1
|
Williams ZJ, Alvarez-Laviada A, Hoagland D, Jourdan LJ, Poelzing S, Gorelik J, Gourdie RG. Development and characterization of the mode-of-action of inhibitory and agonist peptides targeting the voltage-gated sodium channel SCN1B beta-subunit. J Mol Cell Cardiol 2024; 194:32-45. [PMID: 38942073 DOI: 10.1016/j.yjmcc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and β1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (β1/β1B) mimetic peptide, βadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore βadp1's mechanism and develop novel SCN1B mimetic peptides affecting β1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in β1-expressing cells, we observed βadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of βadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and β1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. βadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, βadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (β1/β1B) mimetic peptides are reported with the potential to modulate intercellular VGSC β1-mediated adhesion, potentially through β1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | | | - Daniel Hoagland
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - L Jane Jourdan
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - Steven Poelzing
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States
| | - Julia Gorelik
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States.
| |
Collapse
|
2
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
3
|
Nelson AD, Catalfio AM, Gupta JP, Min L, Caballero-Florán RN, Dean KP, Elvira CC, Derderian KD, Kyoung H, Sahagun A, Sanders SJ, Bender KJ, Jenkins PM. Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites. Neuron 2024; 112:1133-1149.e6. [PMID: 38290518 PMCID: PMC11097922 DOI: 10.1016/j.neuron.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
Collapse
Affiliation(s)
- Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kendall P Dean
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carina C Elvira
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly D Derderian
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Tran NN, Liu J, Bullock T, Flowers D. Respiratory Syncytial Virus in a Child With Dravet Syndrome: A Case Report. Cureus 2024; 16:e59405. [PMID: 38826591 PMCID: PMC11139543 DOI: 10.7759/cureus.59405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
The objective of this case report is to describe and document a case of respiratory syncytial virus (RSV) in a pediatric patient with Dravet syndrome (DS), also known as severe myoclonic epilepsy of infancy. Febrile seizures are often a complication in a patient with DS and can lead to status epilepticus, necessitating measures to prevent triggers such as fever, electrolyte imbalance, or dehydration. An increased awareness and understanding of DS can facilitate the identification of warning signs. A two-year-old female with a past medical history of DS with focal and generalized features presented to the pediatric emergency department (ED) with a five-day history of cough, fever, and decreased oral intake. The patient's parents accompanied her and expressed concerns regarding the risk of seizures associated with a rise in body temperature, as they had been alternating between acetaminophen and ibuprofen to manage her fever with a maximum recorded temperature of 101.5℉. She exhibited signs of increased work of breathing, necessitating the administration of supplemental oxygen via nasal cannula. Blood samples were obtained and resulted in the development of metabolic acidosis. A respiratory panel confirmed the presence of an RSV infection, promoting the administration of breathing treatment with albuterol and ipratropium bromide. The patient was admitted for dehydration and was started on ½ normal saline/potassium chloride 20 mEq at 40 mL/hr. Additionally, her home medication regimen was resumed to minimize the risk of seizures. Given the patient's complications and increased risk of seizure, she was transferred to higher-level care where her status improved after the placement of a percutaneous endoscopic gastrostomy (PEG). This case underscores the complexities involved in managing patients with DS, particularly when complicated by respiratory illness and electrolyte imbalances that can lower the seizure threshold. This patient received a combination of diet and medications to prevent seizures, as well as allow for recovery and correction of the underlying metabolic acidosis. The transfer to a higher level of care in this case was necessary to allow for the specialized resources and expertise needed to handle this case.
Collapse
Affiliation(s)
- Nga N Tran
- Simulation Center, Edward Via College of Osteopathic Medicine, Auburn, USA
| | - James Liu
- Medicine, Kirksville College of Osteopathic Medicine, Kirksville, USA
| | | | - David Flowers
- Pediatrics, Piedmont Columbus Hospital, Columbus, USA
| |
Collapse
|
5
|
O'Connor EC, Kambara K, Bertrand D. Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery. Expert Opin Drug Discov 2024; 19:173-187. [PMID: 37850233 DOI: 10.1080/17460441.2023.2270902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Introduced about 50 years ago, the model of Xenopus oocytes for the expression of recombinant proteins has gained a broad spectrum of applications. The authors herein review the benefits brought from using this model system, with a focus on modeling neurological disease mechanisms and application to drug discovery. AREAS COVERED Using multiple examples spanning from ligand gated ion channels to transporters, this review presents, in the light of the latest publications, the benefits offered from using Xenopus oocytes. Studies range from the characterization of gene mutations to the discovery of novel treatments for disorders of the central nervous system (CNS). EXPERT OPINION Development of new drugs targeting CNS disorders has been marked by failures in the translation from preclinical to clinical studies. As progress in genetics and molecular biology highlights large functional differences arising from a single to a few amino acid exchanges, the need for drug screening and functional testing against human proteins is increasing. The use of Xenopus oocytes to enable precise modeling and characterization of clinically relevant genetic variants constitutes a powerful model system that can be used to inform various aspects of CNS drug discovery and development.
Collapse
Affiliation(s)
- Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience & Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | | | | |
Collapse
|
6
|
Chancey JH, Ahmed AA, Guillén FI, Ghatpande V, Howard MA. Complex Synaptic and Intrinsic Interactions Disrupt Input/Output Functions in the Hippocampus of Scn1b Knock-Out Mice. J Neurosci 2023; 43:8562-8577. [PMID: 37845033 PMCID: PMC10711733 DOI: 10.1523/jneurosci.0786-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Pathogenic variants in SCN1B have been linked to severe developmental epileptic encephalopathies including Dravet syndrome. Scn1b knock-out (KO) mice model SCN1B loss-of-function (LOF) disorders, demonstrating seizures, developmental delays, and early death. SCN1B encodes the protein β1, an ion channel auxiliary subunit that also has roles in cell adhesion, neurite outgrowth, and gene expression. The goal of this project is to better understand of how loss of Scn1b alters information processing in the brain, resulting in seizures and associated cognitive dysfunction. Using slice electrophysiology in the CA1 region of the hippocampus from male and female Scn1b KO mice and wild-type (WT) littermates, we found that processing of physiologically relevant patterned Schaffer collateral (SC) stimulation produces larger, prolonged depolarizations and increased spiking in KO neurons compared with WTs. KO neurons exhibit enhanced intrinsic excitability, firing more action potentials with current injection. Interestingly, SC stimulation produces smaller, more facilitating excitatory and IPSCs in KO pyramidal neurons, but larger postsynaptic potentials (PSPs) with the same stimulation. We also found reduced intrinsic firing of parvalbumin (PV)-expressing interneurons and disrupted recruitment of both parvalbumin-expressing and somatostatin (SST)-expressing interneurons in response to patterned synaptic stimulation. Neuronal information processing relies on the interplay between synaptic properties, intrinsic properties that amplify or suppress incoming synaptic signals, and firing properties that produce cellular output. We found changes at each of these levels in Scn1b KO pyramidal neurons, resulting in fundamentally altered cellular information processing in the hippocampus that likely contributes to the complex phenotypes of SCN1B-linked epileptic encephalopathies.SIGNIFICANCE STATEMENT Genetic developmental epileptic encephalopathies have limited treatment options, in part because of our lack of understanding of how genetic changes result in dysfunction at the cellular and circuit levels. SCN1B is a gene linked to Dravet syndrome and other developmental epileptic encephalopathies, and Scn1b knock-out (KO) mice phenocopy the human disease, allowing us to study underlying neurophysiological changes. Here, we found changes at all levels of neuronal information processing in brains lacking Scn1b, including intrinsic excitability, synaptic properties, and synaptic integration, resulting in greatly enhanced input/output functions of the hippocampus. Our study shows that loss of Scn1b results in a complex array of cellular and network changes that fundamentally alters information processing in the hippocampus.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Alisha A Ahmed
