1
|
Rumajogee P, Altamentova S, Li J, Puvanenthirarajah N, Wang J, Asgarihafshejani A, Van Der Kooy D, Fehlings MG. Constraint-Induced Movement Therapy (CIMT) and Neural Precursor Cell (NPC) Transplantation Synergistically Promote Anatomical and Functional Recovery in a Hypoxic-Ischemic Mouse Model. Int J Mol Sci 2024; 25:9403. [PMID: 39273353 PMCID: PMC11395467 DOI: 10.3390/ijms25179403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by pronounced motor dysfunction and resulting in physical disability. Neural precursor cells (NPCs) have shown therapeutic promise in mouse models of hypoxic-ischemic (HI) perinatal brain injury, which mirror hemiplegic CP. Constraint-induced movement therapy (CIMT) enhances the functional use of the impaired limb and has emerged as a beneficial intervention for hemiplegic CP. However, the precise mechanisms and optimal application of CIMT remain poorly understood. The potential synergy between a regenerative approach using NPCs and a rehabilitation strategy using CIMT has not been explored. We employed the Rice-Vannucci HI model on C57Bl/6 mice at postnatal day (PND) 7, effectively replicating the clinical and neuroanatomical characteristics of hemiplegic CP. NPCs were transplanted in the corpus callosum (CC) at PND21, which is the age corresponding to a 2-year-old child from a developmental perspective and until which CP is often not formally diagnosed, followed or not by Botulinum toxin injections in the unaffected forelimb muscles at PND23, 26, 29 and 32 to apply CIMT. Both interventions led to enhanced CC myelination and significant functional recovery (as shown by rearing and gait analysis testing), through the recruitment of endogenous oligodendrocytes. The combinatorial treatment indicated a synergistic effect, as shown by newly recruited oligodendrocytes and functional recovery. This work demonstrates the mechanistic effects of CIMT and NPC transplantation and advocates for their combined therapeutic potential in addressing hemiplegic CP.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Junyi Li
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Nirushan Puvanenthirarajah
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Derek Van Der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
2
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Tian J, Zhu J, Fan Q, Luo X, Nie Q, Yu J, Wu X, Tang Y, Liu T, Yin H. Interleukin-33 improves the neurogenesis of neural stem cells in perinatal brain after hypoxia-ischemia. Int Immunopharmacol 2023; 123:110778. [PMID: 37573691 DOI: 10.1016/j.intimp.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Perinatal hypoxia-ischemia (HI) insult is an important cause of neonatal encephalopathy, and the effective therapeutic approaches are currently limited. Interleukin (IL)-33 acts as a member of the IL-1 superfamily and has been shown to be neuroprotective following experimental neonatal HI and adult stroke. Here, we explore the effect of IL-33 and its specific receptor ST2 axis on endogenous neurogenesis in neonatal brain after HI. ST2 was found on the surface of NSCs, and the expression of ST2 was further enhanced after HI challenge. Delivery of IL-33 obviously repopulated the size of NSC pool, whereas ST2 deficiency worsened the neurogenesis of NSCs in neonatal brain post HI insult. Further in vivo and in vitro studies showed IL-33 regulates the survival, proliferation and differentiation of NSCs through ST2 signaling pathways. Intriguingly, IL-33 facilitated translocation of Nrf2 from the cytoplasm to the nucleus, which is involved in neural differentiation of NSCs. These data demonstrate a critical role of IL-33/ST2 axis in regulation of endogenous neurogenesis of NSCs via activation of the Nrf2 signaling, which provide a new insight into the effect of IL-33 in neonatal brain following HI injury.
Collapse
Affiliation(s)
- Jing Tian
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieqiong Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuxiang Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaotian Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianying Nie
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwei Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528453, China
| | - Yanli Tang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Li K, Lu M, Cui M, Wang X, Zheng Y. The Notch pathway regulates autophagy after hypoxic-ischemic injury and affects synaptic plasticity. Brain Struct Funct 2023; 228:985-996. [PMID: 37083721 DOI: 10.1007/s00429-023-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Following neonatal hypoxic-ischemia (HI) injury, it is crucial factor to reconstruct neural circuit and maintain neural network homeostasis for neurological recovery. A dynamic balance between the synthesis and degradation of synaptic protein is required for maintaining synaptic plasticity. Protein degradation is facilitated by autophagy. This study aimed to investigate the regulation of synaptic structural plasticity by the Notch pathway, by assessing changes in Notch pathway activation and their effects on synaptic proteins and autophagy after HI injury. The study involved 48 male newborn Yorkshire piglets, each weighing 1.0-1.5 kg and 3 days old. They were randomly assigned to two groups: the HI group and the Notch pathway inhibitor + HI group (n = 24 per group). Each group was further divided into six subgroups according to HI duration (n = 4 per group): a control subgroup, and 0-6, 6-12, 12-24, 24-48, and 48-72 h subgroups. The expression of Notch pathway-related proteins, including Notch1, Hes1, and Notch intracellular domains, increased following HI injury. The expression of autophagy proteins increased at 0-6 h and 6-12 h post-HI. The expression of synaptic proteins, such as postsynaptic density protein 95 (PSD95) and synaptophysin, increased 6-12 h and 12-24 h after HI, respectively. Notably, the increased expression of these proteins was reversed by a Notch pathway inhibitor. Transmission electron microscopy revealed the presence of autophagosome structures in synapses. These findings shed light on the underlying mechanisms of neurological recovery after HI injury and may provide insights into potential therapeutic targets for promoting neural circuit reconstruction and maintaining neural network homeostasis.
Collapse
Affiliation(s)
- Kexin Li
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Meng Lu
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Mengxu Cui
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| | - Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
5
|
Duranti A, Beldarrain G, Álvarez A, Sbriscia M, Carloni S, Balduini W, Alonso-Alconada D. The Endocannabinoid System as a Target for Neuroprotection/Neuroregeneration in Perinatal Hypoxic-Ischemic Brain Injury. Biomedicines 2022; 11:biomedicines11010028. [PMID: 36672536 PMCID: PMC9855621 DOI: 10.3390/biomedicines11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| | - Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Matilde Sbriscia
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| |
Collapse
|
6
|
Jung GA, Kim JA, Park HW, Lee H, Chang MS, Cho KO, Song BW, Kim HJ, Kwon YK, Oh IH. Induction of Nanog in neural progenitor cells for adaptive regeneration of ischemic brain. Exp Mol Med 2022; 54:1955-1966. [PMID: 36376495 PMCID: PMC9722910 DOI: 10.1038/s12276-022-00880-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.
