1
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. Aging Cell 2024:e14439. [PMID: 39722190 DOI: 10.1111/acel.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased the risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD as they age.
Collapse
Affiliation(s)
- Artur Shvetcov
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Psychological Medicine, Sydney Children's Hospital Network, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Shannon Thomson
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin A Finney
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
AmeliMojarad M, AmeliMojarad M, Cui X. An overview on the impact of viral pathogens on Alzheimer's disease. Ageing Res Rev 2024; 104:102615. [PMID: 39631533 DOI: 10.1016/j.arr.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia which affects over than 60 million cases worldwide with higher incidence in low and middle-income countries by 2030. Based on the multifactorial nature of AD different risk factors are linked to the condition considering the brain's β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) as its primary hallmarks. Lately, viral photogenes specially after recent SARS-CoV-2 pandemic has gained a lot of attention in promoting the neurodegenerative disorder such as AD based on their capacity to increase the permeability of the blood-brain barrier, dysregulation of immune responses, and the impact on Aβ processing and phosphorylation of tau proteins. Therefore, in this review, we summarized the important association of viral pathogens and their mechanism by which they contribute with AD formation and development. AN OVERVIEW OF THE ROLES OF VIRAL PATHOGENS IN AD: According to this figure, viruses can infect neurons directly by modulating the BBB, transferring from endothelial cells to glial cells and then to neurons, increasing the Aβ deposition, and affecting the tau protein phosphorylation or indirectly through the virus's entrance and pathogenicity that can be accelerated by genetic and epigenetic factors, as well as chronic neuroinflammation caused by activated microglia and astrocytes.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Xiaonan Cui
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
3
|
Zhou L, Wang N, Feng W, Liu X, Wu Q, Chen J, Jiao X, Ning X, Qi Z, Xu Z, Jiang X, Zhao Q. Soluble TGF-β decoy receptor TGFBR3 exacerbates Alzheimer's disease pathology by modifying microglial function. Glia 2024; 72:2201-2216. [PMID: 39137117 DOI: 10.1002/glia.24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is a major cause of progressive dementia characterized by memory loss and progressive neurocognitive dysfunction. However, the molecular mechanisms are not fully understood. To elucidate the molecular mechanism contributing to AD, an integrated analytical workflow was deployed to identify pivotal regulatory target within the RNA-sequencing (RNA-seq) data of the temporal cortex from AD patients. Soluble transforming growth factor beta receptor 3 (sTGFBR3) was identified as a critical target in AD, which was abnormally elevated in AD patients and AD mouse models. We then demonstrated that sTGFBR3 deficiency restored spatial learning and memory deficits in amyloid precursor protein (APP)/PS1 and streptozotocin (STZ)-induced neuronal impairment mice after its expression was disrupted by a lentiviral (LV) vector expressing shRNA. Mechanistically, sTGFBR3 deficiency augments TGF-β signaling and suppressing the NF-κB pathway, thereby reduced the number of disease-associated microglia (DAMs), inhibited proinflammatory activity and increased the phagocytic activity of DAMs. Moreover, sTGFBR3 deficiency significantly mitigated acute neuroinflammation provoked by lipopolysaccharide (LPS) and alleviated neuronal dysfunction induced by STZ. Collectively, these results position sTGFBR3 as a promising candidate for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Nan Wang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Wenzheng Feng
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xin Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Jiangxia Chen
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xinming Jiao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xinyue Ning
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhentong Qi
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zihua Xu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Xiaowen Jiang
- College of Traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Qingchun Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| |
Collapse
|
4
|
El Abiad E, Al-Kuwari A, Al-Aani U, Al Jaidah Y, Chaari A. Navigating the Alzheimer's Biomarker Landscape: A Comprehensive Analysis of Fluid-Based Diagnostics. Cells 2024; 13:1901. [PMID: 39594648 PMCID: PMC11593284 DOI: 10.3390/cells13221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects a significant portion of the aging population, presenting a serious challenge due to the limited availability of effective therapies during its progression. The disease advances rapidly, underscoring the need for early diagnosis and the application of preventative measures. Current diagnostic methods for AD are often expensive and invasive, restricting access for the general public. One potential solution is the use of biomarkers, which can facilitate early detection and treatment through objective, non-invasive, and cost-effective evaluations of AD. This review critically investigates the function and role of biofluid biomarkers in detecting AD, with a specific focus on cerebrospinal fluid (CSF), blood-based, and saliva biomarkers. RESULTS CSF biomarkers have demonstrated potential for accurate diagnosis and valuable prognostic insights, while blood biomarkers offer a minimally invasive and cost-effective approach for diagnosing cognitive issues. However, while current biomarkers for AD show significant potential, none have yet achieved the precision needed to replace expensive PET scans and CSF assays. The lack of a single accurate biomarker underscores the need for further research to identify novel or combined biomarkers to enhance the clinical efficacy of existing diagnostic tests. In this context, artificial intelligence (AI) and deep-learning (DL) tools present promising avenues for improving biomarker analysis and interpretation, enabling more precise and timely diagnoses. CONCLUSIONS Further research is essential to confirm the utility of all AD biomarkers in clinical settings. Combining biomarker data with AI tools offers a promising path toward revolutionizing the personalized characterization and early diagnosis of AD symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (E.E.A.); (A.A.-K.); (U.A.-A.); (Y.A.J.)
