1
|
Naffaa MM, Khan RR, Kuo CT, Yin HH. Cortical regulation of neurogenesis and cell proliferation in the ventral subventricular zone. Cell Rep 2023; 42:112783. [PMID: 37422764 PMCID: PMC10422956 DOI: 10.1016/j.celrep.2023.112783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/13/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023] Open
Abstract
Neurogenesis and differentiation of neural stem cells (NSCs) are controlled by cell-intrinsic molecular pathways that interact with extrinsic signaling cues. In this study, we identify a circuit that regulates neurogenesis and cell proliferation in the lateral ventricle-subventricular zone (LV-SVZ). Our results demonstrate that direct glutamatergic projections from the anterior cingulate cortex (ACC), as well as inhibitory projections from calretinin+ local interneurons, modulate the activity of cholinergic neurons in the subependymal zone (subep-ChAT+). Furthermore, in vivo optogenetic stimulation and inhibition of the ACC-subep-ChAT+ circuit are sufficient to control neurogenesis in the ventral SVZ. Both subep-ChAT+ and local calretinin+ neurons play critical roles in regulating ventral SVZ neurogenesis and LV-SVZ cell proliferation.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Rehan R Khan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Cortical projection to the subventricular zone and its effect on adult neurogenesis in mice. Neurosci Lett 2023; 799:137101. [PMID: 36731593 DOI: 10.1016/j.neulet.2023.137101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Various brain regions/nuclei project axons to the subventricular zone (SVZ), a postnatal neurogenic niche. In adults, neurogenesis is controlled by neuronal activity, via neurotransmitters. Glutamate is a major excitatory neurotransmitter, and glutamate receptors are expressed in SVZ cells. Although the cerebral cortex is a major source of glutamate and the medial cortex projects axons to the medial striatum next to the SVZ, it remains unclear whether cortical neurons regulate adult neurogenesis in vivo. First, to analyze axonal projection, plasmid vector expressing DsRed was introduced to the medial cortex by in utero electroporation. At the adult stage, DsRed-labeled axons were detected in the dorsolateral, striatal, and septal areas of the SVZ, and where they were in contact with neuroblasts. Furthermore, maturation of the cortical projection and the SVZ appeared to synchronize during postnatal stages. Next, stab injuries were made in the bilateral medial cortex to interrupt cortical input to the SVZ. At 17 days post-injury, cell proliferation in the SVZ and tangential migration of neuroblasts to the olfactory bulb were not significantly affected. There were clusters of neuroblasts in the striatum close to the SVZ in all experimental groups, but the number and size of neuroblast clusters were significantly larger in the medial cortex-injured group compared with the other experimental groups. These neuroblast clusters had a morphology of tangentially migrating cells to the olfactory bulb. These results suggest that cortical input to the SVZ inhibits the radial migration of neuroblasts to converge with the migration pathway in vivo.
Collapse
|
3
|
Loss of Slc12a2 specifically in pancreatic β-cells drives metabolic syndrome in mice. PLoS One 2022; 17:e0279560. [PMID: 36580474 PMCID: PMC9799326 DOI: 10.1371/journal.pone.0279560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting β-cells of the pancreatic islet (Nkcc1βKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller β-cells. Remarkably, Nkcc1βKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1βKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary β-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and β-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.
Collapse
|
4
|
Everlien I, Yen TY, Liu YC, Di Marco B, Vázquez-Marín J, Centanin L, Alfonso J, Monyer H. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 2022; 110:3139-3153.e6. [PMID: 35998632 DOI: 10.1016/j.neuron.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.
Collapse
Affiliation(s)
- Isabelle Everlien
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ting-Yun Yen
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
6
|
Sivakumar D, Ramli R. GABAergic signalling in modulation of dental pain. Eur J Pharmacol 2022; 924:174958. [DOI: 10.1016/j.ejphar.2022.174958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
|
7
|
Sun P, Wang M, Li Z, Wei J, Liu F, Zheng W, Zhu X, Chai X, Zhao S. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism. Theranostics 2022; 12:3637-3655. [PMID: 35664075 PMCID: PMC9131264 DOI: 10.7150/thno.72756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale: The high fat and sucrose diet, known as the obesogenic diet (OD), has been related to low-grade chronic inflammation and neurodevelopmental disorders. Emerging evidence suggests that OD influences cognitive and social function via the gut-brain axis. However, the effects of OD during adolescence on future health have been unclear. Meanwhile, the underlying mechanisms and effective interventions are not fully understood. Polysaccharides, one of the most abundant substances in the Eucommiae cortex, exhibit potential immunomodulatory and neuroprotective effects. Here, we aimed to investigate the impact of OD on adolescents, explore the modulating roles of Eucommiae cortex polysaccharides (EPs) on OD-induced behavioral dysfunction, and elucidate the underlying molecular mechanisms. Methods: In the present study, four-week-old mice were fed with OD for four weeks to simulate persistent OD in adolescents. The behavioral features were accessed by open field test and Morris water maze. The gut bacterial structure was identified by 16S rRNA gene amplicon sequencing. The gene and protein expression in colonic tissues and hippocampus were detected by qRT-PCR, immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence staining. Detection of biological metabolites in serum and hippocampal tissues was performed by widely targeted metabolomics and targeted metabolomics. Results: We found that OD-fed mice showed cognitive and social-behavioral deficits accompanied by gut dysbiosis and systematic tryptophan (Trp) metabolism disorders, which increased kynurenine (Kyn) concentration in the hippocampus. Bacteria-derived lipopolysaccharide (LPS, endotoxin) induced microglia-mediated neuroinflammation, directing the metabolism of Kyn in the hippocampus toward quinolinic acid (QA), which led to glutamate-mediated hyperactivation of mossy cells (MCs) in hippocampal hilus. Furthermore, OD impaired parvalbumin (PV) interneurons-related local circuits in the hippocampal granule cell layer. These resulted in hippocampal neurogenesis deficits and related behavioral dysfunction in mice. EPs supplementation ameliorated OD-induced gut dysbiosis, as evidenced by inhibiting the expansion of Escherichia coli (E.coli) and reducing the concentration of LPS in colonic contents and serum, thereby inhibiting the subsequent neuroinflammation. In addition, oral EPs suppressed the peripheral Kyn pathway to reduce the concentration of QA and glutamic acid in the hippocampus of OD-fed mice, thereby rescuing the glutamic acid-triggered neuroexcitotoxicity. These contributed to remodeling the rhythm of hippocampal neurogenesis and mitigated behavioral dysfunction in OD-fed mice. Conclusions: The present study addresses a gap in the understanding of neuronal dysfunction associated with OD during adolescence and provides the first evidence that EPs improved cognitive and social behavior via modulation of gut microbiota and tryptophan metabolism in adolescent mice fed with OD, which may represent novel preemptive therapy for neurodevelopmental disorders via manipulation of the tryptophan metabolite.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhuoni Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
