1
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
3
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
4
|
Jackson GS, Linehan J, Brandner S, Asante EA, Wadsworth JDF, Collinge J. Overexpression of mouse prion protein in transgenic mice causes a non-transmissible spongiform encephalopathy. Sci Rep 2022; 12:17198. [PMID: 36229637 PMCID: PMC9562354 DOI: 10.1038/s41598-022-21608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Transgenic mice over-expressing human PRNP or murine Prnp transgenes on a mouse prion protein knockout background have made key contributions to the understanding of human prion diseases and have provided the basis for many of the fundamental advances in prion biology, including the first report of synthetic mammalian prions. In this regard, the prion paradigm is increasingly guiding the exploration of seeded protein misfolding in the pathogenesis of other neurodegenerative diseases. Here we report that a well-established and widely used line of such mice (Tg20 or tga20), which overexpress wild-type mouse prion protein, exhibit spontaneous aggregation and accumulation of misfolded prion protein in a strongly age-dependent manner, which is accompanied by focal spongiosis and occasional neuronal loss. In some cases a clinical syndrome developed with phenotypic features that closely resemble those seen in prion disease. However, passage of brain homogenate from affected, aged mice failed to transmit this syndrome when inoculated intracerebrally into further recipient animals. We conclude that overexpression of the wild-type mouse prion protein can cause an age-dependent protein misfolding disorder or proteinopathy that is not associated with the production of an infectious agent but can produce a phenotype closely similar to authentic prion disease.
Collapse
Affiliation(s)
- Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
- Division of Neuropathology, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Emmanuel A Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| |
Collapse
|
5
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
6
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Spagnolli G, Requena JR, Biasini E. Understanding prion structure and conversion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:19-30. [PMID: 32958233 DOI: 10.1016/bs.pmbts.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since their original identification, prions have represented enigmatic agents that defy the classical concept of genetic inheritance. For almost four decades, the high-resolution structure of PrPSc, the infectious and misfolded counterpart of the cellular prion protein (PrPC), has remained elusive, mostly due to technical challenges posed by its high insolubility and aggregation propensity. As a result, such a lack of information has critically hampered the search for an effective therapy against prion diseases. Nevertheless, multiple attempts to get insights into the structure of PrPSc have provided important experimental constraints that, despite being at limited resolution, are paving the way for the application of computer-aided technologies to model the three-dimensional architecture of prions and their templated replication mechanism. Here, we review the most relevant studies carried out so far to elucidate the conformation of infectious PrPSc and offer an overview of the most advanced molecular models to explain prion structure and conversion.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy
| | - Jesús R Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy.
| |
Collapse
|
8
|
Global analysis of protein degradation in prion infected cells. Sci Rep 2020; 10:10800. [PMID: 32612191 PMCID: PMC7329860 DOI: 10.1038/s41598-020-67505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/06/2020] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are rare, neurological disorders caused by the misfolding of the cellular prion protein (PrPC) into cytotoxic fibrils (PrPSc). Intracellular PrPSc aggregates primarily accumulate within late endosomes and lysosomes, organelles that participate in the degradation and turnover of a large subset of the proteome. Thus, intracellular accumulation of PrPSc aggregates has the potential to globally influence protein degradation kinetics within an infected cell. We analyzed the proteome-wide effect of prion infection on protein degradation rates in N2a neuroblastoma cells by dynamic stable isotopic labeling with amino acids in cell culture (dSILAC) and bottom-up proteomics. The analysis quantified the degradation rates of more than 4,700 proteins in prion infected and uninfected cells. As expected, the degradation rate of the prion protein is significantly decreased upon aggregation in infected cells. In contrast, the degradation kinetics of the remainder of the N2a proteome generally increases upon prion infection. This effect occurs concurrently with increases in the cellular activities of autophagy and some lysosomal hydrolases. The resulting enhancement in proteome flux may play a role in the survival of N2a cells upon prion infection.
