1
|
Sinha GP, Frolenkov GI. Regulation of cochlear hair cell function by intracellular calcium stores. Front Cell Neurosci 2024; 18:1484998. [PMID: 39655244 PMCID: PMC11625566 DOI: 10.3389/fncel.2024.1484998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Mammalian hearing depends on the dual mechanosensory and motor functions of cochlear hair cells. Both these functions may be regulated by Ca2+ release from intracellular stores. However, it is still unclear how exactly intracellular Ca2+ release may affect either hair cell mechano-electrical transduction (MET) or prestin-dependent electromotility in outer hair cells (OHCs). Methods Here, we used photo-activatable (caged) compounds to generate fast increases of either Ca2+ or inositol-3-phosphate (IP3) in the cytosol of young postnatal rodent auditory hair cells, thereby stimulating either Ca2+- or IP3- induced releases of Ca2+ from intracellular stores. Fast Ca2+ imaging was used to monitor propagation of Ca2+ signals along the length of a hair cell. To access potential physiological role(s) of intracellular Ca2+ releases, we used whole cell patch clamp to record: i) OHC voltage-dependent capacitance, a known electrical correlate of prestin-based electromotility, and ii) MET currents evoked by stereocilia bundle deflections with fluid-jet. In the latter experiments, changes of mechanical stiffness of the hair bundles were also quantified from video recordings of stereocilia movements. Results Ca2+ uncaging at the OHC apex initiated Ca2+ wave propagating to the base of the cell with subsequent Ca2+ build-up there. Ca2+ uncaging at the OHC base generated long-lasting and apparently self-sustained Ca2+ responses, further confirming Ca2+-induced Ca2+ release in the OHC basal region. Photoactivated IP3 initiated a slow increase of cytosolic Ca2+ ([Ca2+] i ) throughout the whole OHC, confirming the presence of slow-activated IP3-gated Ca2+ stores in OHCs. Interestingly, Ca2+ uncaging produced no effects on OHC voltage-dependent capacitance. In an OHC, the rise of [Ca2+] i is known to decrease axial stiffness of the cell and may modulate the stiffness of mechanosensory stereocilia bundles. To separate these two phenomena, we explored the potential effects of intracellular Ca2+ release on mechanical properties of stereocilia bundles in cochlear inner hair cells (IHCs). Ca2+ uncaging at the apex of an IHC caused a long-lasting increase in mechanical stiffness of stereocilia bundle without any changes in the amplitude or deflection sensitivity of the MET current. Discussion We concluded that the most likely physiological role of IP3-gated Ca2+ release at the apex of the cell is the regulation of hair bundle stiffness. In contrast, Ca2+-induced Ca2+ release at the base of OHCs seems to regulate axial stiffness of the cells and its hyperpolarization in response to efferent stimuli, without direct effects on the OHC prestin-based membrane motors.
Collapse
|
2
|
The tetraspan LHFPL5 is critical to establish maximal force sensitivity of the mechanotransduction channel of cochlear hair cells. Cell Rep 2023; 42:112245. [PMID: 36917610 DOI: 10.1016/j.celrep.2023.112245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
The mechanoelectrical transduction (MET) channel of cochlear hair cells is gated by the tip link, but the mechanisms that establish the exquisite force sensitivity of this MET channel are not known. Here, we show that the tetraspan lipoma HMGIC fusion partner-like 5 (LHFPL5) directly couples the tip link to the MET channel. Disruption of these interactions severely perturbs MET. Notably, the N-terminal cytoplasmic domain of LHFPL5 binds to an amphipathic helix in TMC1, a critical gating domain conserved between different MET channels. Mutations in the amphipathic helix of TMC1 or in the N-terminus of LHFPL5 that perturb interactions of LHFPL5 with the amphipathic helix affect channel responses to mechanical force. We conclude that LHFPL5 couples the tip link to the MET channel and that channel gating depends on a structural element in TMC1 that is evolutionarily conserved between MET channels. Overall, our findings support a tether model for transduction channel gating by the tip link.
Collapse
|
3
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Zhou N, Li H, Xu J, Shen ZS, Tang M, Wang XH, Su WX, Sokabe M, Zhang Z, Tang QY. Two types of peptides derived from the neurotoxin GsMTx4 inhibit a mechanosensitive potassium channel by modifying the mechano-gate. J Biol Chem 2022; 298:102326. [PMID: 35933015 PMCID: PMC9449670 DOI: 10.1016/j.jbc.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans. Current atrial fibrillation antiarrhythmic drugs have limited efficacy and carry the risk of ventricular proarrhythmia. GsMTx4, a mechanosensitive channel–selective inhibitor, has been shown to suppress arrhythmias through the inhibition of stretch-activated channels (SACs) in the heart. The cost of synthesizing this peptide is a major obstacle to clinical use. Here, we studied two types of short peptides derived from GsMTx4 for their effects on a stretch-activated big potassium channel (SAKcaC) from the heart. Type I, a 17-residue peptide (referred to as Pept 01), showed comparable efficacy, whereas type II (i.e., Pept 02), a 10-residue peptide, exerted even more potent inhibitory efficacy on SAKcaC compared with GsMTx4. We identified through mutagenesis important sequences required for peptide functions. In addition, molecular dynamics simulations revealed common structural features with a hydrophobic head followed by a positively charged protrusion that may be involved in peptide channel–lipid interactions. Furthermore, we suggest that these short peptides may inhibit SAKcaC through a specific modification to the mechanogate, as the inhibitory effects for both types of peptides were mostly abolished when tested with a mechano-insensitive channel variant (STREX-del) and a nonmechanosensitive big potassium (mouse Slo1) channel. These findings may offer an opportunity for the development of a new class of drugs in the treatment of cardiac arrhythmia generated by excitatory SACs in the heart.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hui Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mingxi Tang
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, Taiping Road 25, Luzhou, Sichuan, China
| | - Xiao-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wan-Xin Su
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University. Graduate School of Medicine, Nagoya, Japan; Kanazawa Institute of Technology, Nonoichi, Japan.