9
|
Gascoigne DA, Drobyshevsky A, Aksenov DP. The Contribution of Dysfunctional Chloride Channels to Neurovascular Deficiency and Neurodegeneration. Front Pharmacol 2021; 12:754743. [PMID: 34671264 PMCID: PMC8520995 DOI: 10.3389/fphar.2021.754743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,*Correspondence: Daniil P. Aksenov,
| |
Collapse
|
10
|
Xing W, de Lima AD, Voigt T. The Structural E/I Balance Constrains the Early Development of Cortical Network Activity. Front Cell Neurosci 2021; 15:687306. [PMID: 34349623 PMCID: PMC8326976 DOI: 10.3389/fncel.2021.687306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
Neocortical networks have a characteristic constant ratio in the number of glutamatergic projection neurons (PN) and GABAergic interneurons (IN), and deviations in this ratio are often associated with developmental neuropathologies. Cultured networks with defined cellular content allowed us to ask if initial PN/IN ratios change the developmental population dynamics, and how different ratios impact the physiological excitatory/inhibitory (E/I) balance and the network activity development. During the first week in vitro, the IN content modulated PN numbers, increasing their proliferation in networks with higher IN proportions. The proportion of INs in each network set remained similar to the initial plating ratio during the 4 weeks cultivation period. Results from additional networks generated with more diverse cellular composition, including early-born GABA neurons, suggest that a GABA-dependent mechanism may decrease the survival of additional INs. A large variation of the PN/IN ratio did not change the balance between isolated spontaneous glutamatergic and GABAergic postsynaptic currents charge transfer (E/I balance) measured in PNs or INs. In contrast, the E/I balance of multisynaptic bursts reflected differences in IN content. Additionally, the spontaneous activity recorded by calcium imaging showed that higher IN ratios were associated with increased frequency of network bursts combined with a decrease of participating neurons per event. In the 4th week in vitro, bursting activity was stereotypically synchronized in networks with very few INs but was more desynchronized in networks with higher IN proportions. These results suggest that the E/I balance of isolated postsynaptic currents in single cells may be regulated independently of PN/IN proportions, but the network bursts E/I balance and the maturation of spontaneous network activity critically depends upon the structural PN/IN ratio.
Collapse
Affiliation(s)
- Wenxi Xing
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Ana Dolabela de Lima
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Thomas Voigt
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| |
Collapse
|
11
|
D’Alessandro G, Lauro C, Quaglio D, Ghirga F, Botta B, Trettel F, Limatola C. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers (Basel) 2021; 13:2810. [PMID: 34199968 PMCID: PMC8200200 DOI: 10.3390/cancers13112810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Cristina Limatola
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia, 00185 Rome, Italy
| |
Collapse
|
12
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Bilal Shamsi M, Saleh M, Almuntashri M, Alharby E, Samman M, Peake RWA, Al-Fadhli FM, Alasmari A, Faqeih EA, Almontashiri NAM. Clinical characterization and further confirmation of the autosomal recessive SLC12A2 disease. J Hum Genet 2021; 66:689-695. [PMID: 33500540 DOI: 10.1038/s10038-021-00904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Heterozygous pathogenic variants in SLC12A2 are reported in patients with nonsyndromic hearing loss. Recently, homozygous loss-of-function variants have been reported in two patients with syndromic intellectual disability, with or without hearing loss. However, the clinical and molecular spectrum of SLC12A2 disease has yet to be characterized and confirmed. Using whole-exome sequencing, we detected a homozygous splicing variant in four patients from two independent families with severe developmental delay, microcephaly, respiratory abnormalities, and subtle dysmorphic features, with or without congenital hearing loss. We also reviewed the reported cases with pathogenic variants associated with autosomal dominant and recessive forms of the SLC12A2 disease. About 50% of the cases have syndromic and nonsyndromic congenital hearing loss. All patients harboring the recessive forms of the disease presented with severe global developmental delay. Interestingly, all reported variants are located in the c-terminal domain, suggesting a critical role of this domain for the proper function of the encoded co-transporter protein. In conclusion, our study provides an additional confirmation of the autosomal recessive SLC12A2 disease.
Collapse
Affiliation(s)
- Monis Bilal Shamsi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mohamed Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Makki Almuntashri
- Department of Medical Imaging, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Manar Samman
- Molecular Pathology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fatima M Al-Fadhli
- Unit of Genetic Diseases, Department of Pediatrics, Maternity and Children's Hospital, Almadinah Almunwarah, Saudi Arabia
| | - Ali Alasmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia. .,Faculty of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia.
| |
Collapse
|
14
|
Abstract
The adult brain is the result of a multistages complex neurodevelopmental process involving genetic, molecular and microenvironmental factors as well as diverse patterns of electrical activity. In the postnatal life, immature neuronal circuits undergo an experience-dependent maturation during critical periods of plasticity, but the brain still retains plasticity during adult life. In all these stages, the neurotransmitter GABA plays a pivotal role. In this chapter, we will describe the interaction of 5-HT with GABA in regulating neurodevelopment and plasticity.