Collapse
|
9
|
Altered distribution, aggregation, and protease resistance of cellular prion protein following intracranial inoculation. PLoS One 2019; 14:e0219457. [PMID: 31291644 PMCID: PMC6620108 DOI: 10.1371/journal.pone.0219457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Prion protein (PrPC) is a protease-sensitive and soluble cell surface glycoprotein expressed in almost all mammalian cell types. PrPSc, a protease-resistant and insoluble form of PrPC, is the causative agent of prion diseases, fatal and transmissible neurogenerative diseases of mammals. Prion infection is initiated via either ingestion or inoculation of PrPSc or when host PrPC stochastically refolds into PrPSc. In either instance, the early events that occur during prion infection remain poorly understood. We have used transgenic mice expressing mouse PrPC tagged with a unique antibody epitope to monitor the response of host PrPC to prion inoculation. Following intracranial inoculation of either prion-infected or uninfected brain homogenate, we show that host PrPC can accumulate both intra-axonally and within the myelin membrane of axons suggesting that it may play a role in axonal loss following brain injury. Moreover, in response to the inoculation host PrPC exhibits an increased insolubility and protease resistance similar to that of PrPSc, even in the absence of infectious prions. Thus, our results raise the possibility that damage to the brain may be one trigger by which PrPC stochastically refolds into pathogenic PrPSc leading to productive prion infection.
Collapse
|
10
|
Mengel D, Hong W, Corbett GT, Liu W, DeSousa A, Solforosi L, Fang C, Frosch MP, Collinge J, Harris DA, Walsh DM. PrP-grafted antibodies bind certain amyloid β-protein aggregates, but do not prevent toxicity. Brain Res 2019; 1710:125-135. [PMID: 30593771 PMCID: PMC6431553 DOI: 10.1016/j.brainres.2018.12.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The prion protein (PrP) is known to bind certain soluble aggregates of the amyloid β-protein (Aβ), and two regions of PrP, one centered around residues 19-33, and the other around 87-112, are thought to be particularly important for this interaction. When either of these sequences are grafted into a human IgG the resulting antibodies react with disease-associated PrP conformers, whereas the parental b12 IgG does not. METHODS Human antibodies containing grafts of PrP 19-33 or 87-112 were prepared as before (Solforosi et al., 2007) and tested for their ability to recognize synthetic and Alzheimer's disease (AD) brain-derived Aβ. Since aqueous extracts of AD brain contain a complex mixture of active and inactive Aβ species, we also assessed whether PrP-grafted antibodies could protect against neuritotoxicity mediated by AD brain-derived Aβ. For these experiments, human iPSC-derived neurons were grown in 96-well plates at 5000 cells per well and on post-induction day 21, AD brain extracts were added +/- test antibodies. Neurons were imaged for 3 days using an IncuCyte live-cell imaging system, and neurite number and density quantified. RESULTS Grafted antibodies bound a significant portion of aggregated Aβ in aqueous AD extracts, but when these antibodies were co-incubated with neurons treated with brain extracts they did not reduce toxicity. By contrast, the PrP fragment N1 did protect against Aβ. CONCLUSIONS These results further demonstrate that not all Aβ oligomers are toxic and suggest that PrP derivatives may allow development of agents that differentially recognize toxic and innocuous Aβ aggregates.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Solforosi
- Laboratory of Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Cheng Fang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John Collinge
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; MRC Prion Unit at UCL, UCL Institute of Prion Diseases and NHS National Prion Clinic, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol 2019; 44:28-38. [PMID: 30878006 DOI: 10.1016/j.coph.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Prion diseases are devastating neurodegenerative disorders for which no drugs are available. The successful development of therapeutics depends on drug screening platforms and preclinical models that recapitulate key molecular and pathological features of the disease. Innovative experimental tools have been developed over the last few years that might facilitate drug discovery, including cell-free prion replication assays and prion-infected flies. However, there is still room for improvement. Animal models of genetic prion disease are few, and only partially recapitulate the complexity of the human disorder. Moreover, we still lack a human cell culture model suitable for high-content anti-prion drug screening. This review provides an overview of the models currently used in prion research, and discusses their promise and limitations for drug discovery.
Collapse
Affiliation(s)
- Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| | - Roberto Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
12
|
Osborne C, West E, Bate C. The phospholipase A 2 pathway controls a synaptic cholesterol ester cycle and synapse damage. J Cell Sci 2018; 131:jcs.211789. [PMID: 29588394 DOI: 10.1242/jcs.211789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) acts as a scaffold protein that organises signalling complexes. In synaptosomes, the aggregation of PrPC by amyloid-β (Aβ) oligomers attracts and activates cytoplasmic phospholipase A2 (cPLA2), leading to synapse degeneration. The signalling platform is dependent on cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs). The activation of cPLA2 requires cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs), enzymes dependent upon platelet activating factor (PAF) released by activated cPLA2 This demonstrates a positive feedback system in which activated cPLA2 increased cholesterol concentrations, which in turn facilitated cPLA2 activation. PAF was also required for the incorporation of the tyrosine kinase Fyn and cyclooxygenase (COX)-2 into Aβ-PrPC-cPLA2 complexes. As a failure to deactivate signalling complexes can lead to pathology, the mechanisms involved in their dispersal were studied. PAF facilitated the incorporation of acyl-coenzyme A:cholesterol acyltransferase (ACAT)-1 into Aβ-PrPC-cPLA2-COX-2-Fyn complexes. The esterification of cholesterol reduced cholesterol concentrations, causing dispersal of Aβ-PrPC-cPLA2-COX-2-Fyn complexes and the cessation of signalling. This study identifies PAF as a key mediator regulating the cholesterol ester cycle, activation of cPLA2 and COX-2 within synapses, and synapse damage.