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Fernando Isaac Guillén
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - Vighnesh Ghatpande
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| | - MacKenzie A Howard
- Departments of Neurology and Neuroscience, Center for Learning and Memory, Dell Medical School, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
7
|
Chen C, Ziobro J, Robinson-Cooper L, Hodges SL, Chen Y, Edokobi N, Lopez-Santiago L, Habig K, Moore C, Minton J, Bramson S, Scheuing C, Daddo N, Štěrbová K, Weckhuysen S, Parent JM, Isom LL. Epilepsy and sudden unexpected death in epilepsy in a mouse model of human SCN1B-linked developmental and epileptic encephalopathy. Brain Commun 2023; 5:fcad283. [PMID: 38425576 PMCID: PMC10903178 DOI: 10.1093/braincomms/fcad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 03/02/2024] Open
Abstract
Voltage-gated sodium channel β1 subunits are essential proteins that regulate excitability. They modulate sodium and potassium currents, function as cell adhesion molecules and regulate gene transcription following regulated intramembrane proteolysis. Biallelic pathogenic variants in SCN1B, encoding β1, are linked to developmental and epileptic encephalopathy 52, with clinical features overlapping Dravet syndrome. A recessive variant, SCN1B-c.265C>T, predicting SCN1B-p.R89C, was homozygous in two children of a non-consanguineous family. One child was diagnosed with Dravet syndrome, while the other had a milder phenotype. We identified an unrelated biallelic SCN1B-c.265C>T patient with a clinically more severe phenotype than Dravet syndrome. We used CRISPR/Cas9 to knock-in SCN1B-p.R89C to the mouse Scn1b locus (Scn1bR89/C89). We then rederived the line on the C57BL/6J background to allow comparisons between Scn1bR89/R89 and Scn1bC89/C89 littermates with Scn1b+/+ and Scn1b-/- mice, which are congenic on C57BL/6J, to determine whether the SCN1B-c.265C>T variant results in loss-of-function. Scn1bC89/C89 mice have normal body weights and ∼20% premature mortality, compared with severely reduced body weight and 100% mortality in Scn1b-/- mice. β1-p.R89C polypeptides are expressed in brain at comparable levels to wild type. In heterologous cells, β1-p.R89C localizes to the plasma membrane and undergoes regulated intramembrane proteolysis similar to wild type. Heterologous expression of β1-p.R89C results in sodium channel α subunit subtype specific effects on sodium current. mRNA abundance of Scn2a, Scn3a, Scn5a and Scn1b was increased in Scn1bC89/C89 somatosensory cortex, with no changes in Scn1a. In contrast, Scn1b-/- mouse somatosensory cortex is haploinsufficient for Scn1a, suggesting an additive mechanism for the severity of the null model via disrupted regulation of another Dravet syndrome gene. Scn1bC89/C89 mice are more susceptible to hyperthermia-induced seizures at post-natal Day 15 compared with Scn1bR89/R89 littermates. EEG recordings detected epileptic discharges in young adult Scn1bC89/C89 mice that coincided with convulsive seizures and myoclonic jerks. We compared seizure frequency and duration in a subset of adult Scn1bC89/C89 mice that had been exposed to hyperthermia at post-natal Day 15 versus a subset that were not hyperthermia exposed. No differences in spontaneous seizures were detected between groups. For both groups, the spontaneous seizure pattern was diurnal, occurring with higher frequency during the dark cycle. This work suggests that the SCN1B-c.265C>T variant does not result in complete loss-of-function. Scn1bC89/C89 mice more accurately model SCN1B-linked variants with incomplete loss-of-function compared with Scn1b-/- mice, which model complete loss-of-function, and thus add to our understanding of disease mechanisms as well as our ability to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Julie Ziobro
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Samantha L Hodges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yan Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nnamdi Edokobi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Luis Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Karl Habig
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Chloe Moore
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joe Minton
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sabrina Bramson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caroline Scheuing
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Noor Daddo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katalin Štěrbová
- Department of Pediatric Neurology, Charles University and Motol Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Universiteitsplein 1 B-2610 Antwerpen, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Universiteitsplein 1 B-2610 Antwerpen, Belgium
- Department of Neurology, Antwerp University Hospital, Universiteitsplein 1B-2610 Antwerpen, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Universiteitsplein 1B-2610 Antwerpen, Belgium
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Banderali U, Moreno M, Martina M. The elusive Na v1.7: From pain to cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:47-69. [PMID: 38007269 DOI: 10.1016/bs.ctm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Voltage-gated sodium channels (Nav) are protein complexes that play fundamental roles in the transmission of signals in the nervous system, at the neuromuscular junction and in the heart. They are mainly present in excitable cells where they are responsible for triggering action potentials. Dysfunctions in Nav ion conduction give rise to a wide range of conditions, including neurological disorders, hypertension, arrhythmia, pain and cancer. Nav family 1 is composed of nine members, named numerically from 1 to 9. A Nax family also exists and is involved in body-fluid homeostasis. Of particular interest is Nav1.7 which is highly expressed in the sensory neurons of the dorsal root ganglions, where it is involved in the propagation of pain sensation. Gain-of-function mutations in Nav1.7 cause pathologies associated with increased pain sensitivity, while loss-of-function mutations cause reduced sensitivity to pain. The last decade has seen considerable effort in developing highly specific Nav1.7 blockers as pain medications, nonetheless, sufficient efficacy has yet to be achieved. Evidence is now conclusively showing that Navs are also present in many types of cancer cells, where they are involved in cell migration and invasiveness. Nav1.7 is anomalously expressed in endometrial, ovarian and lung cancers. Nav1.7 is also involved in Chemotherapy Induced Peripheral Neuropathy (CIPN). We propose that the knowledge and tools developed to study the role of Nav1.7 in pain can be exploited to develop novel cancer therapies. In this chapter, we illustrate the various aspects of Nav1.7 function in pain, cancer and CIPN, and outline therapeutic approaches.
Collapse
Affiliation(s)
- Umberto Banderali
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal road, Ottawa, ON, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal road, Ottawa, ON, Canada
| | - Marzia Martina
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal road, Ottawa, ON, Canada
| |
Collapse
|
9
|
Gschwind T, Zeine A, Raikov I, Markowitz JE, Gillis WF, Felong S, Isom LL, Datta SR, Soltesz I. Hidden behavioral fingerprints in epilepsy. Neuron 2023; 111:1440-1452.e5. [PMID: 36841241 PMCID: PMC10164063 DOI: 10.1016/j.neuron.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a major disorder affecting millions of people. Although modern electrophysiological and imaging approaches provide high-resolution access to the multi-scale brain circuit malfunctions in epilepsy, our understanding of how behavior changes with epilepsy has remained rudimentary. As a result, screening for new therapies for children and adults with devastating epilepsies still relies on the inherently subjective, semi-quantitative assessment of a handful of pre-selected behavioral signs of epilepsy in animal models. Here, we use machine learning-assisted 3D video analysis to reveal hidden behavioral phenotypes in mice with acquired and genetic epilepsies and track their alterations during post-insult epileptogenesis and in response to anti-epileptic drugs. These results show the persistent reconfiguration of behavioral fingerprints in epilepsy and indicate that they can be employed for rapid, automated anti-epileptic drug testing at scale.
Collapse
Affiliation(s)
- Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Ayman Zeine
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan Raikov
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylwia Felong
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Matricardi S, Cestèle S, Trivisano M, Kassabian B, Leroudier N, Vittorini R, Nosadini M, Cesaroni E, Siliquini S, Marinaccio C, Longaretti F, Podestà B, Operto FF, Luisi C, Sartori S, Boniver C, Specchio N, Vigevano F, Marini C, Mantegazza M. Gain of function SCN1A disease-causing variants: Expanding the phenotypic spectrum and functional studies guiding the choice of effective antiseizure medication. Epilepsia 2023; 64:1331-1347. [PMID: 36636894 DOI: 10.1111/epi.17509] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.