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China.
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
5
|
cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs. Proc Natl Acad Sci U S A 2022; 119:e2107567119. [PMID: 35858439 PMCID: PMC9335186 DOI: 10.1073/pnas.2107567119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of auditory sensitivity contributes to the precision, dynamic range, and protection of the auditory system. Regulation of the hair cell mechanotransduction channel is a major contributor to controlling the sensitivity of the auditory transduction process. The gating spring is a critical piece of the mechanotransduction machinery because it opens and closes the mechanotransduction channel, and its stiffness regulates the sensitivity of the mechanotransduction process. In the present work, we characterize the effect of the second-messenger signaling molecule cyclic adenosine monophosphate (cAMP) and identify that it reduces gating spring stiffness likely through an exchange protein directly activated by cAMP (EPAC)-mediated pathway. This is a unique physiologic mechanism to regulate gating spring stiffness. Hair cells of the auditory and vestibular systems transform mechanical input into electrical potentials through the mechanoelectrical transduction process (MET). Deflection of the mechanosensory hair bundle increases tension in the gating springs that open MET channels. Regulation of MET channel sensitivity contributes to the auditory system’s precision, wide dynamic range and, potentially, protection from overexcitation. Modulating the stiffness of the gating spring modulates the sensitivity of the MET process. Here, we investigated the role of cyclic adenosine monophosphate (cAMP) in rat outer hair cell MET and found that cAMP up-regulation lowers the sensitivity of the channel in a manner consistent with decreasing gating spring stiffness. Direct measurements of the mechanical properties of the hair bundle confirmed a decrease in gating spring stiffness with cAMP up-regulation. In parallel, we found that prolonged depolarization mirrored the effects of cAMP. Finally, a limited number of experiments implicate that cAMP activates the exchange protein directly activated by cAMP to mediate the changes in MET sensitivity. These results reveal that cAMP signaling modulates gating spring stiffness to affect auditory sensitivity.
Collapse
|
6
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
7
|
Lorente-Cánovas B, Eckrich S, Lewis MA, Johnson SL, Marcotti W, Steel KP. Grxcr1 regulates hair bundle morphogenesis and is required for normal mechanoelectrical transduction in mouse cochlear hair cells. PLoS One 2022; 17:e0261530. [PMID: 35235570 PMCID: PMC8890737 DOI: 10.1371/journal.pone.0261530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
Tasmanian devil (tde) mice are deaf and exhibit circling behaviour. Sensory hair cells of mutants show disorganised hair bundles with abnormally thin stereocilia. The origin of this mutation is the insertion of a transgene which disrupts expression of the Grxcr1 (glutaredoxin cysteine rich 1) gene. We report here that Grxcr1 exons and transcript sequences are not affected by the transgene insertion in tde homozygous (tde/tde) mice. Furthermore, 5'RACE PCR experiments showed the presence of two different transcripts of the Grxcr1 gene, expressed in both tde/tde and in wild-type controls. However, quantitative analysis of Grxcr1 transcripts revealed a significantly decreased mRNA level in tde/tde mice. The key stereociliary proteins ESPN, MYO7A, EPS8 and PTPRQ were distributed in hair bundles of homozygous tde mutants in a similar pattern compared with control mice. We found that the abnormal morphology of the stereociliary bundle was associated with a reduction in the size and Ca2+-sensitivity of the mechanoelectrical transducer (MET) current. We propose that GRXCR1 is key for the normal growth of the stereociliary bundle prior to the onset of hearing, and in its absence hair cells are unable to mature into fully functional sensory receptors.
Collapse
Affiliation(s)
- Beatriz Lorente-Cánovas
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephanie Eckrich
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
8
|
Peng AW, Scharr AL, Caprara GA, Nettles D, Steele CR, Ricci AJ. Fluid Jet Stimulation of Auditory Hair Bundles Reveal Spatial Non-uniformities and Two Viscoelastic-Like Mechanisms. Front Cell Dev Biol 2021; 9:725101. [PMID: 34513845 PMCID: PMC8427531 DOI: 10.3389/fcell.2021.725101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Hair cell mechanosensitivity resides in the sensory hair bundle, an apical protrusion of actin-filled stereocilia arranged in a staircase pattern. Hair bundle deflection activates mechano-electric transduction (MET) ion channels located near the tops of the shorter rows of stereocilia. The elicited macroscopic current is shaped by the hair bundle motion so that the mode of stimulation greatly influences the cell’s output. We present data quantifying the displacement of the whole outer hair cell bundle using high-speed imaging when stimulated with a fluid jet. We find a spatially non-uniform stimulation that results in splaying, where the hair bundle expands apart. Based on modeling, the splaying is predominantly due to fluid dynamics with a small contribution from hair bundle architecture. Additionally, in response to stimulation, the hair bundle exhibited a rapid motion followed by a slower motion in the same direction (creep) that is described by a double exponential process. The creep is consistent with originating from a linear passive system that can be modeled using two viscoelastic processes. These viscoelastic mechanisms are integral to describing the mechanics of the mammalian hair bundle.
Collapse
Affiliation(s)
- Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alexandra L Scharr
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Neuroscience Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dailey Nettles
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles R Steele
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering and Aeronautics and Astronautics, School of Engineering, Stanford University, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Stanford University, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Cheatham MA. Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res 2021; 409:108314. [PMID: 34332206 DOI: 10.1016/j.heares.2021.108314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Liang X, Qiu X, Dionne G, Cunningham CL, Pucak ML, Peng G, Kim YH, Lauer A, Shapiro L, Müller U. CIB2 and CIB3 are auxiliary subunits of the mechanotransduction channel of hair cells. Neuron 2021; 109:2131-2149.e15. [PMID: 34089643 PMCID: PMC8374959 DOI: 10.1016/j.neuron.2021.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/17/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
CIB2 is a Ca2+- and Mg2+-binding protein essential for mechanoelectrical transduction (MET) by cochlear hair cells, but not by vestibular hair cells that co-express CIB2 and CIB3. Here, we show that in cochlear hair cells, CIB3 can functionally substitute for CIB2. Using X-ray crystallography, we demonstrate that CIB2 and CIB3 are structurally similar to KChIP proteins, auxiliary subunits of voltage-gated Kv4 channels. CIB2 and CIB3 bind to TMC1/2 through a domain in TMC1/2 flanked by transmembrane domains 2 and 3. The co-crystal structure of the CIB-binding domain in TMC1 with CIB3 reveals that interactions are mediated through a conserved CIB hydrophobic groove, similar to KChIP1 binding of Kv4. Functional studies in mice show that CIB2 regulates TMC1/2 localization and function in hair cells, processes that are affected by deafness-causing CIB2 mutations. We conclude that CIB2 and CIB3 are MET channel auxiliary subunits with striking similarity to Kv4 channel auxiliary subunits.