| |
Collapse
|
5
|
Mahendran G, Breger K, McCown PJ, Hulewicz JP, Bhandari T, Addepalli B, Brown JA. Multi-Omics Approach Reveals Genes and Pathways Affected in Miller-Dieker Syndrome. Mol Neurobiol 2024:10.1007/s12035-024-04532-7. [PMID: 39508990 DOI: 10.1007/s12035-024-04532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Miller-Dieker syndrome (MDS) is a rare neurogenetic disorder resulting from a heterozygous deletion of 26 genes in the MDS locus on human chromosome 17. MDS patients often die in utero and only 10% of those who are born reach 10 years of age. Current treatments mostly prevent complications and control seizures. A detailed understanding of the pathogenesis of MDS through gene expression studies would be useful in developing precise medical approaches toward MDS. To better understand MDS at the molecular level, we performed RNA sequencing on RNA and mass spectrometry on total protein isolated from BJ (non-MDS) cells and GM06097 (MDS) cells, which were derived from a healthy individual and an MDS patient, respectively. Differentially expressed genes (DEGs) at the RNA and protein levels involved genes associated with phenotypic features reported in MDS patients (CACNG4, ADD2, SPTAN1, SHANK2), signaling pathways (GABBR2, CAMK2B, TRAM-1), and nervous system development (CAMK2B, BEX1, ARSA). Functional assays validated enhanced calcium signaling, downregulated protein translation, and cell migration defects in MDS. Interestingly, overexpression of methyltransferase-like protein 16 (METTL16), a protein encoded in the MDS locus, restored defects in protein translation, phosphor states of mTOR (mammalian target of rapamycin) pathway regulators, and cell migration in MDS cells. Although DNA- and RNA-modifying enzymes were among the DEGs and the intracellular SAM/SAH ratio was eightfold lower in MDS cells, global nucleoside modifications remained unchanged. Thus, this study identified specific genes and pathways responsible for the gene expression changes, which could lead to better therapeutics for MDS patients.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Phillip J McCown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Internal Medicine, Division of Nephrology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tulsi Bhandari
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Nardi F, Del Prete R, Drago R, Di Rita A, Vallone FE, Ciofini S, Malchiodi M, Pezzella L, Tinti L, Cicaloni V, Salvini L, Licastro D, Pezacki AT, Chang CJ, Marotta G, Naldini A, Deaglio S, Vaisitti T, Gozzetti A, Bocchia M, Kabanova A. Apoliprotein E-mediated ferroptosis controls cellular proliferation in chronic lymphocytic leukemia. Leukemia 2024:10.1038/s41375-024-02442-0. [PMID: 39443737 DOI: 10.1038/s41375-024-02442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Unraveling vulnerabilities in chronic lymphocytic leukemia (CLL) represents a key approach to understand molecular basis for its indolence and a path toward developing tailored therapeutic approaches. In this study, we found that CLL cells are particularly sensitive to the inhibitory action of abundant serum protein, apolipoprotein E (ApoE). Physiological concentrations of ApoE affect CLL cell viability and inhibit CD40-driven proliferation. Transcriptomics of ApoE-treated CLL cells revealed a signature of redox and metal disbalance which prompted us to explore the underlying mechanism of cell death. We discover, on one hand, that ApoE treatment of CLL cells induces lipid peroxidation and ferroptosis. On the other hand, we find that ApoE is a copper-binding protein and that intracellular copper regulates ApoE toxicity. ApoE regulation tends to be lost in aggressive CLL. CLL cells from patients with high leukocyte counts are less sensitive to ApoE inhibition, while resistance to ApoE is possible in transformed CLL cells from patients with Richter syndrome (RS). Nevertheless, both aggressive CLL and RS cells maintain sensitivity to drug-induced ferroptosis. Our findings suggest a natural suppression axis that mediates ferroptotic disruption of CLL cell proliferation, building up the rationale for choosing ferroptosis as a therapeutic target in CLL and RS.
Collapse
Affiliation(s)
- Federica Nardi
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Roberta Drago
- Fondazione Toscana Life Sciences, Siena, Italy
- PhD program in Translational and Precision Medicine, University of Siena, Siena, Italy
| | - Anthea Di Rita
- Fondazione Toscana Life Sciences, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Sara Ciofini
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Margherita Malchiodi
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | - Laura Tinti
- Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital of Siena, Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gozzetti
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Monica Bocchia
- Hematology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | |
Collapse
|
7
|
More S, Bonnereau J, Wouters D, Spotbeen X, Karras P, Rizzollo F, Killian T, Venken T, Naulaerts S, Vervoort E, Ganne M, Nittner D, Verhoeven J, Bechter O, Bosisio F, Lambrechts D, Sifrim A, Stockwell BR, Swinnen JV, Marine JC, Agostinis P. Secreted Apoe rewires melanoma cell state vulnerability to ferroptosis. SCIENCE ADVANCES 2024; 10:eadp6164. [PMID: 39413195 DOI: 10.1126/sciadv.adp6164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
A major therapeutic barrier in melanoma is the coexistence of diverse cellular states marked by distinct metabolic traits. Transitioning from a proliferative to an invasive melanoma phenotype is coupled with increased ferroptosis vulnerability. However, the regulatory circuits controlling ferroptosis susceptibility across melanoma cell states are unknown. In this work, we identified Apolipoprotein E (APOE) as the top lipid-metabolism gene segregating the melanoma MITFhigh/AXLlow proliferative/ferroptosis-resistant from MITFlow/AXLhigh invasive/ferroptosis-sensitive state. Mechanistically, ApoE secreted by the MITFhigh/AXLlow cells protects the invasive phenotype from ferroptosis-inducing agents by reducing the content of peroxidation-prone polyunsaturated fatty acids and boosting GPX4 levels both in vitro and in vivo. Whole-exome sequencing indicates that APOEhigh expression in patients with melanoma is associated with resistance to ferroptosis, regardless of APOE germline status. In aggregate, we found a ferroptosis-resistance mechanism between melanoma cell states relying on secreted ApoE and APOEhigh expression as a potential biomarker for poor ferroptosis response in melanoma.