Collapse
|
15
|
Untereiner A, Xu J, Bhattacharjee A, Cabrera O, Hu C, Dai FF, Wheeler MB. γ-aminobutyric acid stimulates β-cell proliferation through the mTORC1/p70S6K pathway, an effect amplified by Ly49, a novel γ-aminobutyric acid type A receptor positive allosteric modulator. Diabetes Obes Metab 2020; 22:2021-2031. [PMID: 32558194 DOI: 10.1111/dom.14118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
AIM To examine the mechanism of action of γ-aminobutyric acid (GABA) on β-cell proliferation and investigate if co-treatment with Ly49, a novel GABA type A receptor positive allosteric modulator (GABAA -R PAM), amplifies this effect. METHODS Human or mouse islets were co-treated for 4-5 days with GABA and selected receptor or cell signalling pathway modulators. Immunofluorescence was used to determine protein co-localization, cell number or proliferation, and islet size. Osmotic minipumps were surgically implanted in mice to assess Ly49 effects on pancreatic β-cells. RESULTS Amplification of GABAA -R signalling enhanced GABA-stimulated β-cell proliferation in cultured mouse islets. Co-treatment of GABA with an inhibitor specific for PI3K, mTORC1/2, or p70S6K, abolished GABA-stimulated β-cell proliferation in mouse and human islets. Nuclear p-AktSer473 and p-p70S6KThr421/Ser424 expression in pancreatic β-cells was increased in GABA-treated mice compared with vehicle-treated mice, an effect augmented with GABA and Ly49 co-treatment. Mice co-treated with GABA and Ly49 exhibited enhanced β-cell area and proliferation compared with GABA-treated mice. Furthermore, S961 injection (an insulin receptor antagonist) resulted in enhanced plasma insulin in GABA and Ly49 co-treated mice compared with GABA-treated mice. Importantly, GABA co-treated with Ly49 increased β-cell proliferation in human islets providing a potential application for human subjects. CONCLUSIONS We show that GABA stimulates β-cell proliferation via the PI3K/mTORC1/p70S6K pathway in both mouse and human islets. Furthermore, we show that Ly49 enhances the β-cell regenerative effects of GABA, showing potential in the intervention of diabetes.
Collapse
Affiliation(s)
- Ashley Untereiner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jie Xu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Alpana Bhattacharjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Over Cabrera
- Diabetes and Complications Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
McNeill A, Iovino E, Mansard L, Vache C, Baux D, Bedoukian E, Cox H, Dean J, Goudie D, Kumar A, Newbury-Ecob R, Fallerini C, Renieri A, Lopergolo D, Mari F, Blanchet C, Willems M, Roux AF, Pippucci T, Delpire E. SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect. Brain 2020; 143:2380-2387. [PMID: 32658972 PMCID: PMC7447514 DOI: 10.1093/brain/awaa176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Abstract
The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.
Collapse
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, University of Sheffield, Sheffield, UK,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK,Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK,Correspondence to: Alisdair McNeill, PhD FRCP Edin DCH Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK E-mail:
| | - Emanuela Iovino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luke Mansard
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Christel Vache
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - David Baux
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Helen Cox
- Regional Clinical Genetics Unit, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - John Dean
- North of Scotland Genetics Service, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK
| | - David Goudie
- East of Scotland Regional Genetics Service, Level 6, Ninewells Hospital, Dundee, UK
| | - Ajith Kumar
- Clinical Genetics Unit, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Ruth Newbury-Ecob
- Bristol Regional Genetics Service, St Michael’s Hospital, Southwell Street, Bristol, UK
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Catherine Blanchet
- Centre of Reference for Genetic Sensory diseases, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Marjolaine Willems
- Department of Clinical Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Francoise Roux
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA,Correspondence to: Alisdair McNeill, PhD FRCP Edin DCH Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK E-mail:
| |
Collapse
|
17
|
Stödberg T, Magnusson M, Lesko N, Wredenberg A, Martin Munoz D, Stranneheim H, Wedell A. SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia. NEUROLOGY-GENETICS 2020; 6:e478. [PMID: 32754646 PMCID: PMC7357422 DOI: 10.1212/nxg.0000000000000478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
Objective To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). Methods After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. Results The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. Conclusions Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Måns Magnusson
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Martin Munoz
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Weselek G, Keiner S, Fauser M, Wagenführ L, Müller J, Kaltschmidt B, Brandt MD, Gerlach M, Redecker C, Hermann A, Storch A. Norepinephrine is a negative regulator of the adult periventricular neural stem cell niche. Stem Cells 2020; 38:1188-1201. [PMID: 32473039 DOI: 10.1002/stem.3232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
The limited proliferative capacity of neuroprogenitor cells (NPCs) within the periventricular germinal niches (PGNs) located caudal of the subventricular zone (SVZ) of the lateral ventricles together with their high proliferation capacity after isolation strongly implicates cell-extrinsic humoral factors restricting NPC proliferation in the hypothalamic and midbrain PGNs. We comparatively examined the effects of norepinephrine (NE) as an endogenous candidate regulator of PGN neurogenesis in the SVZ as well as the periventricular hypothalamus and the periaqueductal midbrain. Histological and neurochemical analyses revealed that the pattern of NE innervation of the adult PGNs is inversely associated with their in vivo NPC proliferation capacity with low NE levels coupled to high NPC proliferation in the SVZ but high NE levels coupled to low NPC proliferation in hypothalamic and midbrain PGNs. Intraventricular infusion of NE decreased NPC proliferation and neurogenesis in the SVZ-olfactory bulb system, while pharmacological NE inhibition increased NPC proliferation and early neurogenesis events in the caudal PGNs. Neurotoxic ablation of NE neurons using the Dsp4-fluoxetine protocol confirmed its inhibitory effects on NPC proliferation. Contrarily, NE depletion largely impairs NPC proliferation within the hippocampus in the same animals. Our data indicate that norepinephrine has opposite effects on the two fundamental neurogenic niches of the adult brain with norepinephrine being a negative regulator of adult periventricular neurogenesis. This knowledge might ultimately lead to new therapeutic approaches to influence neurogenesis in hypothalamus-related metabolic diseases or to stimulate endogenous regenerative potential in neurodegenerative processes such as Parkinson's disease.
Collapse
Affiliation(s)
- Grit Weselek
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Lisa Wagenführ
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Julia Müller
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology and Molecular Neurobiology, University of Bielefeld, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Manfred Gerlach
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Redecker
- Hans Berger Department of Neurology, Jena University Hospital, Germany.,Department of Neurology, Klinikum Lippe, Lemgo, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany.,Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Germany
| |
Collapse
|
19
|
Goyal R, Spencer KA, Borodinsky LN. From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development. Front Mol Neurosci 2020; 13:62. [PMID: 32390800 PMCID: PMC7193536 DOI: 10.3389/fnmol.2020.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural cells that in turn regulate the needed cellular processes taking place during each developmental period. These include neural cell proliferation and neuronal differentiation, which are crucial for developmental events ranging from the earliest steps of morphogenesis of the neural tube through the establishment of neuronal circuits. Here, we compile studies assessing the ontogeny of ionic currents in the developing nervous system. We then review work demonstrating a role for ion channels in neural tube formation, to underscore the necessity of the signaling downstream ion channels even at the earliest stages of neural development. We discuss the function of ion channels in neural cell proliferation and neuronal differentiation and conclude with how the regulation of all these morphogenetic and cellular processes by electrical activity enables the appropriate development of the nervous system and the establishment of functional circuits adapted to respond to a changing environment.