Collapse
Affiliation(s)
- Gyung-Ah Jung
- grid.411947.e0000 0004 0470 4224Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-A Kim
- grid.411947.e0000 0004 0470 4224Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwan-Woo Park
- grid.31501.360000 0004 0470 5905Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea ,grid.411143.20000 0000 8674 9741Present Address: Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Hyemi Lee
- grid.289247.20000 0001 2171 7818Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Mi-Sook Chang
- grid.31501.360000 0004 0470 5905Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
| | - Kyung-Ok Cho
- grid.411947.e0000 0004 0470 4224Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byeong-Wook Song
- grid.411199.50000 0004 0470 5702College of Medicine, Institute for Bio-Medical Convergence, Catholic Kwandong University, Gangneung-si, 25601 Korea
| | - Hyun-Ju Kim
- grid.289247.20000 0001 2171 7818Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Yunhee Kim Kwon
- grid.289247.20000 0001 2171 7818Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Il-Hoan Oh
- grid.411947.e0000 0004 0470 4224Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea ,Institute for Regenerative Medical Research, StemMeditech Inc., Seoul, Korea
| |
Collapse
|
7
|
Levison SW, Rocha-Ferreira E, Kim BH, Hagberg H, Fleiss B, Gressens P, Dobrowolski R. Mechanisms of Tertiary Neurodegeneration after Neonatal Hypoxic-Ischemic Brain Damage. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2022; 5:28. [PMID: 37601279 PMCID: PMC10438849 DOI: 10.21037/pm-20-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Neonatal encephalopathy linked to hypoxia-ischemia (H-I) which is regarded as the most important neurological problem of the newborn, can lead to a spectrum of adverse neurodevelopmental outcomes such as cerebral palsy, epilepsy, hyperactivity, cognitive impairment and learning difficulties. There have been numerous reviews that have focused on the epidemiology, diagnosis and treatment of neonatal H-I; however, a topic that is less often considered is the extent to which the injury might worsen over time, which is the focus of this review. Similarly, there have been numerous reviews that have focused on mechanisms that contribute to the acute or subacute injury; however, there is a tertiary phase of recovery that can be defined by cellular and molecular changes that occur many weeks and months after brain injury and this topic has not been the focus of any review for over a decade. Therefore, in this article we review both the clinical and pre-clinical data that show that tertiary neurodegeneration is a significant contributor to the final outcome, especially after mild to moderate injuries. We discuss the contributing roles of apoptosis, necroptosis, autophagy, protein homeostasis, inflammation, microgliosis and astrogliosis. We also review the limited number of studies that have shown that significant neuroprotection and preservation of neurological function can be achieved administering drugs during the period of tertiary neurodegeneration. As the tertiary phase of neurodegeneration is a stage when interventions are eminently feasible, it is our hope that this review will stimulate a new focus on this stage of recovery towards the goal of producing new treatment options for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Steven W. Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian H. Kim
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
8
|
Velloso FJ, Kumari E, Buono KD, Frondelli MJ, Levison SW. Analyzing mouse neural stem cell and progenitor cell proliferation using EdU incorporation and multicolor flow cytometry. STAR Protoc 2022; 3:101065. [PMID: 35005647 PMCID: PMC8718722 DOI: 10.1016/j.xpro.2021.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This protocol describes an ex vivo approach to identify and quantify the proportions of proliferating neural stem cells and progenitors of the mouse subventricular zone. It uses ethynyl deoxyuridine (EdU) incorporation to identify dividing cells, combined with multicolor flow cytometry for 4 cell surface antigens to distinguish between 8 phenotypically distinct mouse neural progenitors and stem cells. It has been optimized for wild-type neonatal mice but can be used on mice of any postnatal age. For complete details on the use and execution of this profile, please refer to Kumari et al. (2020).
Collapse
Affiliation(s)
| | - Ekta Kumari
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| | | | - Michelle J. Frondelli
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Frondelli MJ, Mather ML, Levison SW. Oligodendrocyte progenitor proliferation is disinhibited following traumatic brain injury in leukemia inhibitory factor heterozygous mice. J Neurosci Res 2021; 100:578-597. [PMID: 34811802 DOI: 10.1002/jnr.24984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant problem that affects over 800,000 children each year. As cell proliferation is disturbed by injury and required for normal brain development, we investigated how a pediatric closed head injury (CHI) would affect the progenitors of the subventricular zone (SVZ). Additionally, we evaluated the contribution of leukemia inhibitory factor (LIF) using germline LIF heterozygous mice (LIF Het), as LIF is an injury-induced cytokine, known to influence neurogenesis and gliogenesis. CHIs were performed on P20 LIF Het and wild-type (WT) mice. Ki-67 immunostaining and stereology revealed that cell proliferation increased ~250% in injured LIF Het mice compared to the 30% increase observed in injured WT mice at 48-hr post-CHI. OLIG2+ cell proliferation increased in the SVZ and white matter of LIF Het injured mice at 48-hr recovery. Using an 8-color flow cytometry panel, the proliferation of three distinct multipotential progenitors and early oligodendrocyte progenitor cell proliferation was significantly increased in LIF Het injured mice compared to WT injured mice. Supporting its cytostatic function, LIF decreased neurosphere progenitor and oligodendrocyte progenitor cell proliferation compared to controls. In highly enriched mouse oligodendrocyte progenitor cell cultures, LIF increased phospho-protein kinase B after 20 min and increased phospho-S6 ribosomal protein at 20 and 40 min of exposure, which are downstream targets of the mammalian target of rapamycin pathway. Altogether, our data provide new insights into the regulatory role of LIF in suppressing neural progenitor cell proliferation and, in particular, oligodendrocyte progenitor cell proliferation after a mild TBI.