Collapse
Affiliation(s)
- Sara Matricardi
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Sandrine Cestèle
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Benedetta Kassabian
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Nathalie Leroudier
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Roberta Vittorini
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Margherita Nosadini
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Elisabetta Cesaroni
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Cristina Marinaccio
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Francesca Longaretti
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Barbara Podestà
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Concetta Luisi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Stefano Sartori
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Clementina Boniver
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù, IRCCS Children's Hospital, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Carla Marini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Massimo Mantegazza
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| |
Collapse
|
11
|
Chancey JH, Ahmed AA, Guillén FI, Howard MA. Complex synaptic and intrinsic interactions disrupt input/output functions in the hippocampus of Scn1b knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538823. [PMID: 37163033 PMCID: PMC10168369 DOI: 10.1101/2023.04.29.538823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the SCN1B gene have been linked to severe developmental epileptic encephalopathies including Dravet syndrome. Scn1b k nock o ut (KO) mice model SCN1B loss of function disorders, demonstrating seizures, developmental delays, and early death. SCN1B encodes the protein β1, an ion channel auxiliary subunit that also has roles in cell adhesion, neurite outgrowth, and gene expression. The goal of this project is to better understand of how loss of β1 alters information processing in the brain, resulting in seizures and associated cognitive dysfunction. Using slice electrophysiology in the CA1 region of the hippocampus from male and female Scn1b KO mice and w ild-type (WT) littermates, we found that processing of physiologically relevant patterned S chaffer c ollateral (SC) stimulation produces larger, prolonged depolarizations and increased spiking in KO neurons compared to WTs. KO neurons exhibit enhanced intrinsic excitability, firing more action potentials with current injection. Interestingly, SC stimulation produces smaller, more facilitating excitatory and inhibitory postsynaptic currents in KO pyramidal neurons, but larger postsynaptic potentials with the same stimulation. We also found reduced intrinsic firing of parvalbumin-expressing interneurons and disrupted recruitment of both parvalbumin- and somatostatin-expressing interneurons in response to patterned synaptic stimulation. Neuronal information processing relies on the interplay between synaptic properties, intrinsic properties that amplify or suppress incoming synaptic signals, and firing properties that produce cellular output. We found changes at each of these levels in Scn1b KO pyramidal neurons, resulting in fundamentally altered information processing in the hippocampus that likely contributes to the complex phenotypes of SCN1B -linked epileptic encephalopathies. Significance statement Genetic developmental epileptic encephalopathies have limited treatment options, in part due to our lack of understanding of how genetic changes result in dysfunction at the cellular and circuit levels. SCN1B is a gene linked to Dravet syndrome and other epileptic encephalopathies, and Scn1b knockout mice phenocopy the human disease, allowing us to study underlying neurophysiological changes. Here we found changes at all levels of neuronal information processing in brains lacking β1, including intrinsic excitability, synaptic properties, and synaptic integration, resulting in greatly enhanced input/output functions of the hippocampus. Our study shows that loss of β1 results in a complex array of cellular and network changes that fundamentally alters information processing in the hippocampus.
Collapse
|
12
|
Alghamdi MA, Al-Eitan LN, Asiri A, Rababa'h DM, Alqahtani SA, Aldarami MS, Alsaeedi MA, Almuidh RS, Alzahrani AA, Sakah AH, El Nashar EM, Otaif MY, Abdel Ghaffar NF. Association of sodium voltage-gated channel genes polymorphisms with epilepsy risk and prognosis in the Saudi population. Ann Med 2022; 54:1938-1951. [PMID: 35801810 PMCID: PMC9367647 DOI: 10.1080/07853890.2022.2096257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Epilepsy is a heterogeneous complex condition that involve the human brain. Genetic predisposition to epilepsy is a fundamental factor of the disorder aetiology. The sodium voltage-gated channel (SCN) genes variants are critical biomarker for the epilepsy development and progression. In this study, we aimed to investigate the association of several SNCs genetic polymorphisms with epilepsy risk and their intrudance of the disease prognosis. METHODS Blood samples were withdrawn from 296 Epilepsy patients in addition to 293 healthy matched participants prior to DNA extraction. PCR-sequencing was used for genotyping analysis. Genotyping outputs were then statistically analysed for genotype/phenotype evaluation. RESULTS Within SCN1A gene we found that the rs6432861 (p = 0.014) was in correlation with the risk of epilepsy. In addition, both rs4667485 and rs1469649 of SCN2A gene were significantly correlated to epilepsy risk for both allelic (4e-4 and 1e-3) and genotypic (1e-3 and 5e-3). Moreover, the haplotype analysis showed that the GATGCTCGGTTTCGCTACGCA haplotype of SCN2A gene was significantly related to epilepsy increased risk, p = 6e-3, OR (CI) = 2.02 (1.23-3.31). In relevant to our finding, many of the investigated SCNs variants in the current study were related to several clinical features of epilepsy. CONCLUSION In light of our results, we infer that SCN genes polymorphisms are strong candidates for epilepsy development and progression. Furthermore, these variant are essential for the disorder prognosis and medications outcomes.Key MessagesGenetic polymorphisms of sodium channels SCN1A, SCN2A and SCN3A were found to be associated with the risk of epilepsy.SCN1B polymorphisms were found to be correlated to epilepsy reduced risk.SCNs variants are involved in the epilepsy prognosis and response to treatment.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Sultan A Alqahtani
- Neurology Department, Neuroscience Centre, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed S Aldarami
- Neurology Department, Neuroscience Centre, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Manar A Alsaeedi
- Neurology Department, Neuroscience Centre, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Raghad S Almuidh
- Neurology Department, Neuroscience Centre, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdulbari A Alzahrani
- Neurology Department, Neuroscience Centre, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ahmad H Sakah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mansour Y Otaif
- Department of Pediatric, Neurology section, Abha Maternity and Childern Hospital, Abha, Saudi Arabia
| | - Nawal F Abdel Ghaffar
- Neurology Department, Kasr Al Ainy Hospital, Faculty of Medicine, Cairo University, Giza, Egypt.,Neurology Department, Aseer Central Hospital, Abha, Saudi Arabia
| |
Collapse
|
13
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Zhu Z, Bolt E, Newmaster K, Osei-Bonsu W, Cohen S, Cuddapah VA, Gupta S, Paudel S, Samanta D, Dang LT, Carney PR, Naik S. SCN1B Genetic Variants: A Review of the Spectrum of Clinical Phenotypes and a Report of Early Myoclonic Encephalopathy. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1507. [PMID: 36291443 PMCID: PMC9600564 DOI: 10.3390/children9101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Background: Pathogenic variants in SCN1B, the gene encoding voltage-gated sodium channel b1/b1B subunits are associated with a spectrum of epileptic disorders. This study describes a child with early myoclonic encephalopathy and a compound heterozygous variant in the SCN1B gene (p.Arg85Cys and c.3G>C/p.Met1), along with the child’s clinical response to anti-seizure medications (ASMs) and the ketogenic diet. We reviewed the current clinical literature pertinent to SCN1B-related epilepsy. Methods: We described the evaluation and management of a patient with SCN1B-related developmental and epileptic encephalopathy (DEE). We used the Medline and Pubmed databases to review the various neurological manifestations associated with SCN1B genetic variants, and summarize the functional studies performed on SCN1B variants. Results: We identified 20 families and six individuals (including the index case described herein) reported to have SCN1B-related epilepsy. Individuals with monoallelic pathogenic variants in SCN1B often present with genetic epilepsy with febrile seizures plus (GEFS+), while those with biallelic pathogenic variants may present with developmental and epileptic encephalopathy (DEE). Individuals with DEE present with seizures of various semiologies (commonly myoclonic seizures) and status epilepticus at early infancy and are treated with various antiseizure medications. In our index case, adjunctive fenfluramine was started at 8 months of age at 0.2 mg/kg/day with gradual incremental increases to the final dose of 0.7 mg/kg/day over 5 weeks. Fenfluramine was effective in the treatment of seizures, resulting in a 50% reduction in myoclonic seizures, status epilepticus, and generalized tonic-clonic seizures, as well as a 70−90% reduction in focal seizures, with no significant adverse effects. Following the initiation of fenfluramine at eight months of age, there was also a 50% reduction in the rate of hospitalizations. Conclusions: SCN1B pathogenic variants cause epilepsy and neurodevelopmental impairment with variable expressivity and incomplete penetrance. The severity of disease is associated with the zygosity of the pathogenic variants. Biallelic variants in SCN1B can result in early myoclonic encephalopathy, and adjunctive treatment with fenfluramine may be an effective treatment for SCN1B-related DEE. Further research on the efficacy and safety of using newer ASMs, such as fenfluramine in patients under the age of 2 years is needed.