Collapse
Affiliation(s)
- Raman Goyal
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kira A Spencer
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
20
|
Kosti A, Du L, Shivram H, Qiao M, Burns S, Garcia JG, Pertsemlidis A, Iyer VR, Kokovay E, Penalva LOF. ELF4 Is a Target of miR-124 and Promotes Neuroblastoma Proliferation and Undifferentiated State. Mol Cancer Res 2020; 18:68-78. [PMID: 31624087 PMCID: PMC6942226 DOI: 10.1158/1541-7786.mcr-19-0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/06/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
13-Cis-retinoic acid (RA) is typically used in postremission maintenance therapy in patients with neuroblastoma. However, side effects and recurrence are often observed. We investigated the use of miRNAs as a strategy to replace RA as promoters of differentiation. miR-124 was identified as the top candidate in a functional screen. Genomic target analysis indicated that repression of a network of transcription factors (TF) could be mediating most of miR-124's effect in driving differentiation. To advance miR-124 mimic use in therapy and better define its mechanism of action, a high-throughput siRNA morphologic screen focusing on its TF targets was conducted and ELF4 was identified as a leading candidate for miR-124 repression. By altering its expression levels, we showed that ELF4 maintains neuroblastoma in an undifferentiated state and promotes proliferation. Moreover, ELF4 transgenic expression was able to counteract the neurogenic effect of miR-124 in neuroblastoma cells. With RNA sequencing, we established the main role of ELF4 to be regulation of cell-cycle progression, specifically through the DREAM complex. Interestingly, several cell-cycle genes activated by ELF4 are repressed by miR-124, suggesting that they might form a TF-miRNA regulatory loop. Finally, we showed that high ELF4 expression is often observed in neuroblastomas and is associated with poor survival. IMPLICATIONS: miR-124 induces neuroblastoma differentiation partially through the downregulation of TF ELF4, which drives neuroblastoma proliferation and its undifferentiated phenotype.
Collapse
Affiliation(s)
- Adam Kosti
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas
| | - Haridha Shivram
- Department of Molecular Biosciences and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanne Burns
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Juan Gabriel Garcia
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander Pertsemlidis
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
- Department of Pediatrics, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Vishwanath R Iyer
- Department of Molecular Biosciences and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas
| | - Luiz O F Penalva
- Department of Cell Systems and Anatomy, UT Health Science Center at San Antonio, San Antonio, Texas.
- Greehey Children's Cancer Research Institute, UT Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
21
|
Cabrera OH, Tesic V, Tat QL, Chastain S, Quillinan N, Jevtovic-Todorovic V. Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain. Mol Neurobiol 2020; 57:1-10. [PMID: 31493242 PMCID: PMC6980440 DOI: 10.1007/s12035-019-01751-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/26/2022]
Abstract
The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) critically regulate neuronal responses to gamma-aminobutyric acid (GABA). NKCC1 renders GABA excitatory in immature neurons while expression of KCC2 signals GABA maturation to its inhibitory role. Imbalances in NKCC1/KCC2 alter GABA neurotransmission, which may contribute to hyperexcitability and blunted inhibition in neurocircuitry after neonatal exposure to anesthesia. Thus, we hypothesized that anesthetics may dysregulate NKCC1 and/or KCC2 in developing brain. We exposed postnatal day (PND) 7 mice to sevoflurane or carrier gases and assessed NKCC1 and KCC2 expression across three brain regions 6 h and 24 h after initial exposure. To test differences in behavior, we challenged pups receiving sevoflurane or carrier gases on PND7 with propofol on PND8 and recorded parameters of anesthesia induction and maintenance. Sevoflurane exposure increased cortical NKCC1 at 6 h (p = 0.03) and decreased cortical and hippocampal KCC2 at 24 h (p = 0.009 and p = 0.007, respectively). NKCC1/KCC2 ratio was significantly increased at both 6 h (p = 0.02) and 24 h (p = 0.03) in cortex and at 24 h (p = 0.02) in hippocampus. After propofol challenge on PND8, pups previously exposed to sevoflurane on PND7 regained righting reflex significantly faster than their non-exposed cohort (p < 0.001). Disturbing NKCC1/KCC2 balance may underlie circuit hyperexcitability and contribute to neurodevelopmental impairments we have observed in previous studies of neonatal anesthesia exposure. Human infants previously exposed to anesthesia may require higher concentrations of anesthetic drugs, potentially compounding their susceptibility for neurodevelopmental sequalae.
Collapse
Affiliation(s)
- O H Cabrera
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA.
| | - V Tesic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Q L Tat
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - S Chastain
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - N Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - V Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| |
Collapse
|
22
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
23
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
24
|
Zarco N, Norton E, Quiñones-Hinojosa A, Guerrero-Cázares H. Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells. Cell Mol Life Sci 2019; 76:3553-3570. [PMID: 31101934 PMCID: PMC6698208 DOI: 10.1007/s00018-019-03149-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023]
Abstract
Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily Norton
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hugo Guerrero-Cázares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
25
|
Wang S, Du L, Peng G, Li W. GABA inhibits proliferation and self-renewal of mouse retinal progenitor cell. Cell Death Discov 2019; 5:80. [PMID: 30911414 PMCID: PMC6430774 DOI: 10.1038/s41420-019-0160-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/28/2022] Open
Abstract
Gamma-amino butyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system, including the retina, and play an important role in both regulating neurogenesis and neural stem cell proliferation. GABAa receptor has been identified in the retina, however, the function of GABAa receptor on retinal progenitor cell (RPC) is unclear. RPCs were cultured to analyze changes in cell proliferation and cell cycle distribution after GABAa receptor activation. The activation of GABAa receptor significantly inhibits RPCs proliferation, cell cycle progress, and self-renewal. Moreover, the activation of GABAa receptor leads to the up-expression of p21 and p27 and down-expression of Nestin, Pax6, Sox2, and Chx10. These results suggest that GABA acts as a negative regulator of RPCs proliferation and self-renewal.