Collapse
Affiliation(s)
- Michelle J Frondelli
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
10
|
Frondelli MJ, Levison SW. Leukemia Inhibitory Factor Is Required for Subventricular Zone Astrocyte Progenitor Proliferation and for Prokineticin-2 Production after a Closed Head Injury in Mice. Neurotrauma Rep 2021; 2:285-302. [PMID: 34223558 PMCID: PMC8244521 DOI: 10.1089/neur.2020.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrogliosis is one of the hallmarks of brain injury, and after a mild injury activated astrocytes subserve neuroprotective and pro-regenerative functions. We previously found that the astroglial response to closed head injury (CHI) was blunted in mice that were haplodeficient in leukemia inhibitory factor (LIF); therefore, the goal of these studies was to determine if the delayed astrogliosis was due to decreased recruitment of subventricular zone (SVZ) progenitors. CHI's were performed on post-natal day 20 on LIF heterozygous (Het) and wild-type (WT) mice. At 48 h post-CHI, astrocyte progenitor proliferation within the SVZ increased ∼250% in WT mice but was reduced by ∼200% in LIF Het mice compared with sham controls. Using neurospheres to model the SVZ, LIF increased the percentage of proliferating astrocyte progenitors by 2-fold compared with controls but had no effect on neural stem cell proliferation. To rule out the involvement of other cytokines, 105 cytokines were analyzed using a multi-plex array and with targeted validation on injured LIF Het versus WT neocortex. Of the cytokines analyzed, only prokineticin-2 (ProK2) required LIF signaling. Correspondingly, LIF-treated neurospheres expressed higher levels of ProK2, the ProK1 and ProK2 receptors (ProKR1 and ProKR2). Using in situ hybridization, ProK2 messenger RNA (mRNA) was most abundant in neocortical neurons and highly expressed within the SVZ. However, in contrast to LIF, ProK2 decreased astrocyte progenitor proliferation 2-fold. Altogether, these data demonstrate that LIF is necessary for astrocyte progenitor proliferation after injury and reveal a new role for LIF as an essential regulator of the neurotrophic factor ProK2.
Collapse
Affiliation(s)
- Michelle J. Frondelli
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
11
|
Lengel D, Sevilla C, Romm ZL, Huh JW, Raghupathi R. Stem Cell Therapy for Pediatric Traumatic Brain Injury. Front Neurol 2020; 11:601286. [PMID: 33343501 PMCID: PMC7738475 DOI: 10.3389/fneur.2020.601286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
There has been a growing interest in the potential of stem cell transplantation as therapy for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our understanding of the roles of endogenous stem cells in repair processes and functional recovery following brain injury, and the effects of exogenous stem cell transplantation on recovery from brain injury. Although only a handful of studies have evaluated these effects in models of pediatric TBI, many studies have evaluated stem cell transplantation therapy in models of neonatal HI which has a considerable overlap of injury pathology with pediatric TBI. In this review, we have summarized data on the effects of stem cell treatments on histopathological and functional outcomes in models of pediatric brain injury. Importantly, we have outlined evidence supporting the potential for stem cell transplantation to mitigate pathology of pediatric TBI including neuroinflammation and white matter injury, and challenges that will need to be addressed to incorporate these therapies to improve functional outcomes following pediatric TBI.
Collapse
Affiliation(s)
- Dana Lengel
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cruz Sevilla
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Zoe L Romm
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
12
|
Lin J, Niimi Y, Clausi MG, Kanal HD, Levison SW. Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Exp Neurol 2020; 330:113324. [PMID: 32320698 DOI: 10.1016/j.expneurol.2020.113324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy remains the most important neurological problem of the newborn. Delays in diagnosing perinatal brain injuries are common, preventing access to acute therapies. Therefore, there is a critical need for therapeutic strategies that are beneficial when delivered beyond 24 h after birth. Here we show that Leukemia Inhibitory Factor (LIF) functions as an essential injury-induced neurotrophic cytokine in the CNS and that non-invasively administering LIF as late as 3 days after a hypoxic-ischemic insult improves neurological function. Using a mouse model of late preterm brain injury we show that astroglial and microglial/macrophage reactivity to hypoxia-ischemia was diminished at 3 days of recovery, but then exacerbated at 2 weeks of recovery in LIF haplodeficient mice. There also were significantly more CD68+/Iba-1+ cells in the ipsilateral striatum in LIF-Het mice compared to WT mice at 2 weeks of recovery. This desynchronized glial response was accompanied by increased neuronal cell death in the striatum and neocortex (Fluorojade C), hypomyelination (reduced MBP staining and thinner external capsule), increased extent of brain damage (Nissl) and diminished neurological function on sensorimotor tests. To our surprise, injured LIF-Het mice had ~7-fold higher IGF-1 levels than injured WT mice at 3 days after HI injury. Intranasally administered LIF activated the Jak-Stat-3 pathway both within the subventricular zone and the neocortex at 30 min after administration. When delivered with a delay of 3 days after the insult, intranasal LIF reduced the extent of brain injury by ~60%, attenuated astrogliosis and microgliosis in striatum, improved subcortical white matter thickness, increased numbers of Olig2+ cells in corpus callosum and improved performance on sensorimotor tests at 2 weeks of recovery. These studies provide key pre-clinical data recommending LIF administration as a neuroprotectant and regenerative cytokine and they highlight the feasibility of pursuing new therapeutics targeting the tertiary phase of neurodegeneration for hypoxic-ischemic encephalopathies.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yusuke Niimi
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Mariano Guardia Clausi
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Hur Dolunay Kanal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
13
|
Kumari E, Velloso FJ, Nasuhidehnavi A, Somasundaram A, Savanur VH, Buono KD, Levison SW. Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Reports 2020; 14:861-875. [PMID: 32302560 PMCID: PMC7220986 DOI: 10.1016/j.stemcr.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-6 (IL-6) is increased in maternal serum and amniotic fluid of children subsequently diagnosed with autism spectrum disorders. However, it is not clear how increased IL-6 alters brain development. Here, we show that IL-6 increases the prevalence of a specific platelet-derived growth factor (PDGF)-responsive multipotent progenitor, with opposite effects on neural stem cells and on subsets of bipotential glial progenitors. Acutely, increasing circulating IL-6 levels 2-fold above baseline in neonatal mice specifically stimulated the proliferation of a PDGF-responsive multipotential progenitor accompanied by increased phosphorylated STAT3, increased Fbxo15 expression, and decreased Dnmt1 and Tlx expression. Fate mapping studies using a Nestin-CreERT2 driver revealed decreased astrogliogenesis in the frontal cortex. IL-6-treated mice were hyposmic; however, olfactory bulb neuronogenesis was unaffected. Altogether, these studies provide important insights into how inflammation alters neural stem cells and progenitors and provide new insights into the molecular and cellular underpinnings of neurodevelopmental disorders associated with maternal infections.