Collapse
Affiliation(s)
- Sanket More
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Julie Bonnereau
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Wouters
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Theo Killian
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven, Leuven, Belgium
| | - Tom Venken
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Nittner
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Spatial Multiomics Expertise Center, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- LKI, Department of General Medical Oncology, Department of Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Translational Genetics Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Artificial Intelligence (Leuven.AI), University of Leuven, KU Leuven, Leuven, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Meyer-Acosta KK, Diaz-Guerra E, Varma P, Aruk A, Mirsadeghi S, Perez AM, Rafati Y, Hosseini A, Nieto-Estevez V, Giugliano M, Navara C, Hsieh J. APOE4 impacts cortical neurodevelopment and alters network formation in human brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617044. [PMID: 39416105 PMCID: PMC11482793 DOI: 10.1101/2024.10.07.617044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Apolipoprotein E4 ( APOE4 ) is the leading genetic risk factor for Alzheimer's disease. While most studies examine the role of APOE4 in aging, imaging, and cognitive assessments reveal that APOE4 influences brain structure and function as early as infancy. Here, we examined human-relevant cellular phenotypes across neurodevelopment using induced pluripotent stem cell (iPSC) derived cortical and ganglionic eminence organoids (COs and GEOs). In COs, we showed that APOE4 decreased BRN2+ and SATB2+ cortical neurons, increased astrocytes and outer radial glia, and was associated with increased cell death and dysregulated GABA-related gene expression. In GEOs, APOE4 accelerated maturation of neural progenitors and neurons. Multi-electrode array recordings in assembloids revealed that APOE4 disrupted network formation and altered response to GABA, resulting in heightened excitability and synchronicity. Together, our data provides new insights into how APOE4 may influence cortical neurodevelopmental processes and network formation in the human brain.
Collapse
|
9
|
Oakley DH, Chung M, Abrha S, Hyman BT, Frosch MP. β-Amyloid species production and tau phosphorylation in iPSC-neurons with reference to neuropathologically characterized matched donor brains. J Neuropathol Exp Neurol 2024; 83:772-782. [PMID: 38874454 PMCID: PMC11333826 DOI: 10.1093/jnen/nlae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of β-amyloid (Aβ) Aβ40, Aβ42, and Aβ43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aβ43 production by fAD iPSC-neurons and Aβ43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aβ species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aβ production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aβ species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.
Collapse
Affiliation(s)
- Derek H Oakley
- Harvard Medical School, Boston, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Mirra Chung
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sara Abrha
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bradley T Hyman
- Harvard Medical School, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Matthew P Frosch
- Harvard Medical School, Boston, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Boston, MA, United States
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
11
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2024:10.1007/s12035-024-04449-1. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
12
|
Liu Z, Liu Y, Yu Z, Tan C, Pek N, O'Donnell A, Wu A, Glass I, Winlaw DS, Guo M, Spence JR, Chen YW, Yutzey KE, Miao Y, Gu M. APOE-NOTCH axis governs elastogenesis during human cardiac valve remodeling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:933-950. [PMID: 39196035 DOI: 10.1038/s44161-024-00510-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2024] [Indexed: 08/29/2024]
Abstract
Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yu Liu
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Cheng Tan
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Nicole Pek
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Anna O'Donnell
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - David S Winlaw
- Cardiothoracic Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine E Yutzey
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yifei Miao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Ortega A, Chernicki B, Ou G, Parmar MS. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04285-3. [PMID: 38958888 DOI: 10.1007/s12035-024-04285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that affects memory and cognitive abilities, affecting millions of people around the world. Current treatments focus on the management of symptoms, as no effective therapy has been approved to modify the underlying disease process. Gene therapy is a promising approach that can offer disease-modifying treatment for AD, targeting various aspects of the pathophysiology of the disease. This review presents a comprehensive overview of the current state of gene therapy research for AD, with a specific focus on clinical trials and preclinical studies that have used nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), apolipoprotein E2 (APOE2), and human telomerase reverse transcriptase (hTERT) as therapeutic gene therapy approaches. These gene targets have shown potential to alleviate the neuropathology of AD in animal studies and have demonstrated feasibility and safety in non-human primates. Despite the failure of the NGF gene therapy approach in clinical trials, we have reviewed and highlighted the reported findings and evaluations from the trials. Furthermore, the review included the conclusions of postmortem brain tissue analysis of AD patients who received NGF gene therapy. The goal is to learn from the failed trials and improve the approach in the future. Although gene therapy shows promise, it faces several challenges and limitations, including optimizing gene delivery methods, enhancing safety and efficacy profiles, and determining long-term results. This review contributes to the growing body of literature on innovative treatments for AD and highlights the need for more research and development to advance gene therapy as a viable treatment option for AD.
Collapse
Affiliation(s)
- Angelica Ortega
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Brendan Chernicki
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Grace Ou
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
14
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2024:10.1007/s12035-024-04315-0. [PMID: 38935232 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590160. [PMID: 38915547 PMCID: PMC11195053 DOI: 10.1101/2024.04.18.590160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. METHODS Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. RESULTS We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. DISCUSSION APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospital Network, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H. Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ning Z, Liu Y, Wan M, Zuo Y, Chen S, Shi Z, Xu Y, Li H, Ko H, Zhang J, Xiao S, Guo D, Tang Y. APOE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell Mol Biol Lett 2024; 29:87. [PMID: 38867189 PMCID: PMC11170814 DOI: 10.1186/s11658-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aβ). Moreover, APOE2 overexpression alleviates Aβ1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aβ1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aβ injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Mengyao Wan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - You Zuo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Pourfridoni M, Hedayati-Moghadam M, Fathi S, Fathi S, Mirrashidi FS, Askarpour H, Shafieemojaz H, Baghcheghi Y. Beneficial effects of metformin treatment on memory impairment. Mol Biol Rep 2024; 51:640. [PMID: 38727848 DOI: 10.1007/s11033-024-09445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.
Collapse
Affiliation(s)
- Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shirin Fathi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shiva Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Sadat Mirrashidi
- Departrment of Pediatrics, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hedyeh Askarpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hadi Shafieemojaz
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
18
|
Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, Ying J, Liang W, Hua F. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14721. [PMID: 38644578 PMCID: PMC11033503 DOI: 10.1111/cns.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aβ (β-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPβ in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS Several studies have demonstrated an elevation in the expression level of C/EBPβ among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPβ expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPβ can be a new therapeutic target for AD. METHODS A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS Overexpression of C/EBPβ exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION The correlation between overexpression of C/EBPβ and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPβ regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPβ overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION The overexpression of C/EBPβ accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPβ plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPβ could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.