Collapse
Affiliation(s)
- Zahra Zhu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Elizabeth Bolt
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Kyra Newmaster
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Wendy Osei-Bonsu
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Stacey Cohen
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vishnu Anand Cuddapah
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sita Paudel
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| | - Debopam Samanta
- Division of Pediatric Neurology, Arkansas Children’s Hospital, Little Rock, AR 72202, USA
| | - Louis T. Dang
- Department of Pediatrics, Division of Pediatric Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul R. Carney
- Pediatric Neurology Division, University of Missouri Health Care, Columbia, MO 65212, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Riva A, D'Onofrio G, Amadori E, Tripodi D, Balagura G, Iurilli V, Vari MS, Verrotti A, Striano P. Current and promising therapeutic options for Dravet syndrome. Expert Opin Pharmacother 2022; 23:1727-1736. [PMID: 36124778 DOI: 10.1080/14656566.2022.2127089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dravet Syndrome (DS) is a developmental and epileptic encephalopathy carrying high-level psychobehavioral burdens. Although the disease has been known for almost 4 decades, and despite significant progress in the understanding of its physiopathology and natural course, the pharmacological treatment leaves patients and caregivers with significant unmet needs. This review provides a summary of the current and promising therapeutic options for DS. AREAS COVERED PubMed and ClinicalTrials.gov were screened using 'Dravet Syndrome' OR 'DS,' AND 'pharmacotherapy,' AND 'treatments.' Randomized clinical trials, structured reviews, and meta-analyses were selected for in-human application of well-known anti-seizure medications; while in-vivo experiments on models of DS were selected to evaluate the potential of new therapeutic strategies. EXPERT OPINION The search for new pharmacological treatment options is led by the need for care and defeat of the natural course of the disease, an aspect still largely neglected by the available therapeutic strategies. Yet, the last 6 years have led to a climate of increased interest and availability of clinical trials. Particularly, gene therapy could hopefully prevent DS evolution by directly relieving the specific genetic defect, although the possibility of off-target editing, and the uneasy administration route have still largely prevented its use.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Domenico Tripodi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU), de Boelelaan, Amsterdam, Netherlands
| | | | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Genetic therapeutic advancements for Dravet Syndrome. Epilepsy Behav 2022; 132:108741. [PMID: 35653814 DOI: 10.1016/j.yebeh.2022.108741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
Dravet Syndrome is a genetic epileptic syndrome characterized by severe and intractable seizures associated with cognitive, motor, and behavioral impairments. The disease is also linked with increased mortality mainly due to sudden unexpected death in epilepsy. Over 80% of cases are due to a de novo mutation in one allele of the SCN1A gene, which encodes the α-subunit of the voltage-gated ion channel NaV1.1. Dravet Syndrome is usually refractory to antiepileptic drugs, which only alleviate seizures to a small extent. Viral, non-viral genetic therapy, and gene editing tools are rapidly enhancing and providing new platforms for more effective, alternative medicinal treatments for Dravet syndrome. These strategies include gene supplementation, CRISPR-mediated transcriptional activation, and the use of antisense oligonucleotides. In this review, we summarize our current knowledge of novel genetic therapies that are currently under development for Dravet syndrome.
Collapse
|
17
|
Ramos-Mondragon R, Edokobi N, Hodges SL, Wang S, Bouza AA, Canugovi C, Scheuing C, Juratli L, Abel WR, Noujaim SF, Madamanchi NR, Runge MS, Lopez-Santiago LF, Isom LL. Neonatal Scn1b-null mice have sinoatrial node dysfunction, altered atrial structure, and atrial fibrillation. JCI Insight 2022; 7:152050. [PMID: 35603785 PMCID: PMC9220823 DOI: 10.1172/jci.insight.152050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Loss-of-function (LOF) variants in SCN1B, encoding the voltage-gated sodium channel β1/β1B subunits, are linked to neurological and cardiovascular diseases. Scn1b-null mice have spontaneous seizures and ventricular arrhythmias and die by approximately 21 days after birth. β1/β1B Subunits play critical roles in regulating the excitability of ventricular cardiomyocytes and maintaining ventricular rhythmicity. However, whether they also regulate atrial excitability is unknown. We used neonatal Scn1b-null mice to model the effects of SCN1B LOF on atrial physiology in pediatric patients. Scn1b deletion resulted in altered expression of genes associated with atrial dysfunction. Scn1b-null hearts had a significant accumulation of atrial collagen, increased susceptibility to pacing induced atrial fibrillation (AF), sinoatrial node (SAN) dysfunction, and increased numbers of cholinergic neurons in ganglia that innervate the SAN. Atropine reduced the incidence of AF in null animals. Action potential duration was prolonged in null atrial myocytes, with increased late sodium current density and reduced L-type calcium current density. Scn1b LOF results in altered atrial structure and AF, demonstrating the critical role played by Scn1b in atrial physiology during early postnatal mouse development. Our results suggest that SCN1B LOF variants may significantly impact the developing pediatric heart.
Collapse
Affiliation(s)
| | | | | | | | | | - Chandrika Canugovi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | - Sami F. Noujaim
- Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marschall S. Runge
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Lori L. Isom
- Department of Pharmacology and
- Department of Neurology and
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Yadav R, Shah S, Bhandari B, Marasini K, Mandal P, Murarka H, Pandey AK, Sharma Paudel B. Patient with Dravet syndrome: A case report. Clin Case Rep 2022; 10:e05840. [PMID: 35540719 PMCID: PMC9069364 DOI: 10.1002/ccr3.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/17/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Dravet syndrome is rare genetic epilepsy syndrome and epileptic encephalopathy. The patient initially has normal developmental profile with plateau or regression that begins after seizure onset. We report a case of two-year-old child diagnosed as dravet syndrome with moderate cerebral atrophy and ventricular dilatation as rare MRI finding.
Collapse
Affiliation(s)
- Rukesh Yadav
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Sangam Shah
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Bibek Bhandari
- Department of Internal MedicineMaharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Kundan Marasini
- Department of RadiologyMaharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Prince Mandal
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Hritik Murarka
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | - Anuj Kumar Pandey
- Maharajgunj Medical CampusInstitute of MedicineTribhuvan UniversityMaharajgunjNepal
| | | |
Collapse
|
19
|
Xie S, Yang J, Huang S, Fan Y, Xu T, He J, Guo J, Ji X, Wang Z, Li P, Chen J, Zhang Y. Disrupted myelination network in the cingulate cortex of Parkinson's disease. IET Syst Biol 2022; 16:98-119. [PMID: 35394697 PMCID: PMC9290774 DOI: 10.1049/syb2.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The cingulate cortex is part of the conserved limbic system, which is considered as a hub of emotional and cognitive control. Accumulating evidence suggested that involvement of the cingulate cortex is significant for cognitive impairment of Parkinson's disease (PD). However, mechanistic studies of the cingulate cortex in PD pathogenesis are limited. Here, transcriptomic and regulatory network analyses were conducted for the cingulate cortex in PD. Enrichment and clustering analyses showed that genes involved in regulation of membrane potential and glutamate receptor signalling pathway were upregulated. Importantly, myelin genes and the oligodendrocyte development pathways were markedly downregulated, indicating disrupted myelination in PD cingulate cortex. Cell‐type‐specific signatures revealed that myelinating oligodendrocytes were the major cell type damaged in the PD cingulate cortex. Furthermore, downregulation of myelination pathways in the cingulate cortex were shared and validated in another independent RNAseq cohort of dementia with Lewy bodies (DLB). In combination with ATACseq data, gene regulatory networks (GRNs) were further constructed for 32 transcription factors (TFs) and 466 target genes among differentially expressed genes (DEGs) using a tree‐based machine learning algorithm. Several transcription factors, including Olig2, Sox8, Sox10, E2F1, and NKX6‐2, were highlighted as key nodes in a sub‐network, which control many overlapping downstream targets associated with myelin formation and gliogenesis. In addition, the authors have validated a subset of DEGs by qPCRs in two PD mouse models. Notably, seven of these genes,TOX3, NECAB2 NOS1, CAPN3, NR4A2, E2F1 and FOXP2, have been implicated previously in PD or neurodegeneration and are worthy of further studies as novel candidate genes. Together, our findings provide new insights into the role of remyelination as a promising new approach to treat PD after demyelination.