Collapse
Affiliation(s)
- Ekta Kumari
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Fernando J Velloso
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Azadeh Nasuhidehnavi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Aditya Somasundaram
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Vibha H Savanur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | | | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA.
| |
Collapse
|
14
|
Peeples ES, Dafferner A, Jiang J, Lyden E, Punsoni M, Agrawal DK. Combined Treatment with Insulin-Like Growth Factor 1 and AMD3100 Improves Motor Outcome in a Murine Model of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2020; 41:255-262. [PMID: 32053821 DOI: 10.1159/000505264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
Stem cell transplantation is a promising intervention for neonatal hypoxic-ischemic encephalopathy (HIE); however, universal feasibility and safety have not been thoroughly evaluated. AMD3100 and insulin-like growth factor 1 (IGF1) mobilize progenitor cells into peripheral circulation. The objective of this study was to assess the short-term efficacy of inducing endogenous stem cell mobilization after injury in a model of neonatal HIE. Postnatal day 9 CD1 pups received sham surgery or unilateral carotid artery ligation and 30 min of hypoxia followed by saline, AMD3100, IGF1, or both agents. Intraperitoneal injections of 5-ethynyl-2'-deoxy-uridine (EdU) and 5-bromo-2'-deoxyuridine were used to -label replicating progenitor cells. At P14, animals underwent rotarod testing, and the brains were sectioned for area measurements and immunofluorescence staining. Comparisons were made using one-way analysis of variance. Spearman's rho was calculated to assess correlation between rotarod results and markers of brain injury. Pups treated with both agents had improved rotarod performance (p = 0.02) and increased EdU+ progenitor cells in the subgranular zone (SGZ) compared to injured controls (p = 0.10). An increase in active cells within the SGZ was correlated with improved rotarod performance (r = 0.84, p = 0.04). There were no differences in overall injury score or in brain area or number of activated cells in the subventricular zone between the treatment groups. Combined treatment with AMD3100 and IGF1 shows promise for decreasing brain injury and improving motor function in pups after HIE which correlated with changes in the number of active progenitor cells in the SGZ.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA,
| | - Alicia Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jiang Jiang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth Lyden
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Punsoni
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Science, Pomona, California, USA
| |
Collapse
|
15
|
Fisch U, Brégère C, Geier F, Chicha L, Guzman R. Neonatal hypoxia-ischemia in rat elicits a region-specific neurotrophic response in SVZ microglia. J Neuroinflammation 2020; 17:26. [PMID: 31954397 PMCID: PMC6969423 DOI: 10.1186/s12974-020-1706-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivity to neonatal hypoxia-ischemia (HI). The goal of this study was to investigate the impact of cortico-striatal HI on the microglial phenotype, function, and gene expression in the early postnatal SVZ. METHODS Postnatal day (P)7 rats underwent sham or right-hemispheric HI surgery. Microglia in the SVZ, the uninjured cortex, and corpus callosum were immunohistochemically analyzed at P10, P20, and P40. The transcriptome of microdissected SVZ and cortical microglia was analyzed at P10 and P20, and the effect of P10 SVZ microglia on neurosphere generation in vitro was studied. RESULTS The microglial response to HI was region-specific. In the SVZ, a microglial accumulation, prolonged activation and phagocytosis was noted that was not observed in the cortex and corpus callosum. The transcriptome of SVZ microglia and cortical microglia were distinct, and after HI, SVZ microglia concurrently upregulated pro- and anti-inflammatory as well as neurotrophic genes. In vitro, microglia isolated from the SVZ supported neurosphere generation in a concentration-dependent manner. CONCLUSIONS Microglia are an inherent cellular component of the early postnatal SVZ and undergo developmental changes that are affected on many aspects by neonatal HI injury. Our results demonstrate that early postnatal SVZ microglia are sensitive to HI injury and display a long-lasting region-specific response including neurotrophic features.
Collapse
Affiliation(s)
- Urs Fisch
- Department of Neurology, University Hospital Basel, University Basel, Basel, Switzerland.
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland.
| | - Catherine Brégère
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Florian Geier
- Bioinformatics Core Facility, Department of Biomedicine, University Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Laurie Chicha
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Raphael Guzman
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, University Basel, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| |
Collapse
|
16
|
Zhang Y, Shen B, Guan X, Qin M, Ren Z, Ma Y, Dai W, Ding X, Jiang Y. Safety and efficacy of ex vivo expanded CD34 + stem cells in murine and primate models. Stem Cell Res Ther 2019; 10:173. [PMID: 31196160 PMCID: PMC6567473 DOI: 10.1186/s13287-019-1275-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) transplantation has been widely applied to the treatment of malignant blood diseases. However, limited number of functional HSCs hinders successful transplantation. The purpose of our current study is to develop a new and cost-efficient medium formulation that could greatly enhance the expansion of HSCs while retaining their long-term repopulation and hematopoietic properties for effective clinical transplantation. Methods Enriched human CD34+ cells and mobilized nonhuman primate peripheral blood CD34+ cells were expanded with a new, cost-efficient expansion medium formulation, named hematopoietic expansion medium (HEM), consisting of various cytokines and nutritional supplements. The long-term repopulation potential and hematologic-lineage differentiation ability of expanded human cells were studied in the non-obese diabetic/severe combined immunodeficiency mouse model. Furthermore, the efficacy and safety studies were performed by autologous transplantation of expanded primate cells in the nonhuman primate model. Results HEM could effectively expand human CD34+ cells by up to 129 fold within 9 days. Expanded HSCs retained long-term repopulation potential and hematologic-lineage differentiation ability, as indicated by (1) maintenance (over unexpanded HSCs) of immunophenotypes of CD38−CD90+CD45RA−CD49f+ in CD34+ cells after expansion; (2) significant presence of multiple human hematopoietic lineages in mouse peripheral blood and bone marrow following primary transplantation; (3) enrichment (over unexpanded HSCs) in SCID-repopulating cell frequency measured by limiting dilution analysis; and (4) preservation of both myeloid and lymphoid potential among human leukocytes from mouse bone marrow in week 24 after primary transplantation or secondary transplantation. Moreover, the results of autologous transplantation in nonhuman primates demonstrated that HEM-expanded CD34+ cells could enhance hematological recovery after myelo-suppression. All primates transplanted with the expanded autologous CD34+ cells survived for over 18 months without any noticeable abnormalities. Conclusions Together, these findings demonstrate promising potential for the utility of HEM to improve expansion of HSCs for clinical application. Electronic supplementary material The online version of this article (10.1186/s13287-019-1275-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China
| | - Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China
| | - Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China.,Biopharmagen Corp, Suzhou, 215126, China
| | - Meng Qin
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Ren
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China.,Biopharmagen Corp, Suzhou, 215126, China
| | - Yupo Ma
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China.,Department of Pathology, BST-9C, The State University of New York at Stony Brook, Stony Brook, NY, 11794, USA
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China.,Department of Environmental Medicine, NYU Langone Medical Center, Tuxedo, NY, 10987, USA
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China. .,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215126, China. .,Biopharmagen Corp, Suzhou, 215126, China.
| |
Collapse
|
17
|
Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, Constancia M, Sandovici I, Cominski T, Pang K, Gao N, Wood TL, Levison SW. Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports 2019; 12:816-830. [PMID: 30905741 PMCID: PMC6450461 DOI: 10.1016/j.stemcr.2019.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/02/2023] Open
Abstract
Tissue-specific stem cells have unique properties and growth requirements, but a small set of juxtacrine and paracrine signals have been identified that are required across multiple niches. Whereas insulin-like growth factor II (IGF-II) is necessary for prenatal growth, its role in adult stem cell physiology is largely unknown. We show that loss of Igf2 in adult mice resulted in a ∼50% reduction in slowly dividing, label-retaining cells in the two regions of the brain that harbor neural stem cells. Concordantly, induced Igf2 deletion increased newly generated neurons in the olfactory bulb accompanied by hyposmia, and caused impairments in learning and memory and increased anxiety. Induced Igf2 deletion also resulted in rapid loss of stem and progenitor cells in the crypts of Lieberkühn, leading to body-weight loss and lethality and the inability to produce organoids in vitro. These data demonstrate that IGF-II is critical for multiple adult stem cell niches.