Collapse
Affiliation(s)
- Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| |
Collapse
|
13
|
Stravalaci M, Tapella L, Beeg M, Rossi A, Joshi P, Pizzi E, Mazzanti M, Balducci C, Forloni G, Biasini E, Salmona M, Diomede L, Chiesa R, Gobbi M. The Anti-Prion Antibody 15B3 Detects Toxic Amyloid-β Oligomers. J Alzheimers Dis 2018; 53:1485-97. [PMID: 27392850 PMCID: PMC5044783 DOI: 10.3233/jad-150882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
15B3 is a monoclonal IgM antibody that selectively detects pathological aggregates of the prion protein (PrP). We report the unexpected finding that 15B3 also recognizes oligomeric but not monomeric forms of amyloid-β (Aβ)42, an aggregating peptide implicated in the pathogenesis of Alzheimer's disease (AD). The 15B3 antibody: i) inhibits the binding of synthetic Aβ42 oligomers to recombinant PrP and neuronal membranes; ii) prevents oligomer-induced membrane depolarization; iii) antagonizes the inhibitory effects of oligomers on the physiological pharyngeal contractions of the nematode Caenorhabditis elegans; and iv) counteracts the memory deficits induced by intracerebroventricular injection of Aβ42 oligomers in mice. Thus this antibody binds to pathologically relevant forms of Aβ, and offers a potential research, diagnostic, and therapeutic tool for AD.
Collapse
Affiliation(s)
- Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Laura Tapella
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Pooja Joshi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Erika Pizzi
- Department of Life Science, University of Milan, Milan, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
14
|
Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One 2017; 12:e0188340. [PMID: 29261664 PMCID: PMC5737884 DOI: 10.1371/journal.pone.0188340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
Collapse
|
15
|
West E, Osborne C, Bate C. The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-β. J Cell Sci 2017; 130:3050-3059. [PMID: 28760925 DOI: 10.1242/jcs.205484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023] Open
Abstract
Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2 The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2 Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration.
Collapse
Affiliation(s)
- Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
16
|
Serra F, Müller J, Gray J, Lüthi R, Dudas S, Czub S, Seuberlich T. PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrP sc. Brain Res 2017; 1659:19-28. [PMID: 28119056 DOI: 10.1016/j.brainres.2017.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrPres). In this study, we report and analyze yet another PrPres type (PrPres-2011), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011. Analysis of brain tissues from these animals by PK titration and PK inhibitor assays ruled out the process of autolysis as the cause for the aberrant PrPres profile. Immunochemical characterization of the PrP fragments present in the 2011 cases by epitope mapping indicated that PrPres-2011 corresponds in its primary sequence to the physiologically occurring PrP-C1 fragment. However, high speed centrifugation, sucrose gradient assay and NaPTA precipitation revealed biochemical similarities between PrPres-2011 and the disease-associated prion protein found in BSE affected cattle in terms of detergent insolubility, PK resistance and PrP aggregation. Although it remains to be established whether PrPres-2011 is associated with a transmissible disease, our results point out the need of further research on the role the PrP-C1 aggregation and misfolding in health and disease.
Collapse
Affiliation(s)
- Fabienne Serra
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty and Medical Faculty, University of Bern, Bern, Switzerland
| | - John Gray
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Ramona Lüthi
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sandor Dudas
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Torsten Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
18
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
19
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
20
|
Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity. Sci Rep 2016; 6:35865. [PMID: 27775057 PMCID: PMC5075897 DOI: 10.1038/srep35865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.