Collapse
Affiliation(s)
- Qing Yao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Chubing Long
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Pengcheng Yi
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Guangyong Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Wei Wan
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Jun Ying
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| |
Collapse
|
19
|
Ferguson CM, Hildebrand S, Godinho BMDC, Buchwald J, Echeverria D, Coles A, Grigorenko A, Vangjeli L, Sousa J, McHugh N, Hassler M, Santarelli F, Heneka MT, Rogaev E, Khvorova A. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024; 20:2632-2652. [PMID: 38375983 PMCID: PMC11032532 DOI: 10.1002/alz.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.
Collapse
Affiliation(s)
- Chantal M. Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Grigorenko
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB)Esch‐sur‐AlzetteLuxembourg
| | - Evgeny Rogaev
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
20
|
Qian Z, Li B, Meng X, Liao J, Wang G, Li Y, Luo Q, Ye K. Inhibition of asparagine endopeptidase (AEP) effectively treats sporadic Alzheimer's disease in mice. Neuropsychopharmacology 2024; 49:620-630. [PMID: 38030711 PMCID: PMC10789813 DOI: 10.1038/s41386-023-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with cognitive dysfunction as its major clinical symptom. However, there is no disease-modifying small molecular medicine to effectively slow down progression of the disease. Here, we show an optimized asparagine endopeptidase (AEP, also known as δ-secretase) inhibitor, #11 A, that displays an orderly in vivo pharmacokinetics/pharmacodynamics (PK/PD) relationship and robustly attenuates AD pathologies in a sporadic AD mouse model. #11 A is brain permeable with great oral bioavailability. It blocks AEP cleavage of APP and Tau dose-dependently, and significantly decreases Aβ40 and Aβ42 and p-Tau levels in APP/PS1 and Tau P301S mice after oral administration. Notably, #11 A strongly inhibits AEP and prevents mouse APP and Tau fragmentation by AEP, leading to reduction of mouse Aβ42 (mAβ42), mAβ40 and mouse p-Tau181 levels in Thy1-ApoE4/C/EBPβ transgenic mice in a dose-dependent manner. Repeated oral administration of #11 A substantially decreases mAβ aggregation as validated by Aβ PET assay, Tau pathology, neurodegeneration and brain volume reduction, resulting in alleviation of cognitive impairment. Therefore, our results support that #11 A is a disease-modifying preclinical candidate for pharmacologically treating AD.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Guangxing Wang
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
21
|
Xu H, Jiang W, Li X, Jiang J, Afridi SK, Deng L, Li R, Luo E, Zhang Z, Huang YWA, Cui Y, So KF, Chen H, Qiu W, Tang C. hUC-MSCs-derived MFGE8 ameliorates locomotor dysfunction via inhibition of ITGB3/ NF-κB signaling in an NMO mouse model. NPJ Regen Med 2024; 9:4. [PMID: 38242900 PMCID: PMC10798960 DOI: 10.1038/s41536-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvβ3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.
Collapse
Affiliation(s)
- Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Jiaohua Jiang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Longhui Deng
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Ermei Luo
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Zhaoqing Zhang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship 15 Street, Providence, RI, 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kwok-Fai So
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
22
|
Xu DC, Sas-Nowosielska H, Donahue G, Huang H, Pourshafie N, Good CR, Berger SL. Histone acetylation in an Alzheimer's disease cell model promotes homeostatic amyloid-reducing pathways. Acta Neuropathol Commun 2024; 12:3. [PMID: 38167174 PMCID: PMC10759377 DOI: 10.1186/s40478-023-01696-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's Disease (AD) is a disorder characterized by cognitive decline, neurodegeneration, and accumulation of amyloid plaques and tau neurofibrillary tangles in the brain. Dysregulation of epigenetic histone modifications may lead to expression of transcriptional programs that play a role either in protecting against disease genesis or in worsening of disease pathology. One such histone modification, acetylation of histone H3 lysine residue 27 (H3K27ac), is primarily localized to genomic enhancer regions and promotes active gene transcription. We previously discovered H3K27ac to be more abundant in AD patient brain tissue compared to the brains of age-matched non-demented controls. In this study, we use iPSC-neurons derived from familial AD patients with an amyloid precursor protein (APP) duplication (APPDup neurons) as a model to study the functional effect of lowering CBP/P300 enzymes that catalyze H3K27ac. We found that homeostatic amyloid-reducing genes were upregulated in the APPDup neurons compared to non-demented controls. We lowered CBP/P300 to reduce H3K27ac, which led to decreased expression of numerous of these homeostatic amyloid-reducing genes, along with increased extracellular secretion of a toxic amyloid-β species, Aβ(1-42). Our findings suggest that epigenomic histone acetylation, including H3K27ac, drives expression of compensatory genetic programs in response to AD-associated insults, specifically those resulting from APP duplication, and thus may play a role in mitigating AD pathology in neurons.