Collapse
Affiliation(s)
- Amber N. Ziegler
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Shravanthi Chidambaram
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jaimie M. Testai
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ekta Kumari
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Deborah E. Rothbard
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, Cambridge CB2 0SW, UK,National Institute for Health Research Cambridge Biomedical Research Centre, The University of Cambridge, Cambridge CB2 0SW, UK,Centre for Trophoblast Research, The University of Cambridge, Cambridge CB2 0SW, UK
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, Cambridge CB2 0SW, UK,Centre for Trophoblast Research, The University of Cambridge, Cambridge CB2 0SW, UK
| | - Tara Cominski
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Kevin Pang
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Teresa L. Wood
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Steven W. Levison
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA,Corresponding author
| |
Collapse
|
18
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
19
|
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Neonates can develop hypoxic-ischaemic encephalopathy (HIE) due to lack of blood supply or oxygen, resulting in a major cause of death and disability among term newborns. However, current definitive treatment of therapeutic hypothermia, will only benefit one out of nine babies. Furthermore, the mechanisms of HIE and therapeutic hypothermia are not fully understood. Recently, microRNAs (miRNAs) have become of interest to many researchers due to their important role in post-transcriptional control and deep evolutionary history. Despite this, role of miRNAs in newborns with HIE remains largely unknown due to limited research in this field. Therefore, this review aims to understand the role of miRNAs in normal brain development and HIE pathophysiology with reliance on extrapolated data from other diseases, ages and species due to current limited data. This will provide us with an overview of how miRNAs in normal brain development changes after HIE. Furthermore, it will indicate how miRNAs are affected specifically or globally by the various pathophysiological events. In addition, we discuss about how drugs and commercially available agents can specifically target certain miRNAs as a mechanism of action and potential safety issue with off-target effects. Improving our understanding of the role of miRNAs on the cellular response after HIE would enhance the success of effective diagnosis, prognosis, and treatment of newborns with HIE.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Centre of Genomics and Child Health, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK; Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Trust, Chertsey, UK.
| | - Ping K Yip
- Center of Neuroscience, Surgery and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
20
|
Exogenous Neural Precursor Cell Transplantation Results in Structural and Functional Recovery in a Hypoxic-Ischemic Hemiplegic Mouse Model. eNeuro 2018; 5:eN-NWR-0369-18. [PMID: 30713997 PMCID: PMC6354788 DOI: 10.1523/eneuro.0369-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Cerebral palsy (CP) is a common pediatric neurodevelopmental disorder, frequently resulting in motor and developmental deficits and often accompanied by cognitive impairments. A regular pathobiological hallmark of CP is oligodendrocyte maturation impairment resulting in white matter (WM) injury and reduced axonal myelination. Regeneration therapies based on cell replacement are currently limited, but neural precursor cells (NPCs), as cellular support for myelination, represent a promising regeneration strategy to treat CP, although the transplantation parameters (e.g., timing, dosage, mechanism) remain to be determined. We optimized a hemiplegic mouse model of neonatal hypoxia-ischemia that mirrors the pathobiological hallmarks of CP and transplanted NPCs into the corpus callosum (CC), a major white matter structure impacted in CP patients. The NPCs survived, engrafted, and differentiated morphologically in male and female mice. Histology and MRI showed repair of lesioned structures. Furthermore, electrophysiology revealed functional myelination of the CC (e.g., restoration of conduction velocity), while cylinder and CatWalk tests demonstrated motor recovery of the affected forelimb. Endogenous oligodendrocytes, recruited in the CC following transplantation of exogenous NPCs, are the principal actors in this recovery process. The lack of differentiation of the transplanted NPCs is consistent with enhanced recovery due to an indirect mechanism, such as a trophic and/or “bio-bridge” support mediated by endogenous oligodendrocytes. Our work establishes that transplantation of NPCs represents a viable therapeutic strategy for CP treatment, and that the enhanced recovery is mediated by endogenous oligodendrocytes. This will further our understanding and contribute to the improvement of cellular therapeutic strategies.
Collapse
|
21
|
Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol 2018; 173:1-17. [PMID: 29758244 DOI: 10.1016/j.pneurobio.2018.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic brain injury is a significant cause of morbidity and mortality in the adult as well as in the neonate. Extensive pre-clinical studies have shown promising therapeutic effects of neural stem cell-based treatments for hypoxic-ischemic brain injury. There are two major strategies of neural stem cell-based therapies: transplanting exogenous neural stem cells and boosting self-repair of endogenous neural stem cells. Neural stem cell transplantation has been proved to improve functional recovery after brain injury through multiple by-stander mechanisms (e.g., neuroprotection, immunomodulation), rather than simple cell-replacement. Endogenous neural stem cells reside in certain neurogenic niches of the brain and response to brain injury. Many molecules (e.g., neurotrophic factors) can stimulate or enhance proliferation and differentiation of endogenous neural stem cells after injury. In this review, we first present an overview of neural stem cells during normal brain development and the effect of hypoxic-ischemic injury on the activation and function of endogenous neural stem cells in the brain. We then summarize and discuss the current knowledge of strategies and mechanisms for neural stem cell-based therapies on brain hypoxic-ischemic injury, including neonatal hypoxic-ischemic brain injury and adult ischemic stroke.
Collapse
|
22
|
Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatr Res 2018; 83:385-396. [PMID: 29028220 DOI: 10.1038/pr.2017.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the germinal zones of the immature brain. Studies using animal models of pediatric brain injuries have provided a clearer understanding of the responses of these progenitors to injury. In this review, we have compared and contrasted the responses of the endogenous neural stem cells and progenitors of the subventricular zone in animal models of neonatal cerebral hypoxia-ischemia, neonatal stroke, congenital cardiac disease, and pediatric traumatic brain injury. We have reviewed the dynamic shifts that occur within this germinal zone with injury as well as changes in known signaling molecules that affect these progenitors. Importantly, we have summarized data on the extent to which cell replacement occurs in response to each of these injuries, opportunities available, and obstacles that will need to be overcome to improve neurological outcomes in survivors.