Collapse
|
21
|
Bouybayoune I, Mantovani S, Del Gallo F, Bertani I, Restelli E, Comerio L, Tapella L, Baracchi F, Fernández-Borges N, Mangieri M, Bisighini C, Beznoussenko GV, Paladini A, Balducci C, Micotti E, Forloni G, Castilla J, Fiordaliso F, Tagliavini F, Imeri L, Chiesa R. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease. PLoS Pathog 2015; 11:e1004796. [PMID: 25880443 PMCID: PMC4400166 DOI: 10.1371/journal.ppat.1004796] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD) brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic mice modeling genetic CJD, clinically identified by dementia and motor abnormalities. We have now generated transgenic mice carrying the PrP mutation associated with FFI, and found that they develop severe sleep abnormalities and other key features of the human disorder. Thus, transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs in FFI and CJD mice are aggregated but unable to promote PrP aggregation. They accumulate in different intracellular compartments and cause distinct morphological abnormalities of transport organelles. These results indicate that mutant PrP has disease-encoding properties that are independent of its ability to self-propagate, and suggest that the phenotypic heterogeneity may be due to different effects of aggregated PrP on intracellular transport. Our study provides new insights into the mechanisms of selective neuronal dysfunction due to protein aggregation.
Collapse
Affiliation(s)
- Ihssane Bouybayoune
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Susanna Mantovani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Federico Del Gallo
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Liliana Comerio
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Laura Tapella
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Francesca Baracchi
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | | | - Michela Mangieri
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Cinzia Bisighini
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | | | - Alessandra Paladini
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Claudia Balducci
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Luca Imeri
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
22
|
Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech 2014; 7:21-9. [PMID: 24396151 PMCID: PMC3882045 DOI: 10.1242/dmm.012146] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer’s disease primarily affects parts of the brain that play a role in memory, whereas Parkinson’s disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery.
Collapse
Affiliation(s)
- Walker S Jackson
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 25, 53127-Bonn, Germany
| |
Collapse
|
23
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
24
|
Murali A, Maue RA, Dolph PJ. Reversible symptoms and clearance of mutant prion protein in an inducible model of a genetic prion disease in Drosophila melanogaster. Neurobiol Dis 2014; 67:71-8. [PMID: 24686303 DOI: 10.1016/j.nbd.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are progressive disorders that affect the central nervous system leading to memory loss, personality changes, ataxia and neurodegeneration. In humans, these disorders include Creutzfeldt-Jakob disease, kuru and Gerstmann-Straüssler-Scheinker (GSS) syndrome, the latter being a dominantly inherited prion disease associated with missense mutations in the gene that codes for the prion protein. The exact mechanism by which mutant prion proteins affect the central nervous system and cause neurological disease is not well understood. We have generated an inducible model of GSS disease in Drosophila melanogaster by temporally expressing a misfolded form of the murine prion protein in cholinergic neurons. Flies accumulating this mutant protein develop motor abnormalities which are associated with electrophysiological defects in cholinergic neurons. We find that, upon blocking the expression of the mutant protein, both behavioral and electrophysiological defects can be reversed. This represents the first case of reversibility reported in a model of genetic prion disease. Additionally, we observe that endogenous mechanisms exist within Drosophila that are capable of clearing the accumulated prion protein.
Collapse
Affiliation(s)
- A Murali
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - R A Maue
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - P J Dolph
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Dissociation of prion protein amyloid seeding from transmission of a spongiform encephalopathy. J Virol 2013; 87:12349-56. [PMID: 24027305 PMCID: PMC3807897 DOI: 10.1128/jvi.00673-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Misfolding and aggregation of proteins are common pathogenic mechanisms of a group of diseases called proteinopathies. The formation and spread of proteinaceous lesions within and between individuals were first described in prion diseases and proposed as the basis of their infectious nature. Recently, a similar "prion-like" mechanism of transmission has been proposed in other neurodegenerative diseases such as Alzheimer's disease. We investigated if misfolding and aggregation of corrupted prion protein (PrP(TSE)) are always associated with horizontal transmission of disease. Knock-in transgenic mice (101LL) expressing mutant PrP (PrP-101L) that are susceptible to disease but do not develop any spontaneous neurological phenotype were inoculated with (i) brain extracts containing PrP(TSE) from healthy 101LL mice with PrP plaques in the corpus callosum or (ii) brain extracts from mice overexpressing PrP-101L with neurological disease, severe spongiform encephalopathy, and formation of proteinase K-resistant PrP(TSE). In all instances, 101LL mice developed PrP plaques in the area of inoculation and vicinity in the absence of clinical disease or spongiform degeneration of the brain. Importantly, 101LL mice did not transmit disease on serial passage, ruling out the presence of subclinical infection. Thus, in both experimental models the formation of PrP(TSE) is not infectious. These results have implications for the interpretation of tests based on the detection of protein aggregates and suggest that de novo formation of PrP(TSE) in the host does not always result in a transmissible prion disease. In addition, these results question the validity of assuming that all diseases due to protein misfolding can be transmitted between individuals.