Collapse
Affiliation(s)
- Xiaoping Liang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gilman Dionne
- Department of Biochemistry and Molecular Biophysics, Zuckerman Mind Brain, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Christopher L Cunningham
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michele L Pucak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye-Hyun Kim
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Zuckerman Mind Brain, Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Liu S, Wang S, Zou L, Xiong W. Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity. Cell Mol Life Sci 2021; 78:5083-5094. [PMID: 33871677 PMCID: PMC11072359 DOI: 10.1007/s00018-021-03840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Sound signals are acquired and digitized in the cochlea by the hair cells that further transmit the coded information to the central auditory pathways. Any defect in hair cell function may induce problems in the auditory system and hearing-based brain function. In the past 2 decades, our understanding of auditory transduction has been substantially deepened because of advances in molecular, structural, and functional studies. Results from these experiments can be perfectly embedded in the previously established profile from anatomical, histological, genetic, and biophysical research. This review aims to summarize the progress on the molecular and cellular mechanisms of the mechano-electrical transduction (MET) channel in the cochlear hair cells, which is involved in the acquisition of sound frequency and intensity-the two major parameters of an acoustic cue. We also discuss recent studies on TMC1, the molecule likely to form the MET channel pore.
Collapse
Affiliation(s)
- Shuang Liu
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, 1 Qinghuayuan, Beijing, 100084, China.
| |
Collapse
|
12
|
Effertz T, Moser T, Oliver D. Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells. Fac Rev 2021; 9:24. [PMID: 33659956 PMCID: PMC7886071 DOI: 10.12703/r/9-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, genetics, physiology, and structural biology have advanced into the molecular details of the sensory physiology of auditory hair cells. Inner hair cells (IHCs) and outer hair cells (OHCs) mediate two key functions: active amplification and non-linear compression of cochlear vibrations by OHCs and sound encoding by IHCs at their afferent synapses with the spiral ganglion neurons. OHCs and IHCs share some molecular physiology, e.g. mechanotransduction at the apical hair bundles, ribbon-type presynaptic active zones, and ionic conductances in the basolateral membrane. Unique features enabling their specific function include prestin-based electromotility of OHCs and indefatigable transmitter release at the highest known rates by ribbon-type IHC active zones. Despite their compact morphology, the molecular machineries that either generate electrical signals or are driven by these signals are essentially all segregated into local subcellular structures. This review provides a brief account on recent insights into the molecular physiology of cochlear hair cells with a specific focus on organization into membrane domains.
Collapse
Affiliation(s)
- Thomas Effertz
- InnerEarLab, Department of Otorhinolaryngology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Dominik Oliver
- Institute for Physiology and Pathophysiology, Philipps University, Deutschhausstraße 2, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, GRK 2213, Philipps University, Marburg, Germany
| |
Collapse
|
13
|
Cochlear homeostasis: a molecular physiological perspective on maintenance of sound transduction and auditory neurotransmission with noise and ageing. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
George SS, Steele CR, Ricci AJ. Rat Auditory Inner Hair Cell Mechanotransduction and Stereociliary Membrane Diffusivity Are Similarly Modulated by Calcium. iScience 2020; 23:101773. [PMID: 33294782 PMCID: PMC7689183 DOI: 10.1016/j.isci.2020.101773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
The lipid bilayer plays a pivotal role in force transmission to many mechanically-gated channels. We developed the technology to monitor membrane diffusivity in order to test the hypothesis positing that Ca2+ regulates open probability (P o) of cochlear hair cell mechanotransduction (MET) channels via the plasma membrane. The stereociliary membrane was more diffusive (9x) than the basolateral membrane. Elevating intracellular Ca2+ buffering or lowering extracellular Ca2+ reduced stereociliary diffusivity and increased MET P o. In contrast, prolonged depolarization increased stereociliary diffusivity and reduced MET P o. No comparable effects were noted for soma measurements. Although MET channels are located in the shorter stereocilia rows, both rows had similar baseline diffusivity and showed similar responses to Ca2+ manipulations and MET channel blocks, suggesting that diffusivity is independent of MET. Together, these data suggest that the stereociliary membrane is a component of a calcium-modulated viscoelastic-like element regulating hair cell mechanotransduction.
Collapse
Affiliation(s)
- Shefin S George
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, 240 Pasteur Drive, Stanford, CA 94305, USA
| | - Charles R Steele
- Department of Mechanical Engineering, Building 520, 440 Escondido Mall, Stanford University, CA 94305, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, 240 Pasteur Drive, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Strimbu CE, Wang Y, Olson ES. Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity. Biophys J 2020; 119:2087-2101. [PMID: 33091378 DOI: 10.1016/j.bpj.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea's organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Columbia University Medical Center, Department of Otolaryngology, New York, New York
| | - Yi Wang
- Columbia University, Department of Biomedical Engineering, New York, New York
| | - Elizabeth S Olson
- Columbia University Medical Center, Department of Otolaryngology, New York, New York; Columbia University, Department of Biomedical Engineering, New York, New York.
| |
Collapse
|
16
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
17
|
Abstract
Cochlear outer hair cells (OHCs) are among the fastest known biological motors and are essential for high-frequency hearing in mammals. It is commonly hypothesized that OHCs amplify vibrations in the cochlea through cycle-by-cycle changes in length, but recent data suggest OHCs are low-pass filtered and unable to follow high-frequency signals. The fact that OHCs are required for high-frequency hearing but appear to be throttled by slow electromotility is the "OHC speed paradox." The present report resolves this paradox and reveals origins of ultrafast OHC function and power output in the context of the cochlear load. Results demonstrate that the speed of electromotility reflects how fast the cell can extend against the load, and does not reflect the intrinsic speed of the motor element itself or the nearly instantaneous speed at which the coulomb force is transmitted. OHC power output at auditory frequencies is revealed by emergence of an imaginary nonlinear capacitance reflecting the phase of electrical charge displacement required for the motor to overcome the viscous cochlear load.