Collapse
Affiliation(s)
- Daniel C Xu
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Hanna Sas-Nowosielska
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Hua Huang
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Naemeh Pourshafie
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Charly R Good
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
25
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| |
Collapse
|
26
|
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, Khan Afridi S, Lai S, Qiu X, Liu C, Li H, Long Y, Wang Y, Connolly K, Elias JA, Lee CG, Cui Y, Huang YWA, Qiu W, Tang C. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. SCIENCE ADVANCES 2023; 9:eadg8148. [PMID: 37756391 PMCID: PMC10530095 DOI: 10.1126/sciadv.adg8148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening β-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/β-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huilu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Jack A. Elias
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Chun Geun Lee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
27
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
28
|
Ephrame SJ, Cork GK, Marshall V, Johnston MA, Shawa J, Alghusen I, Qiang A, Denson AR, Carman MS, Fedosyuk H, Swerdlow RH, Slawson C. O-GlcNAcylation regulates extracellular signal-regulated kinase (ERK) activation in Alzheimer's disease. Front Aging Neurosci 2023; 15:1155630. [PMID: 37469955 PMCID: PMC10352608 DOI: 10.3389/fnagi.2023.1155630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Aberrant activation of Extracellular Signal-Regulated Kinase (ERK) signaling is associated with Alzheimer's disease (AD) pathogenesis. For example, enhanced ERK signal activation mediated by Apolipoprotein E4 (APOE4), which is a critical genetic risk factor for AD, increases the transcription of amyloid precursor protein (APP). We hypothesize that O-linked N-acetylglucosamine (O-GlcNAc) regulates the phosphorylation and activation of ERK. O-GlcNAc is a single sugar post-translational modification that dynamically cycles on and off proteins in response to nutrient changes by the action of the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. However, O-GlcNAc quickly returns to a baseline level after stimulus removal (called O-GlcNAc homeostasis). Methods We did a serum reactivation time-course followed by western blot in SH-SY5Y neuroblastoma cells after long-term O-GlcNAcase (OGA) inhibition by Thiamet-G (TMG) treatment, O-GlcNAc transferase (OGT) knock-down (KD) and OGA KD. Brain tissues of C57BL6/J mice and 5XFAD Alzheimer's disease mice intra-peritoneally injected with TMG for 1 month and C57BL6/J mice intra-peritoneally injected with TMG for 6 months were also used for western blot. Results We found that ERK1/2 phosphorylation at Thr 202/Tyr204 and Thr183/Tyr185 (p-ERK) are amplified and hence ERK1/2 are activated after long-term OGA inhibition in SH-SY5Y cells. In addition to pharmacological treatment, genetic disruption of O-GlcNAc by OGT KD and OGA KD also increased p-ERK in SH-SY5Y cells suggesting O-GlcNAc homeostasis controls ERK signaling. To determine how O-GlcNAc regulates p-ERK, we probed the expression of phosphorylated mitogen-activated protein kinase-kinase (p-MEK) which phosphorylates and activates ERK and Dual specificity phosphatase-4 (DUSP4) which dephosphorylates and inactivates ERK in SH-SY5Y cells. p-MEK increases in TMG treated and OGT KD cells whereas total DUSP4 decreases in OGT KD and OGA KD cells with serum reactivation time course. Next, we probed the role of OGA inhibition in regulating ERK activation using mice brain-tissue samples. Interestingly, 6-month intra-peritoneal TMG injection in C57BL/6J mice showed an increase in amplitude of p-ERK and APP protein levels, indicating long-term OGA inhibition potentially contributes to AD progression. Furthermore, 1-month TMG injection was sufficient to increase the amplitude of p-ERK in 5XFAD AD mice brains suggesting AD phenotype contributes to the acceleration of ERK activation mediated by OGA inhibition. Conclusion Together, these results indicate that disruptions to O-GlcNAc homeostasis amplify ERK signal activation in AD.
Collapse
Affiliation(s)
- Sophiya John Ephrame
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gentry K. Cork
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Victoria Marshall
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Margaret A. Johnston
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jenna Shawa
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ibtihal Alghusen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Amy Qiang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aspin R. Denson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marisa S. Carman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Nemergut M, Marques SM, Uhrik L, Vanova T, Nezvedova M, Gadara DC, Jha D, Tulis J, Novakova V, Planas-Iglesias J, Kunka A, Legrand A, Hribkova H, Pospisilova V, Sedmik J, Raska J, Prokop Z, Damborsky J, Bohaciakova D, Spacil Z, Hernychova L, Bednar D, Marek M. Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's Disease drug candidate. Mol Neurodegener 2023; 18:38. [PMID: 37280636 DOI: 10.1186/s13024-023-00620-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown. METHODS Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations. Treatment of ApoE ε3/ε3 and ε4/ε4 cerebral organoids with tramiprosate was used to compare the effect of tramiprosate on ApoE4 aggregation at the cellular level. RESULTS We found that C112R substitution in ApoE4 induces long-distance (> 15 Å) conformational changes leading to the formation of a V-shaped dimeric unit that is geometrically different and more aggregation-prone than the ApoE3 structure. AD drug candidate tramiprosate and its metabolite 3-sulfopropanoic acid induce ApoE3-like conformational behavior in ApoE4 and reduce its aggregation propensity. Analysis of ApoE ε4/ε4 cerebral organoids treated with tramiprosate revealed its effect on cholesteryl esters, the storage products of excess cholesterol. CONCLUSIONS Our results connect the ApoE4 structure with its aggregation propensity, providing a new druggable target for neurodegeneration and ageing.
Collapse
Affiliation(s)
- Michal Nemergut
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Trieda SNP 1, Kosice, 04011, Slovakia
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Tereza Vanova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Marketa Nezvedova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | | | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Tulis
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Novakova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Anthony Legrand
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Pospisilova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiri Sedmik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Raska
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic
| | - Dasa Bohaciakova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, Brno, 656 91, Czech Republic.
| |
Collapse
|
30
|
Huang C, Li J, Liu C, Zhang Y, Tang Q, Lv X, Ruan M, Deng K. Investigation of brain iron levels in Chinese patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1168845. [PMID: 37284016 PMCID: PMC10239950 DOI: 10.3389/fnagi.2023.1168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction We aimed (i) to explore the diagnostic value of deep gray matter magnetic susceptibility in Alzheimer's disease (AD) in China and (ii) to analyze its correlation with neuropsychiatric scales. Moreover, we conducted subgroup analysis based on the presence of the APOE-ε4 gene to improve the diagnosis of AD. Methods From the prospective studies of the China Aging and Neurodegenerative Initiative (CANDI), a total of 93 subjects who could undergo complete quantitative magnetic susceptibility imaging and APOE-ε4 gene detection were selected. Differences in quantitative susceptibility mapping (QSM) values between and within groups, including AD patients, individuals with mild cognitive impairment (MCI), and healthy controls (HCs), both APOE-ε4 carriers and non-carriers, were analyzed. Results In primary analysis, the magnetic susceptibility values of the bilateral caudate nucleus and right putamen in the AD group and of the right caudate nucleus in the MCI group were significantly higher than those in the HCs group (P < 0.05). In APOE-ε4 non-carriers, there were significant differences in more regions between the AD, MCI, and HCs groups, such as the left putamen and the right globus pallidus (P < 0.05). In subgroup analysis, the correlation between QSM values in some brain regions and neuropsychiatric scales was even stronger. Discussion Exploration of the correlation between deep gray matter iron levels and AD may provide insight into the pathogenesis of AD and facilitate early diagnosis in elderly Chinese. Further subgroup analysis based on the presence of the APOE-ε4 gene may further improve the diagnostic efficiency and sensitivity.