Collapse
Affiliation(s)
- Shaojun Wang
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China.,2Department of Ophthalmology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071 China
| | - Lu Du
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China
| | - Guanghua Peng
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China
| | - Wei Li
- 3Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
26
|
Macnamara EF, Koehler AE, D'Souza P, Estwick T, Lee P, Vezina G, Fauni H, Braddock SR, Torti E, Holt JM, Sharma P, Malicdan MCV, Tifft CJ. Kilquist syndrome: A novel syndromic hearing loss disorder caused by homozygous deletion of SLC12A2. Hum Mutat 2019; 40:532-538. [PMID: 30740830 DOI: 10.1002/humu.23722] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/07/2022]
Abstract
Syndromic sensorineural hearing loss is multigenic and associated with malformations of the ear and other organ systems. Herein we describe a child admitted to the NIH Undiagnosed Diseases Program with global developmental delay, sensorineural hearing loss, gastrointestinal abnormalities, and absent salivation. Next-generation sequencing revealed a uniparental isodisomy in chromosome 5, and a 22 kb homozygous deletion in SLC12A2, which encodes for sodium, potassium, and chloride transporter in the basolateral membrane of secretory epithelia. Functional studies using patient-derived fibroblasts showed truncated SLC12A2 transcripts and markedly reduced protein abundance when compared with control. Loss of Slc12a2 in mice has been shown to lead to deafness, abnormal neuronal growth and migration, severe gastrointestinal abnormalities, and absent salivation. Together with the described phenotype of the Slc12a2-knockout mouse model, our results suggest that the absence of functional SLC12A2 causes a new genetic syndrome and is crucial for the development of auditory, neurologic, and gastrointestinal tissues.
Collapse
Affiliation(s)
- Ellen F Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Alanna E Koehler
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland
| | - Precilla D'Souza
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Tyra Estwick
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Lee
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Gilbert Vezina
- Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia
| | -
- Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Harper Fauni
- Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Stephen R Braddock
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland
| | - Erin Torti
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri
| | - James Matthew Holt
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Prashant Sharma
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland
| | - Cynthia J Tifft
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Cloarec R, Riffault B, Dufour A, Rabiei H, Gouty-Colomer LA, Dumon C, Guimond D, Bonifazi P, Eftekhari S, Lozovaya N, Ferrari DC, Ben-Ari Y. Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. SCIENCE ADVANCES 2019; 5:eaav0394. [PMID: 30746473 PMCID: PMC6357736 DOI: 10.1126/sciadv.aav0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
We report that the apical dendrites of CA3 hippocampal pyramidal neurons are increased during labor and birth in the valproate model of autism but not in control animals. Using the iDISCO clearing method, we show that hippocampal, especially CA3 region, and neocortical volumes are increased and that the cerebral volume distribution shifts from normal to lognormal in valproate-treated animals. Maternal administration during labor and birth of the NKCC1 chloride transporter antagonist bumetanide, which reduces [Cl-]i levels and attenuates the severity of autism, abolished the neocortical and hippocampal volume changes and reduced the whole-brain volume in valproate-treated animals. These results suggest that the abolition of the oxytocin-mediated excitatory-to-inhibitory shift of GABA actions during labor and birth contributes to the pathogenesis of autism spectrum disorders by stimulating growth during a vulnerable period.
Collapse
Affiliation(s)
- R. Cloarec
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - B. Riffault
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - A. Dufour
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - H. Rabiei
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - L.-A. Gouty-Colomer
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - C. Dumon
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - P. Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain & IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - S. Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - N. Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. C. Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - Y. Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| |
Collapse
|
29
|
Ilkhanizadeh S, Sabelström H, Miroshnikova YA, Frantz A, Zhu W, Idilli A, Lakins JN, Schmidt C, Quigley DA, Fenster T, Yuan E, Trzeciak JR, Saxena S, Lindberg OR, Mouw JK, Burdick JA, Magnitsky S, Berger MS, Phillips JJ, Arosio D, Sun D, Weaver VM, Weiss WA, Persson AI. Antisecretory Factor-Mediated Inhibition of Cell Volume Dynamics Produces Antitumor Activity in Glioblastoma. Mol Cancer Res 2018; 16:777-790. [PMID: 29431617 PMCID: PMC5932284 DOI: 10.1158/1541-7786.mcr-17-0413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
Interstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts. Antisecretory factor (AF) is an endogenous protein that displays antisecretory effects in animals and patients. Here, endogenous induction of AF protein or exogenous administration of AF peptide reduced IFP and increased drug uptake in GBM xenografts. AF inhibited cell volume regulation of GBM cells, an effect that was phenocopied in vitro by the sodium-potassium-chloride cotransporter 1 (SLC12A2/NKCC1) inhibitor bumetanide. As a result, AF induced apoptosis and increased survival in GBM models. In vitro, the ability of AF to reduce GBM cell proliferation was phenocopied by bumetanide and NKCC1 knockdown. Next, AF's ability to sensitize GBM cells to the alkylating agent temozolomide, standard of care in GBM patients, was evaluated. Importantly, combination of AF induction and temozolomide treatment blocked regrowth in GBM xenografts. Thus, AF-mediated inhibition of cell volume regulation represents a novel strategy to increase drug uptake and improve outcome in GBM. Mol Cancer Res; 16(5); 777-90. ©2018 AACR.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Hanna Sabelström
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | | | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aurora Idilli
- Institute of Biophysics, CNR and FBK, Trento, Italy
- CIBIO, University of Trento, Trento, Italy
| | - Jon N Lakins
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - David A Quigley
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Trenten Fenster
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - Edith Yuan
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - Jacqueline R Trzeciak
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - Supna Saxena
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
| | - Olle R Lindberg
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Janna K Mouw
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Mitchel S Berger
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joanna J Phillips
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Daniele Arosio
- Institute of Biophysics, CNR and FBK, Trento, Italy
- CIBIO, University of Trento, Trento, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, California
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, San Francisco, California.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
- Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
- Brain Tumor Research Center (BTRC) at the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
30
|
Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 2017; 371:33-46. [PMID: 28948349 DOI: 10.1007/s00441-017-2668-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
Within the dentate gyrus of the adult hippocampus is the subgranular zone, which contains a neurogenic niche for radial-glia like cells, the most primitive neural stem cells in the adult brain. The quiescence of neural stem cells is maintained by tonic gamma-aminobutyric acid (GABA) released from local interneurons. Once these cells differentiate into neural progenitor cells, GABA continues to regulate their development into mature granule cells, the principal cell type of the dentate gyrus. Here, we review the role of GABA circuits, signaling, and receptors in regulating development of adult-born cells, as well as the molecular players that modulate GABA signaling. Furthermore, we review recent findings linking dysregulation of adult hippocampal neurogenesis to the altered GABAergic circuitry and signaling under various pathological conditions.