Collapse
Affiliation(s)
- Richard D Rabbitt
- Biomedical Engineering, Otolaryngology, and Neuroscience Program, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
18
|
Caprara GA, Mecca AA, Peng AW. Decades-old model of slow adaptation in sensory hair cells is not supported in mammals. SCIENCE ADVANCES 2020; 6:eabb4922. [PMID: 32851178 PMCID: PMC7428330 DOI: 10.1126/sciadv.abb4922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 05/31/2023]
Abstract
Hair cells detect sound and motion through a mechano-electric transduction (MET) process mediated by tip links connecting shorter stereocilia to adjacent taller stereocilia. Adaptation is a key feature of MET that regulates a cell's dynamic range and frequency selectivity. A decades-old hypothesis proposes that slow adaptation requires myosin motors to modulate the tip-link position on taller stereocilia. This "motor model" depended on data suggesting that the receptor current decay had a time course similar to that of hair-bundle creep (a continued movement in the direction of a step-like force stimulus). Using cochlear and vestibular hair cells of mice, rats, and gerbils, we assessed how modulating adaptation affected hair-bundle creep. Our results are consistent with slow adaptation requiring myosin motors. However, the hair-bundle creep and slow adaptation were uncorrelated, challenging a critical piece of evidence upholding the motor model. Considering these data, we propose a revised model of hair cell adaptation.
Collapse
Affiliation(s)
- Giusy A. Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew A. Mecca
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony W. Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Cunningham CL, Qiu X, Wu Z, Zhao B, Peng G, Kim YH, Lauer A, Müller U. TMIE Defines Pore and Gating Properties of the Mechanotransduction Channel of Mammalian Cochlear Hair Cells. Neuron 2020; 107:126-143.e8. [PMID: 32343945 PMCID: PMC7351599 DOI: 10.1016/j.neuron.2020.03.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
TMC1 and TMC2 (TMC1/2) have been proposed to form the pore of the mechanotransduction channel of cochlear hair cells. Here, we show that TMC1/2 cannot form mechanotransduction channels in cochlear hair cells without TMIE. TMIE binds to TMC1/2, and a TMIE mutation that perturbs TMC1/2 binding abolishes mechanotransduction. N-terminal TMIE deletions affect the response of the mechanotransduction channel to mechanical force. Similar to mechanically gated TREK channels, the C-terminal cytoplasmic TMIE domain contains charged amino acids that mediate binding to phospholipids, including PIP2. TMIE point mutations in the C terminus that are linked to deafness disrupt phospholipid binding, sensitize the channel to PIP2 depletion from hair cells, and alter the channel's unitary conductance and ion selectivity. We conclude that TMIE is a subunit of the cochlear mechanotransduction channel and that channel function is regulated by a phospholipid-sensing domain in TMIE with similarity to those in other mechanically gated ion channels.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zizhen Wu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye-Hyun Kim
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Lauer
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Jabeen T, Holt JC, Becker JR, Nam JH. Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro. Biophys J 2020; 119:314-325. [PMID: 32579963 DOI: 10.1016/j.bpj.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023] Open
Abstract
High sensitivity and selectivity of hearing require an active cochlea. The cochlear sensory epithelium, the organ of Corti, vibrates because of external and internal excitations. The external stimulation is acoustic pressures mediated by the scala fluids, whereas the internal excitation is generated by a type of sensory receptor cells (the outer hair cells) in response to the acoustic vibrations. The outer hair cells are cellular actuators that are responsible for cochlear amplification. The organ of Corti is highly structured for transmitting vibrations originating from acoustic pressure and active outer hair cell force to the inner hair cells that synapse on afferent nerves. Understanding how the organ of Corti vibrates because of acoustic pressure and outer hair cell force is critical for explaining cochlear function. In this study, cochleae were freshly isolated from young gerbils. The organ of Corti in the excised cochlea was subjected to mechanical and electrical stimulation that are analogous to acoustic and cellular stimulation in the natural cochlea. Organ of Corti vibrations, including those of individual outer hair cells, were measured using optical coherence tomography. Respective vibration patterns due to mechanical and electrical stimulation were characterized. Interactions between the two vibration patterns were investigated by applying the two forms of stimulation simultaneously. Our results show that the interactions could be either constructive or destructive, which implies that the outer hair cells can either amplify or reduce vibrations in the organ of Corti. We discuss a potential consequence of the two interaction modes for cochlear frequency tuning.
Collapse
Affiliation(s)
- Talat Jabeen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, New York; Department of Neuroscience, University of Rochester, Rochester, New York; Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Jonathan R Becker
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - Jong-Hoon Nam
- Department of Biomedical Engineering, University of Rochester, Rochester, New York; Department of Mechanical Engineering, University of Rochester, Rochester, New York; Department of Neuroscience, University of Rochester, Rochester, New York.
| |
Collapse
|
21
|
Song J, Patterson R, Metlagel Z, Krey JF, Hao S, Wang L, Ng B, Sazzed S, Kovacs J, Wriggers W, He J, Barr-Gillespie PG, Auer M. A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1. J Struct Biol 2020; 210:107461. [PMID: 31962158 PMCID: PMC7067663 DOI: 10.1016/j.jsb.2020.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.