Collapse
|
23
|
Kim M, Yu JH, Seo JH, Shin YK, Wi S, Baek A, Song SY, Cho SR. Neurobehavioral Assessments in a Mouse Model of Neonatal Hypoxic-ischemic Brain Injury. J Vis Exp 2017. [PMID: 29286442 DOI: 10.3791/55838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We performed unilateral carotid artery occlusion on CD-1 mice to create a neonatal hypoxic-ischemic (HI) model and investigated the effects of neonatal HI brain injury by studying neurobehavioral functions in these mice compared to non-operated (i.e., normal) mice. During the study, Rice-Vannucci's method was used to induce neonatal HI brain damage in postnatal day 7-10 (P7-10) mice. The HI operation was performed on the pups by unilateral carotid artery ligation and exposure to hypoxia (8% O2 and 92% N2 for 90 min). One week after the operation, the damaged brains were evaluated with the naked eye through the semi-transparent skull and were categorized into subgroups based on the absence ("no cortical injury" group) or presence ("cortical injury" group) of cortical injury, such as a lesion in the right hemisphere. On week 6, the following neurobehavioral tests were performed to evaluate the cognitive and motor functions: passive avoidance task (PAT), ladder walking test, and grip strength test. These behavioral tests are helpful in determining the effects of neonatal HI brain injury and are used in other mouse models of neurodegenerative diseases. In this study, neonatal HI brain injury mice showed motor deficits that corresponded to right hemisphere damage. The behavioral test results are relevant to the deficits observed in human neonatal HI patients, such as cerebral palsy or neonatal stroke patients. In this study, a mouse model of neonatal HI brain injury was established and showed different degrees of motor deficits and cognitive impairment compared to non-operated mice. This work provides basic information on the HI mouse model. MRI images demonstrate the different phenotypes, separated according to the severity of brain damage by motor and cognitive tests.
Collapse
Affiliation(s)
- MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Yoon-Kyum Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Soohyun Wi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine
| | - Suk-Young Song
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Graduate Program of NanoScience and Technology, Yonsei University
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine; Graduate Program of NanoScience and Technology, Yonsei University;
| |
Collapse
|
24
|
Yang R, Chen LH, Hansen LJ, Carpenter AB, Moure CJ, Liu H, Pirozzi CJ, Diplas BH, Waitkus MS, Greer PK, Zhu H, McLendon RE, Bigner DD, He Y, Yan H. Cic Loss Promotes Gliomagenesis via Aberrant Neural Stem Cell Proliferation and Differentiation. Cancer Res 2017; 77:6097-6108. [PMID: 28939681 DOI: 10.1158/0008-5472.can-17-1018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022]
Abstract
Inactivating mutations in the transcriptional repression factor Capicua (CIC) occur in approximately 50% of human oligodendrogliomas, but mechanistic links to pathogenesis are unclear. To address this question, we generated Cic-deficient mice and human oligodendroglioma cell models. Genetic deficiency in mice resulted in a partially penetrant embryonic or perinatal lethal phenotype, with the production of an aberrant proliferative neural population in surviving animals. In vitro cultured neural stem cells derived from Cic conditional knockout mice bypassed an EGF requirement for proliferation and displayed a defect in their potential for oligodendrocyte differentiation. Cic is known to participate in gene suppression that can be relieved by EGFR signal, but we found that cic also activated expression of a broad range of EGFR-independent genes. In an orthotopic mouse model of glioma, we found that Cic loss potentiated the formation and reduced the latency in tumor development. Collectively, our results define an important role for Cic in regulating neural cell proliferation and lineage specification, and suggest mechanistic explanations for how CIC mutations may impact the pathogenesis and therapeutic targeting of oligodendroglioma. Cancer Res; 77(22); 6097-108. ©2017 AACR.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Lee H Chen
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Landon J Hansen
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Austin B Carpenter
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Casey J Moure
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Heng Liu
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Christopher J Pirozzi
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Bill H Diplas
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Matthew S Waitkus
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Paula K Greer
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Huishan Zhu
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Roger E McLendon
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Darell D Bigner
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina
| | - Yiping He
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina.
| | - Hai Yan
- Department of Pathology and the Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
25
|
Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH. Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 2017; 81:560-571. [PMID: 28253550 DOI: 10.1002/ana.24907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - Vivi Heine
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - John C Silbereis
- Department of Neuroscience, University of California San Francisco, San Francisco, CA
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steven W Levison
- Department of Neurology and Neuroscience, New Jersey Medical School, Rutgers University-New Jersey Medical School, Newark, NJ
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
26
|
Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells. PLoS One 2017; 12:e0180832. [PMID: 28700636 PMCID: PMC5507460 DOI: 10.1371/journal.pone.0180832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/18/2017] [Indexed: 01/24/2023] Open
Abstract
Conventional high-dose chemotherapy frequently leads to severe neutropenia, during which patients experience a high risk of infection. Although support care with donor’s neutrophils is possible this choice is largely hampered by the limited availability of matched donors. To overcome this problem, we explored a large-scale ex vivo production of neutrophils from hematopoietic stem cells (HSCs) using a four-stage culture approach in a roller-bottle production platform. We expanded CD34+ HSCs isolated from umbilical cord blood (UCB) using our in-house special medium supplemented with cytokine cocktails and achieved about 49000-fold expansion of cells, among which about 61% were differentiated mature neutrophils. Ex vivo differentiated neutrophils exhibited a chemotactic activity similar to those from healthy donors and were capable of killing E. coli in vitro. The expansion yield as reported herein was at least 5 times higher than any other methods reported in the literature. Moreover, the cost of our modified medium was only a small fraction (<1/60) of the StemSpan™ SFEM. Therefore, our ex vivo expansion platform, coupled with a low cost of stem cell culture due to the use of a modified medium, makes large-scale manufacturing neutrophils possible, which should be able to greatly ameliorate neutrophil shortage for transfusion in the clinic.