Collapse
Affiliation(s)
- Chuanbin Huang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
- Fuyang Hospital of TCM, Fuyang, Anhui, China
| | - Jing Li
- Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Chang Liu
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | | | - Qiqiang Tang
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Xinyi Lv
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Mengyue Ruan
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| | - Kexue Deng
- The First Affiliated Hospital of University of Science and Technology of China Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
31
|
Anwar F, Al-Abbasi FA, Naqvi S, Sheikh RA, Alhayyani S, Asseri AH, Asar TO, Kumar V. Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma. Int J Nanomedicine 2023; 18:2737-2756. [PMID: 37250469 PMCID: PMC10211371 DOI: 10.2147/ijn.s405454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India
| |
Collapse
|
32
|
Chernyaeva L, Ratti G, Teirilä L, Fudo S, Rankka U, Pelkonen A, Korhonen P, Leskinen K, Keskitalo S, Salokas K, Gkolfinopoulou C, Crompton KE, Javanainen M, Happonen L, Varjosalo M, Malm T, Leinonen V, Chroni A, Saavalainen P, Meri S, Kajander T, Wollman AJ, Nissilä E, Haapasalo K. Reduced binding of apoE4 to complement factor H promotes amyloid-β oligomerization and neuroinflammation. EMBO Rep 2023:e56467. [PMID: 37155564 DOI: 10.15252/embr.202256467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aβ1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aβ1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aβ1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aβ1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aβ plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.
Collapse
Affiliation(s)
- Larisa Chernyaeva
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Laura Teirilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satoshi Fudo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Uni Rankka
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anssi Pelkonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | | | - Matti Javanainen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Päivi Saavalainen
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Humanitas University, Milano, Italy
| | - Tommi Kajander
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Adam Jm Wollman
- Biosciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Eija Nissilä
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Medicum and Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
34
|
Kondo T, Yada Y, Ikeuchi T, Inoue H. CDiP technology for reverse engineering of sporadic Alzheimer's disease. J Hum Genet 2023; 68:231-235. [PMID: 35680997 PMCID: PMC9968655 DOI: 10.1038/s10038-022-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes cognitive impairment for which neither treatable nor preventable approaches have been confirmed. Although genetic factors are considered to contribute to sporadic AD, for the majority of AD patients, the exact causes of AD aren't fully understood. For AD genetics, we developed cellular dissection of polygenicity (CDiP) technology to identify the smallest unit of AD, i.e., genetic factors at a cellular level. By CDiP, we found potential therapeutic targets, a rare variant for disease stratification, and polygenes to predict real-world AD by using the real-world data of AD cohort studies (Alzheimer's Disease Neuroimaging Initiative: ADNI and Japanese Alzheimer's Disease Neuroimaging Initiative: J-ADNI). In this review, we describe the components and results of CDiP in AD, induced pluripotent stem cell (iPSC) cohort, a cell genome-wide association study (cell GWAS), and machine learning. And finally, we discuss the future perspectives of CDiP technology for reverse engineering of sporadic AD toward AD eradication.
Collapse
Affiliation(s)
- Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Yuichiro Yada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
35
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
36
|
Miao G, Zhuo D, Han X, Yao W, Liu C, Liu H, Cao H, Sun Y, Chen Z, Feng T. From degenerative disease to malignant tumors: Insight to the function of ApoE. Biomed Pharmacother 2023; 158:114127. [PMID: 36516696 DOI: 10.1016/j.biopha.2022.114127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein involved in lipid transport and lipoprotein metabolism, mediating lipid distribution/redistribution in tissues and cells. It can also regulate inflammation and immune function, maintain cytoskeleton stability, and improve neural tissue Function. Due to genetic polymorphisms of ApoE (ε2, ε3, and ε4), its three common structural isoforms (ApoE2, ApoE3, ApoE4) are also associated with the risk of many diseases, especially degenerative diseases, such as vascular degenerative diseases including atherosclerosis (AS), coronary heart disease (CHD), and neurodegenerative disease like Alzheimer's disease (AD). The frequency of the ε4 allele and APOE variants were significantly higher than that of the ε2 and ε3 alleles in the patients with CHD or AD. In recent years, ApoE has frequently appeared in tumor research and become a tumor biomarker gradually. It has been found that ApoE is highly expressed in most solid tumor tissues, such as glioblastoma, gastric cancer, pancreatic ductal cell carcinoma, etc. Studies illustrated that ApoE could regulate the polarization changes of macrophages, participate in the construction of tumor immune microenvironment, regulate tumor inflammation and immune response and play a role in tumor progression, invasion, and metastasis. Of course, many functions of ApoE and its relationship with diseases are still under research. By reviewing the structure and function of ApoE from degeneration diseases to tumor neoplasms, we hope to better understand such a biomarker and further explore the value of ApoE in later studies.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China; Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Han
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chuan Liu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
38
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
39
|
Schultheis N, Becker R, Berhanu G, Kapral A, Roseman M, Shah S, Connell A, Selleck S. Regulation of autophagy, lipid metabolism, and neurodegenerative pathology by heparan sulfate proteoglycans. Front Genet 2023; 13:1012706. [PMID: 36699460 PMCID: PMC9870329 DOI: 10.3389/fgene.2022.1012706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate modified proteins or proteoglycans (HSPGs) are an abundant class of cell surface and extracellular matrix molecules. They serve important co-receptor functions in the regulation of signaling as well as membrane trafficking. Many of these activities directly affect processes associated with neurodegeneration including uptake and export of Tau protein, disposition of Amyloid Precursor Protein-derived peptides, and regulation of autophagy. In this review we focus on the impact of HSPGs on autophagy, membrane trafficking, mitochondrial quality control and biogenesis, and lipid metabolism. Disruption of these processes are a hallmark of Alzheimer's disease (AD) and there is evidence that altering heparan sulfate structure and function could counter AD-associated pathological processes. Compromising presenilin function in several systems has provided instructive models for understanding the molecular and cellular underpinnings of AD. Disrupting presenilin function produces a constellation of cellular deficits including accumulation of lipid, disruption of autophagosome to lysosome traffic and reduction in mitochondrial size and number. Inhibition of heparan sulfate biosynthesis has opposing effects on all these cellular phenotypes, increasing mitochondrial size, stimulating autophagy flux to lysosomes, and reducing the level of intracellular lipid. These findings suggest a potential mechanism for countering pathology found in AD and related disorders by altering heparan sulfate structure and influencing cellular processes disrupted broadly in neurodegenerative disease. Vertebrate and invertebrate model systems, where the cellular machinery of autophagy and lipid metabolism are conserved, continue to provide important translational guideposts for designing interventions that address the root cause of neurodegenerative pathology.