Collapse
Affiliation(s)
- Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roma Patterson
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Metlagel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jocelyn F Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Samantha Hao
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Linshanshan Wang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Ng
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Julio Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
22
|
Goldring AC, Beurg M, Fettiplace R. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. J Physiol 2019; 597:5949-5961. [PMID: 31633194 PMCID: PMC6910908 DOI: 10.1113/jp278799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Hair cell mechanoelectrical transducer channels are opened by deflections of the hair bundle about a resting position set by incompletely understood adaptation mechanisms. We used three characteristics to define adaptation in hair cell mutants of transmembrane channel-like proteins, TMC1 and TMC2, which are considered to be channel constituents. The results obtained demonstrate that the three characteristics are not equivalent, and raise doubts about simple models in which intracellular Ca2+ regulates adaptation. Adaptation is faster and more effective in TMC1-containing than in TMC2-containing transducer channels. This result ties adaptation to the channel complex, and suggests that TMC1 is a better isoform for use in cochlear hair cells. We describe a TMC1 point mutation, D569N, that reduces the resting open probability and Ca2+ permeability of the transducer channels, comprising properties that may contribute to the deafness phenotype. ABSTRACT Recordings of mechanoelectrical transducer (MET) currents in cochlear hair cells were made in mice with mutations of transmembrane channel-like (TMC) protein to examine the effects on fast transducer adaptation. Adaptation was faster and more complete in Tmc2-/- than in Tmc1-/- , although this disparity was not explained by differences in Ca2+ permeability or Ca2+ influx between the two isoforms, with TMC2 having the larger permeability. We made a mouse mutation, Tmc1 p.D569N, homologous to a human DFNA36 deafness mutation, which also had MET channels with lower Ca2+ -permeability but showed better fast adaptation than wild-type Tmc1+/+ channels. Consistent with the more effective adaptation in Tmc1 p.D569N, the resting probability of MET channel opening was smaller. The three TMC variants studied have comparable single-channel conductances, although the lack of correlation between channel Ca2+ permeability and adaptation opposes the hypothesis that adaptation is controlled simply by Ca2+ influx through the channels. During the first postnatal week of mouse development, the MET currents amplitude grew, and transducer adaptation became faster and more effective. We attribute changes in adaptation partly to a developmental switch from TMC2- to TMC1- containing channels and partly to an increase in channel expression. More complete and faster adaptation, coupled with larger MET currents, may account for the sole use of TMC1 in the adult cochlear hair cells.
Collapse
Affiliation(s)
- Adam C Goldring
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
23
|
The Development of Cooperative Channels Explains the Maturation of Hair Cell's Mechanotransduction. Biophys J 2019; 117:1536-1548. [PMID: 31585704 PMCID: PMC6817549 DOI: 10.1016/j.bpj.2019.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Hearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechanoelectrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell, depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities and then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.
Collapse
|
24
|
Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation. J Neurosci 2019; 39:9098-9106. [PMID: 31578232 DOI: 10.1523/jneurosci.1408-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
Sound detection in auditory sensory hair cells depends on the deflection of the stereocilia hair bundle which opens mechano-electric transduction (MET) channels. Adaptation is hypothesized to be a critical property of MET that contributes to the auditory system's wide dynamic range and sharp frequency selectivity. Our recent work using a stiff probe to displace hair bundles showed that the fastest adaptation mechanism (fast adaptation) does not require calcium entry. Using fluid-jet stimuli, others obtained data showing only a calcium-dependent fast adaptation response. Because cochlear stereocilia do not move coherently and the hair cell response depends critically on the magnitude and time course of the hair bundle deflection, we developed a high-speed imaging technique to quantify this deflection in rat cochlear hair cells. The fluid jet delivers a force stimulus, and force steps lead to a complex time course of hair bundle displacement (mechanical creep), which affects the hair cell's macroscopic MET current response by masking the time course of the fast adaptation response. Modifying the fluid-jet stimulus to generate a hair bundle displacement step produced rapidly adapting currents that did not depend on membrane potential, confirming that fast adaptation does not depend on calcium entry. MET current responses differ with stimulus modality and will shape receptor potentials of different hair cell types based on their in vivo stimulus mode. These transformations will directly affect how stimuli are encoded.SIGNIFICANCE STATEMENT Mechanotransduction by sensory hair cells represents a key first step for the sound sensing ability in vertebrates. The sharp frequency tuning and wide dynamic range of sound sensation are hypothesized to require a mechanotransduction adaptation mechanism. Recent work indicated that the apparent calcium dependence of the fastest adaptation differs with the method of cochlear hair cell stimulation. Here, we reconcile existing data and show that calcium entry does not drive the fastest adaptation process, independent of the stimulation method. With force stimulation of the hair bundle, adaptation manifests differently than with displacement stimulation, indicating that the stimulation mode of the hair bundle will affect the hair cell receptor current and stimulus coding.