Collapse
|
31
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
32
|
Ascenzi M, Bony G. The building of the neocortex with non-hyperpolarizing neurotransmitters. Dev Neurobiol 2017; 77:1023-1037. [PMID: 28276653 DOI: 10.1002/dneu.22495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
The development of the neocortex requires the synergic action of several secreted molecules to achieve the right amount of proliferation, differentiation, and migration of neural cells. Neurons are well known to release neurotransmitters (NTs) in adult and a growing body of evidences describes the presence of NTs already in the embryonic brain, long before the generation of synapses. NTs are classified as inhibitory or excitatory based on the physiological responses of the target neuron. However, this view is challenged by the fact that glycine and GABA NTs are excitatory during development. Many reviews have described the role of nonhyperpolarizing GABA at this stage. Nevertheless, a global consideration of the inhibitory neurotransmitters and their downstream signaling during the embryonic cortical development is still needed. For example, taurine, the most abundant neurotransmitter during development is poorly studied regarding its role during cortical development. In the light of recent discoveries, we will discuss the functions of glycine, GABA, and taurine during embryonic cortical development with an emphasis on their downstream signaling. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1023-1037, 2017.
Collapse
Affiliation(s)
| | - Guillaume Bony
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| |
Collapse
|
33
|
Bumetanide reduce the seizure susceptibility induced by pentylenetetrazol via inhibition of aberrant hippocampal neurogenesis in neonatal rats after hypoxia-ischemia. Brain Res Bull 2017; 130:188-199. [PMID: 28161194 DOI: 10.1016/j.brainresbull.2017.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022]
Abstract
Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na+-K+-Cl--co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function.
Collapse
|
34
|
Magalhães AC, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci 2016; 10:200. [PMID: 27582690 PMCID: PMC4987357 DOI: 10.3389/fncel.2016.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
The proliferative pool of neural progenitor cells is maintained by exquisitely controlled mechanisms for cell cycle regulation. The Na-K-Cl cotransporter (NKCC1) is important for regulating cell volume and the proliferation of different cell types in vitro. NKCC1 is expressed in ventral telencephalon of embryonic brains suggesting a potential role in neural development of this region. The ventral telencephalon is a major source for both interneuron and oligodendrocyte precursor cells. Whether NKCC1 is involved in the proliferation of these cell populations remains unknown. In order to assess this question, we monitored several markers for neural, neuronal, and proliferating cells in wild-type (WT) and NKCC1 knockout (KO) mouse brains. We found that NKCC1 was expressed in neural progenitor cells from the lateral ganglionic eminence (LGE) at E12.5. Mice lacking NKCC1 expression displayed reduced phospho-Histone H3 (PH3)-labeled mitotic cells in the ventricular zone (VZ) and reduced cell cycle reentry. Accordingly, we found a significant reduction of Sp8-labeled immature interneurons migrating from the dorsal LGE in NKCC1-deficient mice at a later developmental stage. Interestingly, at E14.5, NKCC1 regulated also the formation of Olig2-labeled oligodendrocyte precursor cells. Collectively, these findings show that NKCC1 serves in vivo as a modulator of the cell cycle decision in the developing ventral telencephalon at the early stage of neurogenesis. These results present a novel mechanistic avenue to be considered in the recent proposed involvement of chloride transporters in a number of developmentally related diseases, such as epilepsy, autism, and schizophrenia.
Collapse
Affiliation(s)
| | - Claudio Rivera
- Neuroscience Center, University of HelsinkiHelsinki, Finland; Aix-Marseille University, UMR S901Marseille, France; INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
| |
Collapse
|
35
|
Jung JY, Lee SE, Hwang EM, Lee CJ. Neuronal Expression and Cell-Type-Specific Gene-Silencing of Best1 in Thalamic Reticular Nucleus Neurons Using pSico-Red System. Exp Neurobiol 2016; 25:120-9. [PMID: 27358580 PMCID: PMC4923356 DOI: 10.5607/en.2016.25.3.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Assessing the cell-type expression pattern of a certain gene can be achieved by using cell-type-specific gene manipulation. Recently, cre-recombinase-dependent gene-silencing tool, pSico has become popular in neuroscientific research. However, pSico has a critical limitation that gene-silenced cell cannot be identified by fluorescence, due to an excision of the reporter gene for green fluorescence protein (GFP). To overcome this limitation, we newly developed pSico-Red, with mCherry gene as a reporter outside two loxP sites, so that red mCherry signal is detected in all transfected cells. When a cell expresses cre, GFP is excised and shRNA is enabled, resulting in disappearance of GFP. This feature of pSico-Red provides not only cell-type-specific gene-silencing but also identification of cre expressing cells. Using this system, we demonstrated for the first time the neuronal expression of the Bestrophin-1 (Best1) in thalamic reticular nucleus (TRN) and TRN-neuron-specific gene-silencing of Best1. We combined adeno-associated virus (AAV) carrying Best1-shRNA in pSico-Red vector and transgenic mouse expressing cre under the promoter of distal-less homeobox 5/6 (DLX5/6), a marker for inhibitory neurons. Firstly, we found that almost all of inhibitory neurons in TRN express Best1 by immunohistochemistry. Using pSico-Red virus, we found that 80% of infected TRN neurons were DLX5/6-cre positive but parvalbumin negative. Finally, we found that Best1 in DLX5/6-cre positive neurons were significantly reduced by Best1-shRNA. Our study demonstrates that TRN neurons strongly express Best1 and that pSico-Red is a valuable tool for cell-type-specific gene manipulation and identification of specific cell population.
Collapse
Affiliation(s)
- Jae-Young Jung
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Eun Mi Hwang
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea.; KU-KIST School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
36
|
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by calcium signaling. Cell Calcium 2016; 59:124-34. [PMID: 27020657 DOI: 10.1016/j.ceca.2016.02.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes.
Collapse
Affiliation(s)
- Anna B Toth
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
37
|
Lee H, Bach E, Noh J, Delpire E, Kandler K. Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem. J Neurophysiol 2016; 115:1170-82. [PMID: 26655825 PMCID: PMC4808136 DOI: 10.1152/jn.00926.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023] Open
Abstract
During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.