Collapse
Affiliation(s)
- Nicholas Schultheis
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Robert Becker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Gelila Berhanu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alexander Kapral
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Matthew Roseman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Shalini Shah
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Alyssa Connell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Scott Selleck
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
40
|
Kang JM, Shin JH, Kim WR, Seo S, Seo H, Lee SY, Park KH, Na DL, Okamura N, Seong JK, Noh Y. Effects of the APOEɛ4 Allele on the Relationship Between Tau and Amyloid-β in Early- and Late-Onset Alzheimer's Disease. J Alzheimers Dis 2023; 94:1233-1246. [PMID: 37393505 DOI: 10.3233/jad-230339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Little is known regarding the differential effects of the apolipoprotein E (APOE) ɛ4 on the regional topography of amyloid and tau in patients with both early-onset (EOAD) and late-onset Alzheimer's disease (LOAD). OBJECTIVE To compare the distribution and association of tau, amyloid, and cortical thickness among groups classified by the presence of APOEɛ4 allele and onset age. METHODS A total of 165 participants including 54 EOAD patients (29 ɛ4-; 25 ɛ4+), 45 LOAD patients (21 ɛ4-; 24 ɛ4+), and 66 age-matched controls underwent 3T MRI, 18F-THK5351 (THK) and 18F-flutemetamol (FLUTE) PET scans, APOE genotyping, and neuropsychological tests. Data for voxel-wise and standardized uptake values from PET scans were analyzed in the context of APOE and age at onset. RESULTS EOAD ɛ4- patients showed greater THK retention in the association cortices, whereas their EOAD ɛ4+ counterparts had more retention in medial temporal areas. THK topography of LOAD ɛ4+ was similar to EOAD ɛ4 + . THK correlated positively with FLUTE and conversely with mean cortical thickness, being lowest in EOAD ɛ4-, highest in LOAD ɛ4-, and modest in ɛ4+ groups. Even in the APOEɛ4+ groups, THK tended to correlate with FLUTE and mean cortical thickness in the inferior parietal region in EOAD and in the medial temporal region in LOAD. LOAD ɛ4- manifested with prevalent small vessel disease markers and the lowest correlation between THK retention and cognition. CONCLUSION Our observations suggest the differential effects of the APOEɛ4 on the relationship between tau and amyloid in EOAD and LOAD.
Collapse
Affiliation(s)
- Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Hyeon Shin
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory, Daegu, Republic of Korea
| | - Woo-Ram Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seongho Seo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Haeun Seo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Republic of Korea; Happymind Clinic, Seoul, Republic of Korea
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Joon-Kyoung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
41
|
The Role of Aldose Reductase in Beta-Amyloid-Induced Microglia Activation. Int J Mol Sci 2022; 23:ijms232315088. [PMID: 36499422 PMCID: PMC9739496 DOI: 10.3390/ijms232315088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (β-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in β-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased β-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to β-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured β-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.
