated by independently varying the size of or the delay to reward over several trial blocks. Subsequently, rats self-administered either a cocaine (experimental group) or sucrose (control) during 12 consecutive days, after which they underwent a 1-month withdrawal period. Upon completion of this period, rats performed the previously learned reward-guided decision-making task while we recorded from single neurons in ACC. We demonstrate that prior cocaine self-administration attenuates attention and attention-related ACC signals in an intake-dependent manner, and that changes in attention are decoupled from ACC firing. These effects likely contribute to the impaired decision-making-typified by chronic substance abuse and relapse-observed after drug use.
Collapse
|
21
|
Burgdorf CE, Jing D, Yang R, Huang C, Hill MN, Mackie K, Milner TA, Pickel VM, Lee FS, Rajadhyaksha AM. Endocannabinoid genetic variation enhances vulnerability to THC reward in adolescent female mice. SCIENCE ADVANCES 2020; 6:eaay1502. [PMID: 32095523 PMCID: PMC7015690 DOI: 10.1126/sciadv.aay1502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 05/03/2023]
Abstract
Adolescence represents a developmental period with the highest risk for initiating cannabis use. Little is known about whether genetic variation in the endocannabinoid system alters mesolimbic reward circuitry to produce vulnerability to the rewarding properties of the exogenous cannabinoid Δ9-tetrahydrocannabinol (THC). Using a genetic knock-in mouse model (FAAHC/A) that biologically recapitulates the human polymorphism associated with problematic drug use, we find that in adolescent female mice, but not male mice, this FAAH polymorphism enhances the mesolimbic dopamine circuitry projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and alters cannabinoid receptor 1 (CB1R) levels at inhibitory and excitatory terminals in the VTA. These developmental changes collectively increase vulnerability of adolescent female FAAHC/A mice to THC preference that persists into adulthood. Together, these findings suggest that this endocannabinoid genetic variant is a contributing factor for increased susceptibility to cannabis dependence in adolescent females.
Collapse
Affiliation(s)
- Caitlin E. Burgdorf
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chienchun Huang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Canada
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind and Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
22
|
Carpenter MD, Hu Q, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, Song H, Wimmer ME, Pierce RC, Heller EA. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun 2020; 11:504. [PMID: 31980629 PMCID: PMC6981219 DOI: 10.1038/s41467-020-14331-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Endogenous homeostatic mechanisms can restore normal neuronal function following cocaine-induced neuroadaptations. Such mechanisms may be exploited to develop novel therapies for cocaine addiction, but a molecular target has not yet been identified. Here we profiled mouse gene expression during early and late cocaine abstinence to identify putative regulators of neural homeostasis. Cocaine activated the transcription factor, Nr4a1, and its target gene, Cartpt, a key molecule involved in dopamine metabolism. Sustained activation of Cartpt at late abstinence was coupled with depletion of the repressive histone modification, H3K27me3, and enrichment of activating marks, H3K27ac and H3K4me3. Using both CRISPR-mediated and small molecule Nr4a1 activation, we demonstrated the direct causal role of Nr4a1 in sustained activation of Cartpt and in attenuation of cocaine-evoked behavior. Our findings provide evidence that targeting abstinence-induced homeostatic gene expression is a potential therapeutic target in cocaine addiction.
Collapse
Affiliation(s)
- Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiwen Hu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allison M Bond
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle S Czarnecki
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology and Program in Neuroscience, Temple University, Pennsylvania, Philadelphia, PA, 19122, USA
| | - R Christopher Pierce
- Center for Nurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Cocaine-induced changes in CX 3CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β. Neuropharmacology 2019; 162:107840. [PMID: 31704270 DOI: 10.1016/j.neuropharm.2019.107840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022]
Abstract
Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1β) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1β and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (CPP). We observed significant increases in CX3CL1 and IL1β concentrations after cocaine, although repeated cocaine produced an enhancement of CX3CL1 concentrations. CX3CL1 and IL1β concentrations were positively correlated in acute (r = +0.61) and repeated (r = +0.82) cocaine-treated mice. Inflammatory signal transduction pathways were assessed. Whereas acute cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2 and p-p65/p65 NFκB ratios after cocaine injection, repeated cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2, p-p38/p38 MAPK, p-NFκB p65/NF-κB p65 and p-CREB/CREB ratios. Baseline p-p38/p38 MAPK and p-CREB/CREB ratios were downregulated in repeated cocaine-treated mice. Regarding the cocaine-induced CPP, Cx3cr1-KO mice showed a notably impaired extinction but no differences during acquisition and reinstatement. These results indicate that cocaine induces alterations in CX3CL1 concentrations, which are associated with IL1β concentrations, and activates convergent inflammatory pathways in the hippocampus. Furthermore, the CX3CL1/CX3CR1 signaling could mediate the processes involved in the extinction of cocaine-induced CPP.
Collapse
|
24
|
Ladrón de Guevara‐Miranda D, Moreno‐Fernández RD, Gil‐Rodríguez S, Rosell‐Valle C, Estivill‐Torrús G, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory. Addict Biol 2019; 24:458-470. [PMID: 29480526 DOI: 10.1111/adb.12612] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 01/10/2023]
Abstract
Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine.
Collapse
Affiliation(s)
- David Ladrón de Guevara‐Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Román Darío Moreno‐Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Sara Gil‐Rodríguez
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Cristina Rosell‐Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
- Unidad de Producción de Reprogramación CelularGMP‐Iniciativa Andaluza en Terapia Avanzadas, Junta de Andalucía Spain
| | - Guillermo Estivill‐Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Francisco J. Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de PsicologíaUniversidad de Málaga Spain
| | - Estela Castilla‐Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA)Hospital Regional Universitario de Málaga Spain
| |
Collapse
|
25
|
Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway. J Neurosci 2018; 38:2780-2795. [PMID: 29459374 DOI: 10.1523/jneurosci.0599-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 01/05/2023] Open
Abstract
A homozygous nonsense mutation in the cereblon (CRBN) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out (CrbnKO) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and CrbnKO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that CrbnKO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult CrbnKO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, CrbnKO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory.SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon (CRBN) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID.
Collapse
|