Collapse
Affiliation(s)
- Song Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiajun Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenghui Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanlan Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Xu
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Jiangshuang He
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Guo
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Zhibo Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Yi Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Ding J, Wang L, Jin Z, Qiang Y, Li W, Wang Y, Zhu C, Jiang S, Xiao L, Hao X, Hu X, Li X, Wang F, Sun T. Do All Roads Lead to Rome? Genes Causing Dravet Syndrome and Dravet Syndrome-Like Phenotypes. Front Neurol 2022; 13:832380. [PMID: 35359639 PMCID: PMC8961694 DOI: 10.3389/fneur.2022.832380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Dravet syndrome (DS) is a severe epileptic encephalopathy mainly caused by haploinsufficiency of the gene SCN1A, which encodes the voltage-gated sodium channel NaV1. 1 in the brain. While SCN1A mutations are known to be the primary cause of DS, other genes that may cause DS are poorly understood. Several genes with pathogenic mutations result in DS or DS-like phenotypes, which may require different drug treatment approaches. Therefore, it is urgent for clinicians, especially epilepsy specialists to fully understand these genes involved in DS in addition to SCN1A. Particularly for healthcare providers, a deep understanding of these pathogenic genes is useful in properly selecting and adjusting drugs in a more effective and timely manner. Objective The purpose of this study was to identify genes other than SCN1A that may also cause DS or DS-like phenotypes. Methods A comprehensive search of relevant Dravet syndrome and severe myoclonic epilepsy in infancy was performed in PubMed, until December 1, 2021. Two independent authors performed the screening for potentially eligible studies. Disagreements were decided by a third, more professional researcher or by all three. The results reported by each study were narratively summarized. Results A PubMed search yielded 5,064 items, and other sources search 12 records. A total of 29 studies published between 2009 and 2021 met the inclusion criteria. Regarding the included articles, seven studies on PCDH19, three on SCN2A, two on SCN8A, five on SCN1B, two on GABRA1, three on GABRB3, three on GABRG2, and three on STXBP1 were included. Only one study was recorded for CHD2, CPLX1, HCN1 and KCNA2, respectively. It is worth noting that a few articles reported on more than one epilepsy gene. Conclusion DS is not only identified in variants of SCN1A, but other genes such as PCDH19, SCN2A, SCN8A, SCN1B, GABRA1, GABRB3, GABRG2, KCNA2, CHD2, CPLX1, HCN1A, STXBP1 can also be involved in DS or DS-like phenotypes. As genetic testing becomes more widely available, more genes associated with DS and DS-like phenotypes may be identified and gene-based diagnosis of subtypes of phenotypes in this spectrum may improve the management of these diseases in the future.
Collapse
Affiliation(s)
- Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhe Jin
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Hao
- Department of Neurology, First Affiliated Hospital of Zhengzhou Universiy, Zhengzhou, China
| | - Xulei Hu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xinxiao Li
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Feng Wang
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- *Correspondence: Tao Sun
| |
Collapse
|
21
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
22
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav 2021; 121:106428. [PMID: 31400936 DOI: 10.1016/j.yebeh.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022]
Abstract
Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.
Collapse
|
24
|
Alsaloum M, Labau JIR, Sosniak D, Zhao P, Almomani R, Gerrits M, Hoeijmakers JGJ, Lauria G, Faber CG, Waxman SG, Dib-Hajj S. A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. J Neurophysiol 2021; 126:827-839. [PMID: 34320850 DOI: 10.1152/jn.00184.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small fiber neuropathy (SFN) is a common condition affecting thinly myelinated Aδ and unmyelinated C fibers, often resulting in excruciating pain and dysautonomia. SFN has been associated with several conditions, but a significant number of cases have no discernible cause. Recent genetic studies have identified potentially pathogenic gain-of-function mutations in several the pore-forming voltage-gated sodium channel α subunits (NaVs) in a subset of patients with SFN, but the auxiliary sodium channel β subunits have been less implicated in the development of the disease. β subunits modulate NaV trafficking and gating, and several mutations have been linked to epilepsy and cardiac dysfunction. Recently, we provided the first evidence for the contribution of a mutation in the β2-subunit to pain in human painful diabetic neuropathy. Here, we provide the first evidence for the involvement of a sodium channel β subunit mutation in the pathogenesis of SFN with no other known causes. We show, through current-clamp analysis, that the newly-identified Y69H variant of the β2 subunit induces neuronal hyperexcitability in dorsal root ganglion neurons, lowering the threshold for action potential firing and allowing for increased repetitive action potential spiking. Underlying the hyperexcitability induced by the β2-Y69H variant, we demonstrate an upregulation in tetrodotoxin-sensitive, but not tetrodotoxin-resistant sodium currents. This provides the first evidence for the involvement of β2 subunits in SFN and strengthens the link between sodium channel β subunits and the development of neuropathic pain in humans.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States.,Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Daniel Sosniak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Rowida Almomani
- Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands.,Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco," University of Milan, Milan, Italy
| | - Catherina G Faber
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
25
|
Abstract
Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/−) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/− mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/− mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/− mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/− mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.
Collapse
|
26
|
Scala M, Efthymiou S, Sultan T, De Waele J, Panciroli M, Salpietro V, Maroofian R, Striano P, Van Petegem F, Houlden H, Bosmans F. Homozygous SCN1B variants causing early infantile epileptic encephalopathy 52 affect voltage-gated sodium channel function. Epilepsia 2021; 62:e82-e87. [PMID: 33901312 PMCID: PMC8585727 DOI: 10.1111/epi.16913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
We identified nine patients from four unrelated families harboring three biallelic variants in SCN1B (NM_001037.5: c.136C>T; p.[Arg46Cys], c.178C>T; p.[Arg60Cys], and c.472G>A; p.[Val158Met]). All subjects presented with early infantile epileptic encephalopathy 52 (EIEE52), a rare, severe developmental and epileptic encephalopathy featuring infantile onset refractory seizures followed by developmental stagnation or regression. Because SCN1B influences neuronal excitability through modulation of voltage-gated sodium (NaV ) channel function, we examined the effects of human SCN1BR46C (β1R46C ), SCN1BR60C (β1R60C ), and SCN1BV158M (β1V158M ) on the three predominant brain NaV channel subtypes NaV 1.1 (SCN1A), NaV 1.2 (SCN2A), and NaV 1.6 (SCN8A). We observed a shift toward more depolarizing potentials of conductance-voltage relationships (NaV 1.2/β1R46C , NaV 1.2/β1R60C , NaV 1.6/β1R46C , NaV 1.6/β1R60C , and NaV 1.6/β1V158M ) and channel availability (NaV 1.1/β1R46C , NaV 1.1/β1V158M , NaV 1.2/β1R46C , NaV 1.2/β1R60C , and NaV 1.6/β1V158M ), and detected a slower recovery from fast inactivation for NaV 1.1/β1V158M . Combined with modeling data indicating perturbation-induced structural changes in β1, these results suggest that the SCN1B variants reported here can disrupt normal NaV channel function in the brain, which may contribute to EIEE52.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health Lahore, Lahore, Pakistan
| | - Jolien De Waele
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Marta Panciroli
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, G. Gaslini Institute, Genoa, Italy
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Current Pharmacologic Strategies for Treatment of Intractable Epilepsy in Children. Int Neurourol J 2021; 25:S8-18. [PMID: 34053206 PMCID: PMC8171244 DOI: 10.5213/inj.2142166.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022] Open
Abstract
Epileptic encephalopathy (EE) is a devastating pediatric disease that features medically resistant seizures, which can contribute to global developmental delays. Despite technological advancements in genetics, the neurobiological mechanisms of EEs are not fully understood, leaving few therapeutic options for affected patients. In this review, we introduce the most common EEs in pediatrics (i.e., Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome) and their molecular mechanisms that cause excitation/inhibition imbalances. We then discuss some of the essential molecules that are frequently dysregulated in EEs. Specifically, we explore voltage-gated ion channels, synaptic transmission-related proteins, and ligand-gated ion channels in association with the pathophysiology of Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome. Finally, we review currently available antiepileptic drugs used to treat seizures in patients with EEs. Since these patients often fail to achieve seizure relief even with the combination therapy, further extensive research efforts to explore the involved molecular mechanisms will be required to develop new drugs for patients with intractable epilepsy.