Collapse
|
26
|
Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases. Proc Natl Acad Sci U S A 2013; 110:14759-64. [PMID: 23959875 DOI: 10.1073/pnas.1312006110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In man, mutations in different regions of the prion protein (PrP) are associated with infectious neurodegenerative diseases that have remarkably different clinical signs and neuropathological lesions. To explore the roots of this phenomenon, we created a knock-in mouse model carrying the mutation associated with one of these diseases [Creutzfeldt-Jakob disease (CJD)] that was exactly analogous to a previous knock-in model of a different prion disease [fatal familial insomnia (FFI)]. Together with the WT parent, this created an allelic series of three lines, each expressing the same protein with a single amino acid difference, and with all native regulatory elements intact. The previously described FFI mice develop neuronal loss and intense reactive gliosis in the thalamus, as seen in humans with FFI. In contrast, CJD mice had the hallmark features of CJD, spongiosis and proteinase K-resistant PrP aggregates, initially developing in the hippocampus and cerebellum but absent from the thalamus. A molecular transmission barrier protected the mice from any infectious prion agents that might have been present in our mouse facility and allowed us to conclude that the diseases occurred spontaneously. Importantly, both models created agents that caused a transmissible neurodegenerative disease in WT mice. We conclude that single codon differences in a single gene in an otherwise normal genome can cause remarkably different neurodegenerative diseases and are sufficient to create distinct protein-based infectious elements.
Collapse
|
27
|
Hu PP, Huang CZ. Prion protein: structural features and related toxicity. Acta Biochim Biophys Sin (Shanghai) 2013; 45:435-41. [PMID: 23615535 DOI: 10.1093/abbs/gmt035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, is a group of infectious neurodegenerative disorders. The conformational conversion from cellular form (PrP(C)) to disease-causing isoform (PrP(Sc)) is considered to be the most important and remarkable event in these diseases, while accumulation of PrP(Sc) is thought to be the main reason for cell death, inflammation and spongiform degeneration observed in infected individuals. Although these rare but unique neurodegenerative disorders have attracted much attention, there are still many questions that remain to be answered. Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases, and could be helpful for rational design of novel therapeutic and diagnostic methods. In this review, we summarized the available experimental evidence concerning the relationship among the structural features, aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development. In particular, most data supports the idea that the smaller oligomeric PrP(Sc) aggregates, rather than the mature amyloid fibers, exhibit the highest toxicity to the host.
Collapse
Affiliation(s)
- Ping Ping Hu
- Ministry of Education Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
28
|
Pradines E, Hernandez-Rapp J, Villa-Diaz A, Dakowski C, Ardila-Osorio H, Haik S, Schneider B, Launay JM, Kellermann O, Torres JM, Mouillet-Richard S. Pathogenic prions deviate PrP(C) signaling in neuronal cells and impair A-beta clearance. Cell Death Dis 2013; 4:e456. [PMID: 23303130 PMCID: PMC3563983 DOI: 10.1038/cddis.2012.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subversion of the normal function exerted by the cellular prion protein (PrPC) in neurons by pathogenic prions is assumed to have a central role in the pathogenesis of transmissible spongiform encephalopathies. Using two murine models of prion infection, the 1C11 neuronal cell line and neurospheres, we document that prion infection is associated with the constitutive activation of signaling targets normally coupled with PrPC, including the Fyn kinase, the mitogen-associated protein kinases ERK1/2 and the CREB transcription factor. PrPC-dependent signaling overactivation in infected cells is associated with the recruitment of p38 and JNK stress-associated kinases. Downstream from CREB, prion-infected cells exhibit reduced activity of the matrix metalloprotease (MMP)-9. As MMP-9 catalyzes the degradation of the amyloid A-beta peptide, the decrease in MMP-9 activity in prion-infected cells causes a significant impairment of the clearance of A-beta, leading to its accumulation. By exploiting two 1C11-infected clones accumulating high or moderate levels of prions, we show that the prion-induced changes are correlated with the level of infectivity. Of note, a dose-dependent increase in A-beta levels was also found in the cerebrospinal fluid of mice inoculated with these infected clones. By demonstrating that pathogenic prions trigger increases in A-beta levels through the deviation of PrPC signaling, our data argue that A-beta may exacerbate prion-induced toxicity.