Collapse
Affiliation(s)
- Hanmi Lee
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eva Bach
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee; and
| | - Karl Kandler
- Departments of Otolaryngology, Neurobiology, and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015; 323:20-8. [PMID: 26546469 DOI: 10.1016/j.neuroscience.2015.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
A few decades ago it was discovered that two regions of the adult brain retain the ability to generate new neurons. These regions include the subgranular zone of the hippocampal dentate gyrus and the ventricular-subventricular zone (V-SVZ) located at the border of the lateral ventricle. In the V-SVZ, it was discovered that neural progenitor cells (NPCs) share many features of mature astrocytes and are often referred as V-SVZ astrocytes. We will first describe the markers, the morphology, and the neurophysiological characteristics of the mouse V-SVZ astrocytes. We will then discuss the fact that V-SVZ astrocytes constitute a mixed population with respect to their neurogenic properties, e.g., quiescent versus activated state, neurogenic fate, and transcription factors expression. Finally, we will describe two functions of V-SVZ astrocytes, their metabolic coupling to blood vessels and their neurogenic-supportive role consisting of providing guidance and survival cues to migrating newborn neurons.
Collapse
Affiliation(s)
- J C Platel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Marseille, IBDM, UMR7288, Marseille, France.
| | - A Bordey
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Kirmse K, Kummer M, Kovalchuk Y, Witte OW, Garaschuk O, Holthoff K. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun 2015; 6:7750. [PMID: 26177896 DOI: 10.1038/ncomms8750] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca(2+)-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca(2+) channels and fails to induce action potential firing. Blocking GABA(A) receptors disinhibits spontaneous network activity, whereas allosteric activation of GABA(A) receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex.
Collapse
Affiliation(s)
- Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Michael Kummer
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Yury Kovalchuk
- Institute of Physiology II, Eberhard-Karls University Tübingen, D-72074 Tübingen, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard-Karls University Tübingen, D-72074 Tübingen, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| |
Collapse
|
40
|
Han B, Bellemer A, Koelle MR. An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans. Genetics 2015; 199:1159-72. [PMID: 25644702 PMCID: PMC4391577 DOI: 10.1534/genetics.114.173963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 01/23/2023] Open
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit.
Collapse
Affiliation(s)
- Bingjie Han
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Andrew Bellemer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
41
|
Ikeda-Matsuo Y. [Network activity controls adult neurogenesis]. Nihon Yakurigaku Zasshi 2015; 145:43. [PMID: 25743235 DOI: 10.1254/fpj.145.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Özkucur N, Quinn KP, Pang JC, Du C, Georgakoudi I, Miller E, Levin M, Kaplan DL. Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain Behav 2015; 5:24-38. [PMID: 25722947 PMCID: PMC4321392 DOI: 10.1002/brb3.295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The disruption of neuron arrangement is associated with several pathologies. In contrast to action potentials, the role of resting potential (Vmem) in regulating connectivity remains unknown. METHODS Neuron assemblies were quantified when their Vmem was depolarized using ivermectin (Ivm), a drug that opens chloride channels, for 24 h in cocultures with astrocytes. Cell aggregation was analyzed using automated cluster analysis methods. Neural connectivity was quantified based on the identification of isolated somas in phase-contrast images using image processing. Vmem was measured using voltage-sensitive dyes and whole-cell patch clamping. Immunocytochemistry and Western blotting were used to detect changes in the distribution and production of the proteins. RESULTS Data show that Vmem regulates cortical tissue shape and connectivity. Automated cluster analysis methods revealed that the degree of neural aggregation was significantly increased (0.26 clustering factor vs. 0.21 in controls, P ≤ 0.01). The number of beta-tubulin III positive neural projections was also significantly increased in the neural aggregates in cocultures with Ivm. Hyperpolarized neuron cells formed fewer connections (33% at 24 h, P ≤ 0.05) compared to control cells in 1-day cultures. Glia cell densities increased (33.3%, P ≤ 0.05) under depolarizing conditions. CONCLUSION Vmem can be a useful tool to probe neuronal cells, disease tissues models, and cortical tissue arrangements.
Collapse
Affiliation(s)
- Nurdan Özkucur
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155 ; Biology Department, Tufts University 200 Boston Avenue, Suite 4600, Medford, Massachusetts, 02155
| | - Kyle P Quinn
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| | - Jin C Pang
- Department of Electrical and Computer Engineering, Tufts University 161 College Avenue, Medford, Massachusetts, 02155
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155 ; Department of Neuroscience, Tufts University 136 Harrison Ave, Boston, Massachusetts
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| | - Eric Miller
- Department of Electrical and Computer Engineering, Tufts University 161 College Avenue, Medford, Massachusetts, 02155
| | - Michael Levin
- Biology Department, Tufts University 200 Boston Avenue, Suite 4600, Medford, Massachusetts, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| |
Collapse
|
43
|
Borodinsky LN, Belgacem YH, Swapna I, Visina O, Balashova OA, Sequerra EB, Tu MK, Levin JB, Spencer KA, Castro PA, Hamilton AM, Shim S. Spatiotemporal integration of developmental cues in neural development. Dev Neurobiol 2014; 75:349-59. [PMID: 25484201 DOI: 10.1002/dneu.22254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, California, 95817
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci 2014; 8:397. [PMID: 25477785 PMCID: PMC4237056 DOI: 10.3389/fncel.2014.00397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/05/2014] [Indexed: 01/11/2023] Open
Abstract
Postmortem neuropathological studies of autism consistently reveal distinctive types of malformations, including cortical dysplasias, heterotopias, and various neuronomorphometric abnormalities. In keeping with these observations, we review here that 88% of high-risk genes for autism influence neural induction and early maturation of the neuroblast. In addition, 80% of these same genes influence later stages of differentiation, including neurite and synapse development, suggesting that these gene products exhibit long-lasting developmental effects on cell development as well as elements of redundancy in processes of neural proliferation, growth, and maturation. We also address the putative genetic overlap of autism with conditions like epilepsy and schizophrenia, with implications to shared and divergent etiologies. This review imports the necessity of a frameshift in our understanding of the neurodevelopmental basis of autism to include all stages of neuronal maturation, ranging from neural induction to synaptogenesis.