Collapse
|
28
|
Al-Ward H, Liu CY, Liu N, Shaher F, Al-Nusaif M, Mao J, Xu H. Voltage-Gated Sodium Channel β1 Gene: An Overview. Hum Hered 2021; 85:101-109. [PMID: 34038903 DOI: 10.1159/000516388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voltage-gated sodium channels are protein complexes composed of 2 subunits, namely, pore-forming α- and regulatory β-subunits. A β-subunit consists of 5 proteins encoded by 4 genes (i.e., SCN1B-SCN4B). SUMMARY β1-Subunits regulate sodium ion channel functions, including gating properties, subcellular localization, and kinetics. Key Message: Sodium channel β1- and its variant β1B-subunits are encoded by SCN1B. These variants are associated with many human diseases, such as epilepsy, Brugada syndrome, Dravet syndrome, and cancers. On the basis of previous research, we aimed to provide an overview of the structure, expression, and involvement of SCN1B in physiological processes and focused on its role in diseases.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Chun-Yang Liu
- Department of Biochemistry and Molecular Biology, Ankang University School of Medicine, Ankang, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Fahmi Shaher
- Department of Pathophysiology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Murad Al-Nusaif
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Jing Mao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| |
Collapse
|
29
|
Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 2021; 62:1546-1558. [PMID: 33982289 DOI: 10.1111/epi.16916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H /F+ mice. Spontaneous epileptiform events in Fhf1R52H /+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS All Fhf1R52H /+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H /+ mice prior to seizure. SIGNIFICANCE The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Yue Liu
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Vasilisa Iatckova
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Ying Xie
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| |
Collapse
|
30
|
Chen W, Luo B, Gao N, Li H, Wang H, Li L, Cui W, Zhang L, Sun D, Liu F, Dong Z, Ren X, Zhang H, Su H, Xiong WC, Mei L. Neddylation stabilizes Nav1.1 to maintain interneuron excitability and prevent seizures in murine epilepsy models. J Clin Invest 2021; 131:136956. [PMID: 33651714 DOI: 10.1172/jci136956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
The excitability of interneurons requires Nav1.1, the α subunit of the voltage-gated sodium channel. Nav1.1 deficiency and mutations reduce interneuron excitability, a major pathological mechanism for epilepsy syndromes. However, the regulatory mechanisms of Nav1.1 expression remain unclear. Here, we provide evidence that neddylation is critical to Nav1.1 stability. Mutant mice lacking Nae1, an obligatory component of the E1 ligase for neddylation, in parvalbumin-positive interneurons (PVINs) exhibited spontaneous epileptic seizures and premature death. Electrophysiological studies indicate that Nae1 deletion reduced PVIN excitability and GABA release and consequently increased the network excitability of pyramidal neurons (PyNs). Further analysis revealed a reduction in sodium-current density, not a change in channel property, in mutant PVINs and decreased Nav1.1 protein levels. These results suggest that insufficient neddylation in PVINs reduces Nav1.1 stability and thus the excitability of PVINs; the ensuing increased PyN activity causes seizures in mice. Consistently, Nav1.1 was found reduced by proteomic analysis that revealed abnormality in synapses and metabolic pathways. Our findings describe a role of neddylation in maintaining Nav1.1 stability for PVIN excitability and reveal what we believe is a new mechanism in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Haiwen Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lei Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lei Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fang Liu
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Huabo Su
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Pasquetti E, Lo Bianco M, Sullo F, Patanè F, Sciuto L, Polizzi A, Praticò AD, Zanghì A, Falsaperla R. SCN1B Gene: A Close Relative to SCN1A. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractOne of the first reported genes associated with epilepsy was SCN1B, which encodes for β-subunit of voltage-gated sodium channel of excitable cells and it is critical for neuronal function in both central and peripheral nervous system. β-subunits modulate the expression levels and functional properties of sodium channels and though their immunoglobulin domains may mediate interactions between channels and other proteins. Traditionally, SCN1B mutations were associated with generalized epilepsy with febrile seizures plus, a familial epilepsy syndrome characterized by heterogeneous phenotypes including febrile seizures (FS), febrile seizures plus (FS + ), mild generalized epilepsies, and severe epileptic encephalopathies. Throughout the years, SCN1B mutations have been also associated with Dravet syndrome and, more recently, with developmental and epileptic encephalopathies, expanding the spectrum associated with this gene mutations to more severe phenotypes.
Collapse
Affiliation(s)
- Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
32
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
34
|
Bouza AA, Edokobi N, Hodges SL, Pinsky AM, Offord J, Piao L, Zhao YT, Lopatin AN, Lopez-Santiago LF, Isom LL. Sodium channel β1 subunits participate in regulated intramembrane proteolysis-excitation coupling. JCI Insight 2021; 6:141776. [PMID: 33411695 PMCID: PMC7934843 DOI: 10.1172/jci.insight.141776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. β1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of β1 by BACE1 and γ-secretase and show that β1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by β1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks β1-ICD signaling, suggesting that the β1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel β1 subunits.
Collapse
Affiliation(s)
- Alexandra A Bouza
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nnamdi Edokobi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Samantha L Hodges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexa M Pinsky
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James Offord
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lin Piao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yan-Ting Zhao
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anatoli N Lopatin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Luis F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
36
|
Hull JM, O’Malley HA, Chen C, Yuan Y, Denomme N, Bouza AA, Anumonwo C, Lopez‐Santiago LF, Isom LL. Excitatory and inhibitory neuron defects in a mouse model of Scn1b-linked EIEE52. Ann Clin Transl Neurol 2020; 7:2137-2149. [PMID: 32979291 PMCID: PMC7664274 DOI: 10.1002/acn3.51205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Human variants in voltage-gated sodium channel (VGSC) α and β subunit genes are linked to developmental and epileptic encephalopathies (DEEs). Inherited, biallelic, loss-of-function variants in SCN1B, encoding the β1/β1B subunits, are linked to early infantile DEE (EIEE52). De novo, monoallelic variants in SCN1A (Nav1.1), SCN2A (Nav1.2), SCN3A (Nav1.3), and SCN8A (Nav1.6) are also linked to DEEs. While these VGSC-linked DEEs have similar presentations, they have diverse mechanisms of altered neuronal excitability. Mouse models have suggested that Scn2a-, Scn3a-, and Scn8a-linked DEE variants are, in general, gain of function, resulting in increased persistent or resurgent sodium current (INa ) and pyramidal neuron hyperexcitability. In contrast, Scn1a-linked DEE variants, in general, are loss-of-function, resulting in decreased INa and hypoexcitability of fast-spiking interneurons. VGSC β1 subunits associate with Nav1.1, Nav1.2, Nav1.3, and Nav1.6 and are expressed throughout the brain, raising the possibility that insults to both pyramidal and interneuron excitability may drive EIEE52 pathophysiology. METHODS We investigated excitability defects in pyramidal and parvalbumin-positive (PV +) interneurons in the Scn1b-/- model of EIEE52. We also used Scn1bFL/FL mice to delete Scn1b in specific neuronal populations. RESULTS Scn1b-/- cortical PV + interneurons were hypoexcitable, with reduced INa density. Scn1b-/- cortical pyramidal neurons had population-specific changes in excitability and impaired INa density. Scn1b deletion in PV + neurons resulted in 100% lethality, whereas deletion in Emx1 + or Camk2a + neurons did not affect survival. INTERPRETATION This work suggests that SCN1B-linked DEE variants impact both excitatory and inhibitory neurons, leading to the increased severity of EIEE52 relative to other DEEs.
Collapse
Affiliation(s)
- Jacob M. Hull
- Neuroscience Graduate ProgramUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | | | - Chunling Chen
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Yukun Yuan
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Nicholas Denomme
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Alexandra A. Bouza
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Charles Anumonwo
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | | | - Lori L. Isom
- Neuroscience Graduate ProgramUniversity of Michigan Medical SchoolAnn ArborMI48109USA
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| |
Collapse
|
37
|
Zulfiqar Ali Q, Marques P, Selvarajah A, Tabarestani S, Sadoway T, Andrade DM. Starting stiripentol in adults with Dravet syndrome? Watch for ammonia and carnitine. Epilepsia 2020; 61:2435-2441. [DOI: 10.1111/epi.16684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Quratulain Zulfiqar Ali
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
| | - Paula Marques
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
| | - Arunan Selvarajah
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
- Institute of Medical Science University of Toronto Toronto ON Canada
| | - Sepideh Tabarestani
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
| | - Tara Sadoway
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
| | - Danielle M. Andrade
- Epilepsy Genetics Research Program Krembil Brain Institute Toronto Western Hospital University Health Network University of Toronto Toronto ON Canada
- Institute of Medical Science University of Toronto Toronto ON Canada
- Division of Neurology University Health Network University of Toronto Toronto ON Canada
| |
Collapse
|
38
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
39
|
Bouza AA, Philippe JM, Edokobi N, Pinsky AM, Offord J, Calhoun JD, Lopez-Florán M, Lopez-Santiago LF, Jenkins PM, Isom LL. Sodium channel β1 subunits are post-translationally modified by tyrosine phosphorylation, S-palmitoylation, and regulated intramembrane proteolysis. J Biol Chem 2020; 295:10380-10393. [PMID: 32503841 PMCID: PMC7383382 DOI: 10.1074/jbc.ra120.013978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated sodium channel (VGSC) β1 subunits are multifunctional proteins that modulate the biophysical properties and cell-surface localization of VGSC α subunits and participate in cell-cell and cell-matrix adhesion, all with important implications for intracellular signal transduction, cell migration, and differentiation. Human loss-of-function variants in SCN1B, the gene encoding the VGSC β1 subunits, are linked to severe diseases with high risk for sudden death, including epileptic encephalopathy and cardiac arrhythmia. We showed previously that β1 subunits are post-translationally modified by tyrosine phosphorylation. We also showed that β1 subunits undergo regulated intramembrane proteolysis via the activity of β-secretase 1 and γ-secretase, resulting in the generation of a soluble intracellular domain, β1-ICD, which modulates transcription. Here, we report that β1 subunits are phosphorylated by FYN kinase. Moreover, we show that β1 subunits are S-palmitoylated. Substitution of a single residue in β1, Cys-162, to alanine prevented palmitoylation, reduced the level of β1 polypeptides at the plasma membrane, and reduced the extent of β1-regulated intramembrane proteolysis, suggesting that the plasma membrane is the site of β1 proteolytic processing. Treatment with the clathrin-mediated endocytosis inhibitor, Dyngo-4a, re-stored the plasma membrane association of β1-p.C162A to WT levels. Despite these observations, palmitoylation-null β1-p.C162A modulated sodium current and sorted to detergent-resistant membrane fractions normally. This is the first demonstration of S-palmitoylation of a VGSC β subunit, establishing precedence for this post-translational modification as a regulatory mechanism in this protein family.