Collapse
|
25
|
Li H, Xu J, Shen ZS, Wang GM, Tang M, Du XR, Lv YT, Wang JJ, Zhang FF, Qi Z, Zhang Z, Sokabe M, Tang QY. The neuropeptide GsMTx4 inhibits a mechanosensitive BK channel through the voltage-dependent modification specific to mechano-gating. J Biol Chem 2019; 294:11892-11909. [PMID: 31201274 DOI: 10.1074/jbc.ra118.005511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiac mechanosensitive BK (Slo1) channels are gated by Ca2+, voltage, and membrane stretch. The neuropeptide GsMTx4 is a selective inhibitor of mechanosensitive (MS) channels. It has been reported to suppress stretch-induced cardiac fibrillation in the heart, but the mechanism underlying the specificity and even the targeting channel(s) in the heart remain elusive. Here, we report that GsMTx4 inhibits a stretch-activated BK channel (SAKcaC) in the heart through a modulation specific to mechano-gating. We show that membrane stretching increases while GsMTx4 decreases the open probability (P o) of SAKcaC. These effects were mostly abolished by the deletion of the STREX axis-regulated (STREX) exon located between RCK1 and RCK2 domains in BK channels. Single-channel kinetics analysis revealed that membrane stretch activates SAKcaC by prolonging the open-time duration (τO) and shortening the closed-time constant (τC). In contrast, GsMTx4 reversed the effects of membrane stretch, suggesting that GsMTx4 inhibits SAKcaC activity by interfering with mechano-gating of the channel. Moreover, GsMTx4 exerted stronger efficacy on SAKcaC under membrane-hyperpolarized/resting conditions. Molecular dynamics simulation study revealed that GsMTx4 appeared to have the ability to penetrate deeply within the bilayer, thus generating strong membrane deformation under the hyperpolarizing/resting conditions. Immunostaining results indicate that BK variants containing STREX are also expressed in mouse ventricular cardiomyocytes. Our results provide common mechanisms of peptide actions on MS channels and may give clues to therapeutic suppression of cardiac arrhythmias caused by excitatory currents through MS channels under hyper-mechanical stress in the heart.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhong-Shan Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Guang-Ming Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang-Rong Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yan-Tian Lv
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jing-Jing Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiamen 361102, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Masahiro Sokabe
- ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan .,Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China .,ICORP Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466-8550, Japan
| |
Collapse
|
26
|
Abstract
This review summarizes paleontological data as well as studies on the morphology, function, and molecular evolution of the cochlea of living mammals (monotremes, marsupials, and placentals). The most parsimonious scenario is an early evolution of the characteristic organ of Corti, with inner and outer hair cells and nascent electromotility. Most remaining unique features, such as loss of the lagenar macula, coiling of the cochlea, and bony laminae supporting the basilar membrane, arose later, after the separation of the monotreme lineage, but before marsupial and placental mammals diverged. The question of when hearing sensitivity first extended into the ultrasonic range (defined here as >20 kHz) remains speculative, not least because of the late appearance of the definitive mammalian middle ear. The last significant change was optimizing the operating voltage range of prestin, and thus the efficiency of the outer hair cells' amplifying action, in the placental lineage only.
Collapse
Affiliation(s)
- Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
27
|
Tobin M, Chaiyasitdhi A, Michel V, Michalski N, Martin P. Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea. eLife 2019; 8:e43473. [PMID: 30932811 PMCID: PMC6464607 DOI: 10.7554/elife.43473] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell's mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca2+. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.
Collapse
Affiliation(s)
- Mélanie Tobin
- Laboratoire Physico-Chimie CurieInstitut Curie, PSL Research University, CNRS UMR168ParisFrance
- Sorbonne UniversitéParisFrance
| | - Atitheb Chaiyasitdhi
- Laboratoire Physico-Chimie CurieInstitut Curie, PSL Research University, CNRS UMR168ParisFrance
- Sorbonne UniversitéParisFrance
| | - Vincent Michel
- Sorbonne UniversitéParisFrance
- Laboratoire de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| | - Nicolas Michalski
- Sorbonne UniversitéParisFrance
- Laboratoire de Génétique et Physiologie de l’AuditionInstitut PasteurParisFrance
- UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| | - Pascal Martin
- Laboratoire Physico-Chimie CurieInstitut Curie, PSL Research University, CNRS UMR168ParisFrance
- Sorbonne UniversitéParisFrance
| |
Collapse
|
28
|
Probing hair cell's mechano-transduction using two-tone suppression measurements. Sci Rep 2019; 9:4626. [PMID: 30874606 PMCID: PMC6420497 DOI: 10.1038/s41598-019-41112-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 11/27/2022] Open
Abstract
When two sound tones are delivered to the cochlea simultaneously, they interact with each other in a suppressive way, a phenomenon referred to as two-tone suppression (2TS). This nonlinear response is ascribed to the saturation of the outer hair cell’s mechano-transduction. Thus, 2TS can be used as a non-invasive probe to investigate the fundamental properties of cochlear mechano-transduction. We developed a nonlinear cochlear model in the time domain to interpret 2TS data. The multi-scale model incorporates cochlear fluid dynamics, organ of Corti (OoC) mechanics and outer hair cell electrophysiology. The model simulations of 2TS show that the threshold amplitudes and rates of low-side suppression are dependent on mechano-transduction properties. By comparing model responses to existing 2TS measurement data, we estimate intrinsic characteristics of mechano-transduction such as sensitivity and adaptation. For mechano-transduction sensitivity at the basal location (characteristic frequency of 17 kHz) at 0.06 nm−1, the simulation results agree with 2TS measurements of basilar membrane responses. This estimate is an order of magnitude higher than the values observed in experiments on isolated outer hair cells. The model also demonstrates how the outer hair cell’s adaptation alters the temporal pattern of 2TS by modulating mechano-electrical gain and phase.
Collapse
|
29
|
Rabbitt RD. Semicircular canal biomechanics in health and disease. J Neurophysiol 2019; 121:732-755. [PMID: 30565972 PMCID: PMC6520623 DOI: 10.1152/jn.00708.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The semicircular canals are responsible for sensing angular head motion in three-dimensional space and for providing neural inputs to the central nervous system (CNS) essential for agile mobility, stable vision, and autonomic control of the cardiovascular and other gravity-sensitive systems. Sensation relies on fluid mechanics within the labyrinth to selectively convert angular head acceleration into sensory hair bundle displacements in each of three inner ear sensory organs. Canal afferent neurons encode the direction and time course of head movements over a broad range of movement frequencies and amplitudes. Disorders altering canal mechanics result in pathological inputs to the CNS, often leading to debilitating symptoms. Vestibular disorders and conditions with mechanical substrates include benign paroxysmal positional nystagmus, direction-changing positional nystagmus, alcohol positional nystagmus, caloric nystagmus, Tullio phenomena, and others. Here, the mechanics of angular motion transduction and how it contributes to neural encoding by the semicircular canals is reviewed in both health and disease.