Collapse
Affiliation(s)
- Emily L Casanova
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Louisville Louisville, KY, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Louisville Louisville, KY, USA
| |
Collapse
|
45
|
Samarasinghe RA, Kanuparthi PS, Timothy Greenamyre J, DeFranco DB, Di Maio R. Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiol Dis 2014; 70:252-61. [PMID: 25003306 DOI: 10.1016/j.nbd.2014.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022] Open
Abstract
While aberrant cell proliferation and differentiation may contribute to epileptogenesis, the mechanisms linking an initial epileptic insult to subsequent changes in cell fate remain elusive. Using both mouse and human iPSC-derived neural progenitor/stem cells (NPSCs), we found that a combined transient muscarinic and mGluR1 stimulation inhibited overall neurogenesis but enhanced NPSC differentiation into immature GABAergic cells. If treated NPSCs were further passaged, they retained a nearly identical phenotype upon differentiation. A similar profusion of immature GABAergic cells was seen in rats with pilocarpine-induced chronic epilepsy. Furthermore, live cell imaging revealed abnormal de-synchrony of Ca(++) transients and altered gap junction intercellular communication following combined muscarinic/glutamatergic stimulation, which was associated with either acute site-specific dephosphorylation of connexin 43 or a long-term enhancement of its degradation. Therefore, epileptogenic stimuli can trigger acute and persistent changes in cell fate by altering distinct mechanisms that function to maintain appropriate intercellular communication between coupled NPSCs.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA; University of California Los Angeles, Department of Neurology, USA.
| | - Prasad S Kanuparthi
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA
| | - J Timothy Greenamyre
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| | - Donald B DeFranco
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, USA.
| | - Roberto Di Maio
- University of Pittsburgh School of Medicine-Pittsburgh, Institute of Neurodegenerative Diseases, USA
| |
Collapse
|
46
|
Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT. Identification of distinct ChAT⁺ neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci 2014; 17:934-42. [PMID: 24880216 PMCID: PMC4122286 DOI: 10.1038/nn.3734] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
Abstract
Postnatal/adult SVZ neurogenesis is believed to be primarily controlled by neural stem cell (NSC)-intrinsic mechanisms, interacting with extracellular/niche-driven cues. Although behavioral paradigms and disease states have suggested possibilities for higher-level inputs, it is currently unknown if neural activity patterns from discrete circuits can directly regulate SVZ neurogenesis. We have identified a previously undescribed population of ChAT+ neurons residing within the rodent SVZ neurogenic niche. These neurons showed morphological and functional differences from neighboring striatal counterparts, and released acetylcholine locally in activity-dependent fashion. Optogenetic inhibition and stimulation of subependymal ChAT+ neurons in vivo showed that they are necessary and sufficient to control neurogenic proliferation. Furthermore, whole-cell recordings and biochemical experiments revealed direct SVZ NSC responses to local acetylcholine release, synergizing with FGF receptor activation to increase neuroblast production. These results uncovered an unknown gateway connecting SVZ neurogenesis to neuronal activity-dependent control, and possibilities for modulating neuroregenerative capacities in health and disease.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- 1] Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA. [2]
| | - Brent Asrican
- 1] Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA. [2]
| | - Erica Rodriguez
- 1] Neurobiology Graduate Training Program, Duke University School of Medicine, Durham, North Carolina, USA. [2]
| | - Chay T Kuo
- 1] Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA. [2] Neurobiology Graduate Training Program, Duke University School of Medicine, Durham, North Carolina, USA. [3] Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA. [4] Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA. [5] Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA. [6] Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
47
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
48
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
49
|
Young SZ, Lafourcade CA, Platel JC, Lin TV, Bordey A. GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Front Cell Neurosci 2014; 8:10. [PMID: 24478632 PMCID: PMC3904109 DOI: 10.3389/fncel.2014.00010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023] Open
Abstract
GABA regulates the behavior of neuroblasts and neural progenitor cells in the postnatal neurogenic subventricular zone (SVZ) through GABAA receptor (GABAAR)-mediated calcium increases. However, the source of GABA necessary for sufficient GABAAR-mediated depolarization and calcium increase has remained speculative. Here, we explored whether GABAergic striatal neurons functionally connect with SVZ cells. Using patch clamp recordings or single cell electroporation, striatal neurons along the SVZ were filled with a fluorescent dye revealing that they send both dendrites and axons into the SVZ. About 93% of the recorded neurons were medium spiny or aspiny GABAergic neurons and each neuron sent 3-4 processes into the SVZ covering ~56 μm. Using calcium imaging, we found that depolarization of striatal neurons led to increased calcium activity in SVZ cells that were mediated by GABAAR activation. Collectively, these findings undercover a novel mode of signaling in the SVZ providing a mechanism of brain activity-mediated regulation of postnatal neurogenesis through GABAergic striatal activity.
Collapse
Affiliation(s)
- Stephanie Z Young
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Carlos A Lafourcade
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Jean-Claude Platel
- Developmental Biology, Aix-Marseille University, IBDML, CNRS, UMR7288 Marseille, France
| | - Tiffany V Lin
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Angélique Bordey
- Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
50
|
Sebe JY, Looke-Stewart E, Dinday MT, Alvarez-Buylla A, Baraban SC. Neocortical integration of transplanted GABA progenitor cells from wild type and GABA(B) receptor knockout mouse donors. Neurosci Lett 2013; 561:52-7. [PMID: 24291697 DOI: 10.1016/j.neulet.2013.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/17/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
Most cortical interneurons originate in a region of the embryonic subpallium called the medial ganglionic eminence (MGE). When MGE cells are transplanted into cerebral cortex, these progenitors migrate extensively and differentiate into functional inhibitory neurons. Although MGE progenitors have therapeutic potential following transplantation, it is unknown precisely how these cells distribute within neocortical lamina of the recipient brain. Here we transplanted mouse embryonic day 12.5 MGE progenitors into postnatal neocortex and evaluated laminar distribution of interneuron subtypes using double- and triple-label immunohistochemistry. Studies were performed using wild type (WT) or donor mice lacking a metabotropic GABA(B) receptor subunit (GABA(B1)R KO). MGE-derived neurons from WT and GABA(B1)R KO mice preferentially and densely distributed in neocortical layers 2/3, 5 and 6. As expected, MGE-derived neurons differentiated into parvalbumin+ and somatostatin+ interneurons within these neocortical lamina. Our findings provide insights into the anatomical integration of MGE-derived interneurons following transplantation.
Collapse
Affiliation(s)
- Joy Y Sebe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States.
| | - Elizabeth Looke-Stewart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Matthew T Dinday
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Scott C Baraban
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|