Collapse
Affiliation(s)
- Alexandra A Bouza
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nnamdi Edokobi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexa M Pinsky
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James Offord
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey D Calhoun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mariana Lopez-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Luis F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Cardoso FC. Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 2020; 181:114107. [PMID: 32579958 DOI: 10.1016/j.bcp.2020.114107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Venom peptides are amongst the most exquisite group of bioactive molecules able to alter the normal physiology of organisms. These bioactive peptides penetrate tissues and blood vessels to encounter a number of receptors and ion channels to which they bind with high affinity and execute modulatory activities. Arachnid is the most diverse class of venomous animals often rich in peptides modulating voltage-gated sodium (NaV), calcium (CaV), and potassium (KV) channels. Spider venoms, in particular, contain potent and selective peptides targeting these channels, with a few displaying interesting multi-target properties for NaV and CaV channels underlying disease mechanisms such as in neuropathic pain, motor neuron disease and cancer. The elucidation of the pharmacology and structure-function properties of these venom peptides are invaluable for the development of effective drugs targeting NaV and CaV channels. This perspective discusses spider venom peptides displaying multi-target properties to modulate NaV and CaV channels in regard to their pharmacological features, structure-function relationships and potential to become the next generation of effective drugs to treat neurological disorders and other multi-ion channels related diseases.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St Lucia, QLD AU 4072, Australia
| |
Collapse
|
41
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
42
|
Mei D, Cetica V, Marini C, Guerrini R. Dravet syndrome as part of the clinical and genetic spectrum of sodium channel epilepsies and encephalopathies. Epilepsia 2020; 60 Suppl 3:S2-S7. [PMID: 31904125 DOI: 10.1111/epi.16054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Dravet syndrome is the most studied form of genetic epilepsy. It has now been clarified that the clinical spectrum of the syndrome does not have firmly established boundaries. The core phenotype is characterized by intractable, mainly clonic, seizures precipitated by increased body temperature with onset in the first year of life and subsequent appearance of multiple seizures types still precipitated by, but not confined to, hyperthermia. Cognitive impairment is invariably present when the full syndrome is manifested. This complex of symptoms is related to mutations in the SCN1A gene, which are often de novo and constitutional but can also be inherited from a parent with less severe clinical manifestations or be present as somatic mosaicism. Inheritance from less severely affected individuals, at times only having experienced a few febrile seizures, and differences in severity, even within the same family, with a subset of patients only showing fragments of the syndrome, testify to a remarkable phenotypic heterogeneity as far as severity, but less so clinical phenomenology, are concerned. This characteristic, together with underascertainment of SCN1A mutations due to human errors or technical limitations in uncovering alternative pathogenic molecular mechanisms, such as genomic rearrangements or poison exons, has contributed to making clinicians and geneticists suspicious that Dravet syndrome may be caused by more than one gene. This opinion has been further amplified by the description of other genetic disorders, such as PCDH19- or CHD2-related epilepsy, whose phenotypes have included fragments of the Dravet phenotypic spectrum, and by the suboptimal characterization of phenotypes associated with mutations in SCN1B, HCN1, KCN2A, GABRA1, GABRG2, and STXBP1. The SCN1A gene-Dravet syndrome association is in our opinion highly specific. However, because the syndrome spectrum is wide, fragments of it can at times also be manifested in other genetic epilepsy syndromes, thereby leading to overdiagnosis of Dravet syndrome beyond SCN1A. Dravet syndrome is in turn a severe SCN1A phenotype within a continuum of SCN1A-related clinical phenomenology.
Collapse
Affiliation(s)
- Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
43
|
Fallah MS, Eubanks JH. Seizures in Mouse Models of Rare Neurodevelopmental Disorders. Neuroscience 2020; 445:50-68. [PMID: 32059984 DOI: 10.1016/j.neuroscience.2020.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Genetic neurodevelopmental disorders - that often include epilepsy as part of their phenotype - are a heterogeneous and clinically challenging spectrum of disorders in children. Although seizures often contribute significantly to morbidity in these affected populations, the mechanisms of epileptogenesis in these conditions remain poorly understood. Different model systems have been developed to aid in unraveling these mechanisms, which include a number of specific mutant mouse lines which genocopy specific general types of mutations present in patients. These mouse models have not only allowed for assessments of behavioral and electrographic seizure phenotypes to be ascertained, but also have allowed effects on the neurodevelopmental alterations and cognitive impairments associated with these disorders to be examined. In addition, these models play a role in advancing our understanding of these epileptic processes and developing preclinical therapeutics. The concordance of seizure phenotypes - in a select group of rare, genetic, neurodevelopmental disorders and epileptic encephalopathies - found between human patients and their model counterparts will be summarized. This review aims to assess whether models of Rett syndrome, CDKL5 deficiency disorder, Fragile-X syndrome, Dravet syndrome, and Ohtahara syndrome phenocopy the seizures seen in human patients.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 0S8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery (Neurosurgery), University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
44
|
Smith RS, Walsh CA. Ion Channel Functions in Early Brain Development. Trends Neurosci 2020; 43:103-114. [PMID: 31959360 PMCID: PMC7092371 DOI: 10.1016/j.tins.2019.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
During prenatal brain development, ion channels are ubiquitous across several cell types, including progenitor cells and migrating neurons but their function has not been clear. In the past, ion channel dysfunction has been primarily studied in the context of postnatal, differentiated neurons that fire action potentials - notably ion channels mutated in the epilepsies - yet data now support a surprising role in prenatal human brain disorders as well. Modern gene discovery approaches have identified defective ion channels in individuals with cerebral cortex malformations, which reflect abnormalities in early-to-middle stages of embryonic development (prior to ubiquitous action potentials). These human genetics studies and recent in utero animal modeling work suggest that precise control of ionic flux (calcium, sodium, and potassium) contributes to in utero developmental processes such as neural proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Richard S Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Aeby A, Sculier C, Bouza AA, Askar B, Lederer D, Schoonjans A, Vander Ghinst M, Ceulemans B, Offord J, Lopez‐Santiago LF, Isom LL. SCN1B-linked early infantile developmental and epileptic encephalopathy. Ann Clin Transl Neurol 2019; 6:2354-2367. [PMID: 31709768 PMCID: PMC6917350 DOI: 10.1002/acn3.50921] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Patients with Early Infantile Epileptic Encephalopathy (EIEE) 52 have inherited, homozygous variants in the gene SCN1B, encoding the voltage-gated sodium channel (VGSC) β1 and β1B non-pore-forming subunits. METHODS Here, we describe the detailed electroclinical features of a biallelic SCN1B patient with a previously unreported variant, p.Arg85Cys. RESULTS The female proband showed hypotonia from birth, multifocal myoclonus at 2.5 months, then focal seizures and myoclonic status epilepticus (SE) at 3 months, triggered by fever. Auditory brainstem response (ABR) showed bilateral hearing loss. Epilepsy was refractory and the patient had virtually no development. Administration of fenfluramine resulted in a significant reduction in seizure frequency and resolution of SE episodes that persisted after a 2-year follow-up. The patient phenotype is more compatible with early infantile developmental and epileptic encephalopathy (DEE) than with typical Dravet syndrome (DS), as previously diagnosed for other patients with homozygous SCN1B variants. Biochemical and electrophysiological analyses of the SCN1B variant expressed in heterologous cells showed cell surface expression of the mutant β1 subunit, similar to wild-type (WT), but with loss of normal β1-mediated modification of human Nav 1.1-generated sodium current, suggesting that SCN1B-p.Arg85Cys is a loss-of-function (LOF) variant. INTERPRETATION Importantly, a review of the literature in light of our results suggests that the term, early infantile developmental and epileptic encephalopathy, is more appropriate than either EIEE or DS to describe biallelic SCN1B patients.