Collapse
Affiliation(s)
- R. D. Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Otolaryngology-Head Neck Surgery, University of Utah, Salt Lake City, Utah
- Neuroscience Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
30
|
Ó Maoiléidigh D, Ricci AJ. A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction. Trends Neurosci 2019; 42:221-236. [PMID: 30661717 PMCID: PMC6402798 DOI: 10.1016/j.tins.2018.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
In the inner ear, the deflection of hair bundles, the sensory organelles of hair cells, activates mechanically-gated channels (MGCs). Hair bundles monitor orientation of the head, its angular and linear acceleration, and detect sound. Force applied to MGCs is shaped by intrinsic hair-bundle properties, by the mechanical load on the bundle, and by the filter imparted by the environment of the hair bundle. Channel gating and adaptation, the ability of the bundle to reset its operating point, contribute to hair-bundle mechanics. Recent data from mammalian hair cells challenge longstanding hypotheses regarding adaptation mechanisms and hair-bundle coherence. Variations between hair bundles from different organs in hair-bundle mechanics, mechanical load, channel gating, and adaptation may allow a hair bundle to selectively respond to specific sensory stimuli.
Collapse
Affiliation(s)
- Dáibhid Ó Maoiléidigh
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Anthony J Ricci
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford CA 94305, USA.
| |
Collapse
|
31
|
Krey JF, Barr-Gillespie PG. Molecular Composition of Vestibular Hair Bundles. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033209. [PMID: 29844221 DOI: 10.1101/cshperspect.a033209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vertebrate hair bundle, responsible for transduction of mechanical signals into receptor potentials in sensory hair cells, is an evolutionary masterpiece. Composed of actin-filled stereocilia of precisely regulated length, width, and number, the structure of the hair bundle is optimized for sensing auditory and vestibular stimuli. Recent developments in identifying the lipids and proteins constituting the hair bundle, obtained through genetics, biochemistry, and imaging, now permit a description of the consensus composition of vestibular bundles of mouse, rat, and chick.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
32
|
A mechanoelectrical mechanism for detection of sound envelopes in the hearing organ. Nat Commun 2018; 9:4175. [PMID: 30302006 PMCID: PMC6177430 DOI: 10.1038/s41467-018-06725-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 09/21/2018] [Indexed: 11/22/2022] Open
Abstract
To understand speech, the slowly varying outline, or envelope, of the acoustic stimulus is used to distinguish words. A small amount of information about the envelope is sufficient for speech recognition, but the mechanism used by the auditory system to extract the envelope is not known. Several different theories have been proposed, including envelope detection by auditory nerve dendrites as well as various mechanisms involving the sensory hair cells. We used recordings from human and animal inner ears to show that the dominant mechanism for envelope detection is distortion introduced by mechanoelectrical transduction channels. This electrical distortion, which is not apparent in the sound-evoked vibrations of the basilar membrane, tracks the envelope, excites the auditory nerve, and transmits information about the shape of the envelope to the brain. The sound envelope is important for speech perception. Here, the authors look at mechanisms by which the sound envelope is encoded, finding that it arises from distortion produced by mechanoelectrical transduction channels. Surprisingly, the envelope is not present in basilar membrane vibrations.
Collapse
|
33
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Ballesteros A, Fenollar-Ferrer C, Swartz KJ. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 2018; 7:38433. [PMID: 30063209 PMCID: PMC6067890 DOI: 10.7554/elife.38433] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
The hair cell mechanotransduction (MET) channel complex is essential for hearing, yet it's molecular identity and structure remain elusive. The transmembrane channel-like 1 (TMC1) protein localizes to the site of the MET channel, interacts with the tip-link responsible for mechanical gating, and genetic alterations in TMC1 alter MET channel properties and cause deafness, supporting the hypothesis that TMC1 forms the MET channel. We generated a model of TMC1 based on X-ray and cryo-EM structures of TMEM16 proteins, revealing the presence of a large cavity near the protein-lipid interface that also harbors the Beethoven mutation, suggesting that it could function as a permeation pathway. We also find that hair cells are permeable to 3 kDa dextrans, and that dextran permeation requires TMC1/2 proteins and functional MET channels, supporting the presence of a large permeation pathway and the hypothesis that TMC1 is a pore forming subunit of the MET channel complex.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States.,Molecular Biology and Genetics Section, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
35
|
Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD. Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Sci Rep 2018; 8:10257. [PMID: 29980716 PMCID: PMC6035247 DOI: 10.1038/s41598-018-28592-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Individuals suffering from Tullio phenomena experience dizziness, vertigo, and reflexive eye movements (nystagmus) when exposed to seemingly benign acoustic stimuli. The most common cause is a defect in the bone enclosing the vestibular semicircular canals of the inner ear. Surgical repair often corrects the problem, but the precise mechanisms underlying Tullio phenomenon are not known. In the present work we quantified the phenomenon in an animal model of the condition by recording fluid motion in the semicircular canals and neural activity evoked by auditory-frequency stimulation. Results demonstrate short-latency phase-locked afferent neural responses, slowly developing sustained changes in neural discharge rate, and nonlinear fluid pumping in the affected semicircular canal. Experimental data compare favorably to predictions of a nonlinear computational model. Results identify the biophysical origin of Tullio phenomenon in pathological sound-evoked fluid-mechanical waves in the inner ear. Sound energy entering the inner ear at the oval window excites fluid motion at the location of the defect, giving rise to traveling waves that subsequently excite mechano-electrical transduction in the vestibular sensory organs by vibration and nonlinear fluid pumping.
Collapse
Affiliation(s)
- M M Iversen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - H Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - W Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - C C Della Santina
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J P Carey
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
- Department of Otolaryngology, University of Utah, Salt Lake City, UT, USA.
- Neuroscience Program, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
36
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
37
|
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 2018; 12:100. [PMID: 29755320 PMCID: PMC5932396 DOI: 10.3389/fncel.2018.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET) channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS)/LHFPL5, transmembrane inner ear (TMIE) and transmembrane channel-like proteins 1 and 2 (TMC1/2). However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.