Collapse
|
42
|
Barisano G, Kisler K, Wilkinson B, Nikolakopoulou AM, Sagare AP, Wang Y, Gilliam W, Huuskonen MT, Hung ST, Ichida JK, Gao F, Coba MP, Zlokovic BV. A "multi-omics" analysis of blood-brain barrier and synaptic dysfunction in APOE4 mice. J Exp Med 2022; 219:e20221137. [PMID: 36040482 PMCID: PMC9435921 DOI: 10.1084/jem.20221137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023] Open
Abstract
Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease, leads to blood-brain barrier (BBB) breakdown in humans and mice. Remarkably, BBB dysfunction predicts cognitive decline and precedes synaptic deficits in APOE4 human carriers. How APOE4 affects BBB and synaptic function at a molecular level, however, remains elusive. Using single-nucleus RNA-sequencing and phosphoproteome and proteome analysis, we show that APOE4 compared with APOE3 leads to an early disruption of the BBB transcriptome in 2-3-mo-old APOE4 knock-in mice, followed by dysregulation in protein signaling networks controlling cell junctions, cytoskeleton, clathrin-mediated transport, and translation in brain endothelium, as well as transcription and RNA splicing suggestive of DNA damage in pericytes. Changes in BBB signaling mechanisms paralleled an early, progressive BBB breakdown and loss of pericytes, which preceded postsynaptic interactome disruption and behavioral deficits that developed 2-5 mo later. Thus, dysregulated signaling mechanisms in endothelium and pericytes in APOE4 mice reflect a molecular signature of a progressive BBB failure preceding changes in synaptic function and behavior.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brent Wilkinson
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yaoming Wang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - William Gilliam
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mikko T. Huuskonen
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shu-Ting Hung
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA
| | - Justin K. Ichida
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at University of Southern California, Los Angeles, CA
| | - Fan Gao
- Caltech Bioinformatics Resource Center, Caltech, Pasadena, CA
| | - Marcelo P. Coba
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
43
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
44
|
Kawabata S. Signaling abnormality leading to excessive/aberrant synaptic plasticity in Alzheimer's disease. Front Aging Neurosci 2022; 14:1062519. [DOI: 10.3389/fnagi.2022.1062519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
|
45
|
Zhou B, Lu JG, Siddu A, Wernig M, Südhof TC. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer's disease. Sci Transl Med 2022; 14:eabn9380. [PMID: 36260691 PMCID: PMC9894682 DOI: 10.1126/scitranslmed.abn9380] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in β-amyloid (Aβ) precursor protein (APP) cause familial Alzheimer's disease (AD) probably by enhancing Aβ peptides production from APP. An antibody targeting Aβ (aducanumab) was approved as an AD treatment; however, some Aβ antibodies have been reported to accelerate, instead of ameliorating, cognitive decline in individuals with AD. Using conditional APP mutations in human neurons for perfect isogenic controls and translational relevance, we found that the APP-Swedish mutation in familial AD increased synapse numbers and synaptic transmission, whereas the APP deletion decreased synapse numbers and synaptic transmission. Inhibition of BACE1, the protease that initiates Aβ production from APP, lowered synapse numbers, suppressed synaptic transmission in wild-type neurons, and occluded the phenotype of APP-Swedish-mutant neurons. Modest elevations of Aβ, conversely, elevated synapse numbers and synaptic transmission. Thus, the familial AD-linked APP-Swedish mutation under physiologically relevant conditions increased synaptic connectivity in human neurons via a modestly enhanced production of Aβ. These data are consistent with the relative inefficacy of BACE1 and anti-Aβ treatments in AD and the chronic nature of AD pathogenesis, suggesting that AD pathogenesis is not simply caused by overproduction of toxic Aβ but rather by a long-term effect of elevated Aβ concentrations.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jacqueline G. Lu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Alberto Siddu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford 94305, USA
| |
Collapse
|
46
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
48
|
Kawabata S. Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:913693. [PMID: 35865745 PMCID: PMC9294348 DOI: 10.3389/fnagi.2022.913693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
The amyloid hypothesis for the pathogenesis of Alzheimer’s disease (AD) is widely accepted. Last year, the US Food and Drug Administration considered amyloid-β peptide (Aβ) as a surrogate biomarker and approved an anti-Aβ antibody, aducanumab, although its effectiveness in slowing the progression of AD is still uncertain. This approval has caused a great deal of controversy. Opinions are divided about whether there is enough evidence to definitely consider Aβ as a causative substance of AD. To develop this discussion constructively and to discover the most suitable therapeutic interventions in the end, an alternative persuasive hypothesis needs to emerge to better explain the facts. In this paper, I propose a hypothesis that excessive/aberrant and maladaptive synaptic plasticity is the pathophysiological basis for AD.
Collapse
|
49
|
Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022; 16:899612. [PMID: 35784855 PMCID: PMC9243383 DOI: 10.3389/fnins.2022.899612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by clinical decline in memory and other cognitive functions. A classic AD neuropathological hallmark includes the accumulation of amyloid-β (Aβ) plaques, which may precede onset of clinical symptoms by over a decade. Efforts to prevent or treat AD frequently emphasize decreasing Aβ through various mechanisms, but such approaches have yet to establish compelling interventions. It is still not understood exactly why Aβ accumulates in AD, but it is hypothesized that Aβ and other downstream pathological events are a result of impaired bioenergetics, which can also manifest prior to cognitive decline. Evidence suggests that individuals with AD and at high risk for AD have functional brain ketone metabolism and ketotherapies (KTs), dietary approaches that produce ketone bodies for energy metabolism, may affect AD pathology by targeting impaired brain bioenergetics. Cognitively normal individuals with elevated brain Aβ, deemed “preclinical AD,” and older adults with peripheral metabolic impairments are ideal candidates to test whether KTs modulate AD biology as they have impaired mitochondrial function, perturbed brain glucose metabolism, and elevated risk for rapid Aβ accumulation and symptomatic AD. Here, we discuss the link between brain bioenergetics and Aβ, as well as the potential for KTs to influence AD risk and progression.
Collapse
Affiliation(s)
- Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- *Correspondence: Matthew K. Taylor,
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
50
|
Hulshof LA, van Nuijs D, Hol EM, Middeldorp J. The Role of Astrocytes in Synapse Loss in Alzheimer's Disease: A Systematic Review. Front Cell Neurosci 2022; 16:899251. [PMID: 35783099 PMCID: PMC9244621 DOI: 10.3389/fncel.2022.899251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting 35 million people worldwide. One pathological feature of progressing AD is the loss of synapses. This is the strongest correlate of cognitive decline. Astrocytes, as an essential part of the tripartite synapse, play a role in synapse formation, maintenance, and elimination. During AD, astrocytes get a reactive phenotype with an altered gene expression profile and changed function compared to healthy astrocytes. This process likely affects their interaction with synapses. This systematic review aims to provide an overview of the scientific literature including information on how astrocytes affect synapse formation and elimination in the brain of AD patients and in animal models of the disease. We review molecular and cellular changes in AD astrocytes and conclude that these predominantly result in lower synapse numbers, indicative of decreased synapse support or even synaptotoxicity, or increased elimination, resulting in synapse loss, and consequential cognitive decline, as associated with AD. Preventing AD induced changes in astrocytes might therefore be a potential therapeutic target for dementia. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=148278, identifier [CRD148278].
Collapse
Affiliation(s)
- Lianne A. Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Danny van Nuijs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
- Department Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
- *Correspondence: Jinte Middeldorp
| |
Collapse
|