Collapse
|
27
|
Zhang Y, Wang C, Wang L, Shen B, Guan X, Tian J, Ren Z, Ding X, Ma Y, Dai W, Jiang Y. Large-Scale Ex Vivo Generation of Human Red Blood Cells from Cord Blood CD34 + Cells. Stem Cells Transl Med 2017; 6:1698-1709. [PMID: 28618139 PMCID: PMC5689780 DOI: 10.1002/sctm.17-0057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
The ex vivo generation of human red blood cells on a large scale from hematopoietic stem and progenitor cells has been considered as a potential method to overcome blood supply shortages. Here, we report that functional human erythrocytes can be efficiently produced from cord blood (CB) CD34+ cells using a bottle turning device culture system. Safety and efficiency studies were performed in murine and nonhuman primate (NHP) models. With the selected optimized culture conditions, one human CB CD34+ cell could be induced ex vivo to produce up to 200 million erythrocytes with a purity of 90.1% ± 6.2% and 50% ± 5.7% (mean ± SD) for CD235a+ cells and enucleated cells, respectively. The yield of erythrocytes from one CB unit (5 million CD34+ cells) could be, in theory, equivalent to 500 blood transfusion units in clinical application. Moreover, induced human erythrocytes had normal hemoglobin content and could continue to undergo terminal maturation in the murine xenotransplantation model. In NHP model, xenotransplantation of induced human erythrocytes enhanced hematological recovery and ameliorated the hypoxia situation in the primates with hemorrhagic anemia. These findings suggested that the ex vivo-generated erythrocytes could be an alternative blood source for traditional transfusion products in the clinic. Stem Cells Translational Medicine 2017;6:1698-1709.
Collapse
Affiliation(s)
- Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chen Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Lan Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jing Tian
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhihua Ren
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, USA
| | - Yupo Ma
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Pathology, School of Medicine, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Environment Medicine, New York University Langone Medical center, Tuxedo, New York, USA
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| |
Collapse
|
28
|
Morrison JC, Cepurna WO, Tehrani S, Choe TE, Jayaram H, Lozano DC, Fortune B, Johnson EC. A Period of Controlled Elevation of IOP (CEI) Produces the Specific Gene Expression Responses and Focal Injury Pattern of Experimental Rat Glaucoma. Invest Ophthalmol Vis Sci 2017; 57:6700-6711. [PMID: 27942722 PMCID: PMC5156512 DOI: 10.1167/iovs.16-20573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine if several hours of controlled elevation of IOP (CEI) will produce the optic nerve head (ONH) gene expression changes and optic nerve (ON) damage pattern associated with early experimental glaucoma in rats. Methods The anterior chambers of anesthetized rats were cannulated and connected to a reservoir to elevate IOP. Physiologic parameters were monitored. Following CEI at various recovery times, ON cross-sections were graded for axonal injury. Anterior ONHs were collected at 0 hours to 10 days following CEI and RNA extracted for quantitative PCR measurement of selected messages. The functional impact of CEI was assessed by electroretinography (ERG). Results During CEI, mean arterial pressure (99 ± 6 mm Hg) and other physiologic parameters remained stable. An 8-hour CEI at 60 mm Hg produced significant focal axonal degeneration 10 days after exposure, with superior lesions in 83% of ON. Message analysis in CEI ONH demonstrated expression responses previously identified in minimally injured ONH following chronic IOP elevation, as well as their sequential patterns. Anesthesia with cannulation at 20 mm Hg did not alter these message levels. Electroretinographic A- and B-waves, following a significant reduction at 2 days after CEI, were fully recovered at 2 weeks, while peak scotopic threshold response (pSTR) remained mildly but significantly depressed. Conclusions A single CEI reproduces ONH message changes and patterns of ON injury previously observed with chronic IOP elevation. Controlled elevation of IOP can allow detailed determination of ONH cellular and functional responses to an injurious IOP insult and provide a platform for developing future therapeutic interventions.
Collapse
Affiliation(s)
- John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - William O Cepurna
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Shandiz Tehrani
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Tiffany E Choe
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Hari Jayaram
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States 2Glaucoma Service, NIHR Moorfields Biomedical Research Centre, London, United Kingdom
| | - Diana C Lozano
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Brad Fortune
- Devers Eye Institute, Portland, Oregon, United States
| | - Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
29
|
Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA. Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury. Front Cell Dev Biol 2017; 5:51. [PMID: 28540289 PMCID: PMC5424542 DOI: 10.3389/fcell.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders.
Collapse
Affiliation(s)
- Jea Y Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Kaya Xu
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| |
Collapse
|
30
|
Huang L, Zhao F, Qu Y, Zhang L, Wang Y, Mu D. Animal models of hypoxic-ischemic encephalopathy: optimal choices for the best outcomes. Rev Neurosci 2017; 28:31-43. [PMID: 27559689 DOI: 10.1515/revneuro-2016-0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.
Collapse
Affiliation(s)
- Lan Huang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yan Wang
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- 1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 2Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 3Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Braccioli L, Heijnen CJ, Coffer PJ, Nijboer CH. Delayed administration of neural stem cells after hypoxia-ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatr Res 2017; 81:127-135. [PMID: 27632779 DOI: 10.1038/pr.2016.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/07/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypoxic-ischemic (HI) encephalopathy causes mortality and severe morbidity in neonates. Treatments with a therapeutic window >6 h are currently not available. Here, we explored whether delayed transplantation of allogenic neural stem cells (NSCs) at 10 d after HI could be a tool to repair HI brain injury and improve behavioral impairments. METHODS HI was induced in 9-d-old mice. Animals received NSCs or vehicle intracranially in the hippocampus at 10 d post-HI. Sensorimotor performance was assessed by cylinder rearing test. Lesion size, synaptic integrity, and fate of injected NSCs were determined by immuno-stainings. Neuroinflammation was studied by immuno-stainings of brain sections, primary glial cultures, and TNFα ELISA. RESULTS NSC transplantation at 10 d post-insult induced long-term improvement of motor performance and synaptic integrity, and reduced lesion size compared to vehicle-treatment. HI-induced neuroinflammation was reduced after NSC treatment, at least partially by factors secreted by NSCs. Injected NSCs migrated toward and localized at the damaged hippocampus. Transplanted NSCs differentiated toward the neuronal lineage and formed a niche with endogenous precursors. CONCLUSION Our study provides evidence of the efficacy of NSC transplantation late after HI as a tool to reduce neonatal HI brain injury through regeneration of the lesion.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 2016; 36:2034-2043. [PMID: 27742890 PMCID: PMC5363673 DOI: 10.1177/0271678x16674487] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular-subventricular zone of the lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain. This article will review these findings with a focus on the ventricular-subventricular zone neurogenic niche and discuss potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal hypoxic/ischemic injury and stroke.