Collapse
Affiliation(s)
- Xufeng Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ulrich Müller
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Morgan CP, Zhao H, LeMasurier M, Xiong W, Pan B, Kazmierczak P, Avenarius MR, Bateschell M, Larisch R, Ricci AJ, Müller U, Barr-Gillespie PG. TRPV6, TRPM6 and TRPM7 Do Not Contribute to Hair-Cell Mechanotransduction. Front Cell Neurosci 2018; 12:41. [PMID: 29515374 PMCID: PMC5826258 DOI: 10.3389/fncel.2018.00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 12/02/2022] Open
Abstract
Hair cells of the inner ear transduce mechanical stimuli like sound or head movements into electrical signals, which are propagated to the central nervous system. The hair-cell mechanotransduction channel remains unidentified. We tested whether three transient receptor channel (TRP) family members, TRPV6, TRPM6 and TRPM7, were necessary for transduction. TRPV6 interacted with USH1C (harmonin), a scaffolding protein that participates in transduction. Using a cysteine-substitution knock-in mouse line and methanethiosulfonate (MTS) reagents selective for this allele, we found that inhibition of TRPV6 had no effect on transduction in mouse cochlear hair cells. TRPM6 and TRPM7 each interacted with the tip-link component PCDH15 in cultured eukaryotic cells, which suggested they might be part of the transduction complex. Cochlear hair cell transduction was not affected by manipulations of Mg2+, however, which normally perturbs TRPM6 and TRPM7. To definitively examine the role of these two channels in transduction, we showed that deletion of either or both of their genes selectively in hair cells had no effect on auditory function. We suggest that TRPV6, TRPM6 and TRPM7 are unlikely to be the pore-forming subunit of the hair-cell transduction channel.
Collapse
Affiliation(s)
- Clive P. Morgan
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hongyu Zhao
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Meredith LeMasurier
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Wei Xiong
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, United States
| | - Bifeng Pan
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Piotr Kazmierczak
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, United States
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ruby Larisch
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| | - Anthony J. Ricci
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| | - Ulrich Müller
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, United States
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
39
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
40
|
ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 2017; 38:843-857. [PMID: 29222402 DOI: 10.1523/jneurosci.2658-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout (rda)]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle.SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is essential for stabilizing apical actin structures like the hair bundle and ensuring that the apical membrane forms appropriately around the stereocilia.
Collapse
|
41
|
Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction. Proc Natl Acad Sci U S A 2017; 114:E11010-E11019. [PMID: 29217640 DOI: 10.1073/pnas.1713135114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanoelectrical transduction in the inner ear is a biophysical process underlying the senses of hearing and balance. The key players involved in this process are mechanosensitive ion channels. They are located in the stereocilia of hair cells and opened by the tension in specialized molecular springs, the tip links, connecting adjacent stereocilia. When channels open, the tip links relax, reducing the hair-bundle stiffness. This gating compliance makes hair cells especially sensitive to small stimuli. The classical explanation for the gating compliance is that the conformational rearrangement of a single channel directly shortens the tip link. However, to reconcile theoretical models based on this mechanism with experimental data, an unrealistically large structural change of the channel is required. Experimental evidence indicates that each tip link is a dimeric molecule, associated on average with two channels at its lower end. It also indicates that the lipid bilayer modulates channel gating, although it is not clear how. Here, we design and analyze a model of mechanotransduction where each tip link attaches to two channels, mobile within the membrane. Their states and positions are coupled by membrane-mediated elastic forces arising from the interaction between the channels' hydrophobic cores and that of the lipid bilayer. This coupling induces cooperative opening and closing of the channels. The model reproduces the main properties of hair-cell mechanotransduction using only realistic parameters constrained by experimental evidence. This work provides an insight into the fundamental role that membrane-mediated ion-channel cooperativity can play in sensory physiology.
Collapse
|
42
|
Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation. J Neurosci 2017; 37:11632-11646. [PMID: 29066559 DOI: 10.1523/jneurosci.1351-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/05/2017] [Indexed: 11/21/2022] Open
Abstract
Membrane proteins, such as ion channels, interact dynamically with their lipid environment. Phosphoinositol-4,5-bisphosphate (PIP2) can directly or indirectly modify ion-channel properties. In auditory sensory hair cells of rats (Sprague Dawley) of either sex, PIP2 localizes within stereocilia, near stereocilia tips. Modulating the amount of free PIP2 in inner hair-cell stereocilia resulted in the following: (1) the loss of a fast component of mechanoelectric-transduction current adaptation, (2) an increase in the number of channels open at the hair bundle's resting position, (3) a reduction of single-channel conductance, (4) a change in ion selectivity, and (5) a reduction in calcium pore blocking effects. These changes occur without altering hair-bundle compliance or the number of functional stereocilia within a given hair bundle. Although the specific molecular mechanism for PIP2 action remains to be uncovered, data support a hypothesis for PIP2 directly regulating channel conformation to alter calcium permeation and single-channel conductance.SIGNIFICANCE STATEMENT How forces are relayed to the auditory mechanoelectrical transduction (MET) channel remains unknown. However, researchers have surmised that lipids might be involved. Previous work on bullfrog hair cells showed an effect of phosphoinositol-4,5-bisphosphate (PIP2) depletion on MET current amplitude and adaptation, leading to the postulation of the existence of an underlying myosin-based adaptation mechanism. We find similar results in rat cochlea hair cells but extend these data to include single-channel analysis, hair-bundle mechanics, and channel-permeation properties. These additional data attribute PIP2 effects to actions on MET-channel properties and not motor interactions. Further findings support PIP2's role in modulating a fast, myosin-independent, and Ca2+-independent adaptation process, validating fast adaptation's biological origin. Together this shows PIP2's pivotal role in auditory MET, likely as a direct channel modulator.
Collapse
|
43
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
44
|
Mittal R, Debs LH, Nguyen D, Patel AP, Grati M, Mittal J, Yan D, Eshraghi AA, Liu XZ. Signaling in the Auditory System: Implications in Hair Cell Regeneration and Hearing Function. J Cell Physiol 2017; 232:2710-2721. [DOI: 10.1002/jcp.25695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Adrien A. Eshraghi
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|