Collapse
Affiliation(s)
- Alec Aeby
- Pediatric NeurologyQueen Fabiola Children HospitalULBBrusselsBelgium
| | | | - Alexandra A. Bouza
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109
| | - Brandon Askar
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109
| | | | | | - Marc Vander Ghinst
- ENT DepartmentULB‐Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
- Laboratoire de Cartographie fonctionnelle du CerveauUNI – ULB Neuroscience InstituteUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | | | - James Offord
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109
| | | | - Lori L. Isom
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMI48109
| |
Collapse
|
46
|
Darras N, Ha TK, Rego S, Martin P, Barroso E, Slavotinek AM, Cilio MR. Developmental and epileptic encephalopathy in two siblings with a novel, homozygous missense variant in
SCN1B. Am J Med Genet A 2019; 179:2190-2195. [DOI: 10.1002/ajmg.a.61344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Natasha Darras
- Department of PathologyUniversity of California San Francisco San Francisco California
| | - Thoa K. Ha
- Division of Medical Genetics, Department of PediatricsUniversity of California San Francisco San Francisco California
| | - Shannon Rego
- Division of Medical Genetics, Department of PediatricsUniversity of California San Francisco San Francisco California
| | - Pierre‐Marie Martin
- Institute for Human Genetics, University of California San Francisco San Francisco California
| | - Eva Barroso
- Department of Molecular Genetics, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM) Madrid Spain
| | - Anne M. Slavotinek
- Division of Medical Genetics, Department of PediatricsUniversity of California San Francisco San Francisco California
| | - Maria R. Cilio
- Institute for Human Genetics, University of California San Francisco San Francisco California
- Division of Pediatric Epilepsy, Department of NeurologyUniversity of California San Francisco California USA
- Division of Pediatric Neurology, Department of PediatricsUniversity of Louvain Brussels Belgium
| |
Collapse
|
47
|
O'Malley HA, Hull JM, Clawson BC, Chen C, Owens-Fiestan G, Jameson MB, Aton SJ, Parent JM, Isom LL. Scn1b deletion in adult mice results in seizures and SUDEP. Ann Clin Transl Neurol 2019; 6:1121-1126. [PMID: 31211177 PMCID: PMC6562025 DOI: 10.1002/acn3.785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Pathogenic loss‐of‐function variants in SCN1B are linked to Dravet syndrome (DS). Previous work suggested that neuronal pathfinding defects underlie epileptogenesis and SUDEP in the Scn1b null mouse model of DS. We tested this hypothesis by inducing Scn1b deletion in adult mice that had developed normally. Epilepsy and SUDEP, which occur by postnatal day 21 in Scn1b null animals, were observed within 20 days of induced Scn1b deletion in adult mice, suggesting that epileptogenesis in SCN1B‐DS does not result from defective brain development. Thus, the developmental brain defects observed previously in Scn1b null mice may model other co‐morbidities of DS.
Collapse
Affiliation(s)
- Heather A O'Malley
- Department of Pharmacology University of Michigan Ann Arbor Michigan 48109
| | - Jacob M Hull
- Neuroscience Graduate Program University of Michigan Ann Arbor Michigan 48109
| | - Brittany C Clawson
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor Michigan 48109
| | - Chunling Chen
- Department of Pharmacology University of Michigan Ann Arbor Michigan 48109
| | - Gic Owens-Fiestan
- Department of Neurology University of Michigan Ann Arbor Michigan 48109
| | - Margaret B Jameson
- Department of Neurology University of Michigan Ann Arbor Michigan 48109.,Present address: Department of Neuroscience University of Wisconsin Madison Wisconsin
| | - Sara J Aton
- Neuroscience Graduate Program University of Michigan Ann Arbor Michigan 48109.,Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor Michigan 48109
| | - Jack M Parent
- Neuroscience Graduate Program University of Michigan Ann Arbor Michigan 48109.,Department of Neurology University of Michigan Ann Arbor Michigan 48109
| | - Lori L Isom
- Department of Pharmacology University of Michigan Ann Arbor Michigan 48109.,Neuroscience Graduate Program University of Michigan Ann Arbor Michigan 48109.,Department of Neurology University of Michigan Ann Arbor Michigan 48109
| |
Collapse
|
48
|
Yuan Y, O'Malley HA, Smaldino MA, Bouza AA, Hull JM, Isom LL. Delayed maturation of GABAergic signaling in the Scn1a and Scn1b mouse models of Dravet Syndrome. Sci Rep 2019; 9:6210. [PMID: 30996233 PMCID: PMC6470170 DOI: 10.1038/s41598-019-42191-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/25/2019] [Indexed: 01/25/2023] Open
Abstract
Dravet syndrome (DS) is a catastrophic developmental and epileptic encephalopathy characterized by severe, pharmacoresistant seizures and the highest risk of Sudden Unexpected Death in Epilepsy (SUDEP) of all epilepsy syndromes. Here, we investigated the time course of maturation of neuronal GABAergic signaling in the Scn1b-/- and Scn1a+/- mouse models of DS. We found that GABAergic signaling remains immature in both DS models, with a depolarized reversal potential for GABAA-evoked currents compared to wildtype in the third postnatal week. Treatment of Scn1b-/- mice with bumetanide resulted in a delay in SUDEP onset compared to controls in a subset of mice, without prevention of seizure activity or amelioration of failure to thrive. We propose that delayed maturation of GABAergic signaling may contribute to epileptogenesis in SCN1B- and SCN1A-linked DS. Thus, targeting the polarity of GABAergic signaling in brain may be an effective therapeutic strategy to reduce SUDEP risk in DS.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
| | - Heather A O'Malley
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
| | - Melissa A Smaldino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
- Department of Biology, Ball State University, Muncie, IN, 47306, USA
| | - Alexandra A Bouza
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA
| | - Jacob M Hull
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109-2215, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109-5632, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109-2215, USA.
| |
Collapse
|
49
|
Gong JE, Liao HM, Long HY, Li XM, Long LL, Zhou L, Gu WP, Lu SH, Qu Q, Yang LM, Xiao B, Qu J. SCN1B and SCN2B gene variants analysis in dravet syndrome patients: Analysis of 22 cases. Medicine (Baltimore) 2019; 98:e14974. [PMID: 30921204 PMCID: PMC6455785 DOI: 10.1097/md.0000000000014974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous research identified SCN1B variants in some cases of Dravet syndrome (DS). We investigated whether SCN1B and SCN2B variants are commonly happened in DS patients without SCN1A variants. A total of 22 DS patients without SCN1A variants and 100 healthy controls were enrolled in this genetic study. DNA from DS patients was sequenced by Sanger method in whole exons of SCN1B and SCN2B genes. We identified two exon variants (c.351C>T, p.G117G and c.467C>T, p.T156M), which were present both in 1000 egenomes database and in healthy controls with a frequency of 0.54% and 4%, 0.06% and 0%, respectively. Additionally, eight intron or 3 prime UTR variants showing benign clinical significance have also been identified. Our results suggest that variants of SCN1B and SCN2B may not be common causes of DS according to our data. Further large sample-size cohort studies are needed to confirm our conclusion.
Collapse
Affiliation(s)
- Jiao-E. Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007
| | - Hong-Mei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha 410007
| | - Hong-Yu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078
| | - Xiang-Min Li
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha 410078
| | - Li-Li Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078
| | - Wen-Ping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078
| | - Shao-Hua Lu
- Department of Neurosurgery, the Third Xiangya Hospital, Central South University, Changsha 410000
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078
| | - Li-Min Yang
- Department of Neurology, Hunan Children's Hospital, Changsha 410007
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410078
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| |
Collapse
|
50
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|