Collapse
Affiliation(s)
- Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, USA
- Department of Physics, Oakland University, Rochester, USA
| |
Collapse
|
33
|
Yang L, Li D, Chen S. Hydrogen water reduces NSE, IL-6, and TNF-α levels in hypoxic-ischemic encephalopathy. Open Med (Wars) 2016; 11:399-406. [PMID: 28352827 PMCID: PMC5329859 DOI: 10.1515/med-2016-0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
This study retrospectively analyzed the efficacy of hydrogen water in the treatment of neonatal hypoxic-ischemic encephalopathy (HIE) and its effect on serum neuron-specific enolase (NSE), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. Forty newborns with HIE who received treatment from April 2014 to April 2015 were divided into a conventional care group and a hydrogen water group according to the different treatment methods applied. Twenty healthy full-term newborns comprised the control group. In the hydrogen water group, 5-mL/kg hydrogen water was orally administered two days after birth daily for 10 days in addition to conventional treatment. After 10 days, efficacy indicators were examined in the HIE groups. The NSE, IL-6, and TNF-α levels were compared among all three groups. The efficacy indicators were significantly lower in the hydrogen water group compared with the conventional group. Before treatment, the serum NSE, IL-6, and TNF-α levels in the HIE groups were higher than those in the control group. After treatment, these levels in the hydrogen water group were lower than those in the conventional group. Hydrogen water lowers serum NSE, IL-6, and TNF-α levels in HIE newborns, thereby exerting a protective effect.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pediatrics, Affiliated Hospital of Taishan Medical University, Tai'an 271000, China
| | - Dunchen Li
- Department of Pediatrics, Affiliated Hospital of Taishan Medical University, 706 Taishan Avenue, Tai'an 271000, China
| | - Shuying Chen
- Department of Pediatrics, Affiliated Hospital of Taishan Medical University, Tai'an 271000, China
| |
Collapse
|
34
|
Felling RJ, Covey MV, Wolujewicz P, Batish M, Levison SW. Astrocyte-produced leukemia inhibitory factor expands the neural stem/progenitor pool following perinatal hypoxia-ischemia. J Neurosci Res 2016; 94:1531-1545. [PMID: 27661001 DOI: 10.1002/jnr.23929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Brain injuries, such as cerebral hypoxia-ischemia (H-I), induce a regenerative response from the neural stem/progenitors (NSPs) of the subventricular zone (SVZ); however, the mechanisms that regulate this expansion have not yet been fully elucidated. The Notch- Delta-Serrate-Lag2 (DSL) signaling pathway is considered essential for the maintenance of neural stem cells, but it is not known if it is necessary for the expansion of the NSPs subsequent to perinatal H-I injury. Therefore, the aim of this study was to investigate whether this pathway contributes to NSP expansion in the SVZ after H-I and, if so, to establish whether this pathway is directly induced by H-I or regulated by paracrine factors. Here we report that Notch1 receptor induction and one of its ligands, Delta-like 1, precedes NSP expansion after perinatal H-I in P6 rat pups and that this increase occurs specifically in the most medial cell layers of the SVZ where the stem cells reside. Pharmacologically inhibiting Notch signaling in vivo diminished NSP expansion. With an in vitro model of H-I, Notch1 was not induced directly by hypoxia, but was stimulated by soluble factors, specifically leukemia inhibitory factor, produced by astrocytes within the SVZ. These data confirm the importance both of the Notch-DSL signaling pathway in the expansion of NSPs after H-I and in the role of the support cells in their niche. They further support the body of evidence that indicates that leukemia inhibitory factor is a key injury-induced cytokine that is stimulating the regenerative response of the NSPs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan J Felling
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology, Physiology and Neuroscience, RBHS-New Jersey Medical School, Newark, New Jersey
| | - Matthew V Covey
- Department of Pharmacology, Physiology and Neuroscience, RBHS-New Jersey Medical School, Newark, New Jersey
| | - Paul Wolujewicz
- Department of Microbiology, Biochemistry and Molecular Genetics, RBHS-New Jersey Medical School, Newark, New Jersey
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, RBHS-New Jersey Medical School, Newark, New Jersey
| | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, RBHS-New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
35
|
Clausi MG, Kumari E, Levison SW. Unmasking the responses of the stem cells and progenitors in the subventricular zone after neonatal and pediatric brain injuries. Neural Regen Res 2016; 11:45-8. [PMID: 26981076 PMCID: PMC4774221 DOI: 10.4103/1673-5374.175041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone (SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuries has been hindered by the lack of sensitive approaches to study the cellular composition of this niche. Here we review progress being made in deciphering the cells of the SVZ gleaned from the use of a recently designed flow cytometry panel that allows SVZ cells to be parsed into multiple subsets of progenitors as well as putative stem cells. We review how this approach has begun to unmask both the heterogeneity of SVZ cells as well as the dynamic shifts in cell populations with neonatal and pediatric brain injuries. We also discuss how flow cytometric analyses also have begun to reveal how specific cytokines, such as Leukemia inhibitory factor are coordinating SVZ responses to injury.
Collapse
Affiliation(s)
- Mariano Guardia Clausi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Ekta Kumari
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
36
|
Involvement of Cold Inducible RNA-Binding Protein in Severe Hypoxia-Induced Growth Arrest of Neural Stem Cells In Vitro. Mol Neurobiol 2016; 54:2143-2153. [PMID: 26927658 PMCID: PMC5355520 DOI: 10.1007/s12035-016-9761-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia is the leading cause of brain damage with birth complications. Many studies have reported proliferation-promoting effect of mild hypoxia on neural stem cells (NSCs). However, how severe hypoxia influences the behavior of NSCs has been poorly explored. In the present study, we investigated the effects of 5, 3, and 1 % oxygen exposure on NSCs in vitro. MTT, neurosphere assay, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation revealed a quick growth arrest of C17.2 cells and primary NSCs induced by 1 % oxygen exposure. Cell cycle analysis showed that this hypoxia exposure caused a significant increase of cells in G0/G1 phase and decrease of cells in S phase that is associated with decrease of Cyclin D1. Interestingly, the expression of cold inducible RNA-binding protein (CIRBP), a cold responsive gene reacting to multiple cellular stresses, was decreased in parallel with the 1 % oxygen-induced proliferation inhibition. Forced expression of CIRBP under hypoxia could restore the proliferation of NSCs, as showed by EdU incorporation and cell cycle analysis. Furthermore, the expression of Cyclin D1 under hypoxia was also restored by CIRBP overexpression. Taken together, these data suggested a growth-suppressing effect of severe hypoxia on NSCs and, for the first time, revealed a novel role of CIRBP in hypoxia-induced cell cycle arrest, suggesting that modulating CIRBP may be utilized for preventing hypoxia-induced neonatal brain injury.
Collapse
|