Collapse
Affiliation(s)
- E Pradines
- Cellules Souches, Signalisation et Prions, INSERM UMR-S747, 75006, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA. Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012; 8:e1003002. [PMID: 23144617 PMCID: PMC3493483 DOI: 10.1371/journal.ppat.1003002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Prion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure. In this study, we used laser capture microdissection to isolate hippocampal CA1 neurons and determined their pre-clinical transcriptional response during infection. We found that gene expression within these neurons is dynamic and characterized by distinct phases of activity. We found that a major cluster of genes is altered during pre-clinical disease after which expression either returns to basal levels, or alternatively undergoes a direct reversal during clinical disease. Strikingly, we show that this cluster contains a signature highly reminiscent of synaptic N-methyl-D-aspartic acid (NMDA) receptor signaling and the activation of neuroprotective pathways. Additionally, genes involved in neuronal projection and dendrite development were also altered throughout the disease, culminating in a general decline of gene expression for synaptic proteins. Similarly, deregulated miRNAs such as miR-132-3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p follow concomitant patterns of expression. This is the first in depth genomic study describing the pre-clinical response of hippocampal neurons to early prion replication. Our findings suggest that prion replication results in the persistent stimulation of a programmed response that is mediated, at least in part, by synaptic NMDA receptor activity that initially promotes cell survival and neurite remodelling. However, this response is terminated prior to the onset of clinical symptoms in the infected hippocampus, seemingly pointing to a critical juncture in the disease. Manipulation of these early neuroprotective pathways may redress the balance between degeneration and survival, providing a potential inroad for treatment. Neurodegenerative diseases affect an ever-increasing proportion of the population; therefore, there is an urgent need to develop treatments. Prion disorders belong to this group of diseases and although rare and uniquely transmissible, share many features on a sub-cellular level. Central to disease is progressive synaptic impairment that invariably leads to the irreversible loss of neurons. Understanding this process is undoubtedly essential for rational drug discovery. In this study we looked at neurons very early in disease, when prions are barely detectable and there are no clinical symptoms observed. Specifically, we performed a comprehensive analysis of transcriptional changes within a particularly dense area of neurons, the CA1 hippocampus region, from prion-infected and control mice. In this way we were able to enrich our data for molecular changes unique to neurons and minimize those changes characteristic of support cells such as astrocytes and microglia. We detected the activation of a transcriptional program indicative of a protective mechanism within these neurons early in disease. This mechanism diminished as disease progressed and was lost altogether, concurrently with the onset of clinical symptoms. These findings demonstrate the ability of neurons to mount an initial neuroprotective response to prions that could be exploited for therapy development.
Collapse
Affiliation(s)
- Anna Majer
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sarah J. Medina
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bernard Abrenica
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy J. Manguiat
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy L. Frost
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Clark S. Philipson
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra L. Sorensen
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A. Booth
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
30
|
Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C, Dong XP. Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 2012; 7:e38221. [PMID: 22685557 PMCID: PMC3369880 DOI: 10.1371/journal.pone.0038221] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/01/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Protein disulfide isomerase (PDI), is sorted to be enzymatic chaperone for reconstructing misfolded protein in endoplasmic reticulum lumen. Recently, PDI has been identified as a link between misfolded protein and neuron apoptosis. However, the potential for PDI to be involved in the pathogenesis of prion disease remains unknown. In this study, we propose that PDI may function as a pleiotropic regulator in the cytotoxicity induced by mutated prion proteins and in the pathogenesis of prion diseases. METHODOLOGY/PRINCIPAL FINDINGS To elucidate potential alterations of PDI in prion diseases, the levels of PDI and relevant apoptotic executors in 263K infected hamsters brain tissues were evaluated with the use of Western blots. Abnormal upregulation of PDI, Grp78 and Grp58 was detected. Dynamic assays of PDI alteration identified that the upregulation of PDI started at the early stage and persistently increased till later stage. Obvious increases of PDI and Grp78 levels were also observed in cultured cells transiently expressing PrP mutants, PrP-KDEL or PrP-PG15, accompanied by significant cytotoxicities. Excessive expression of PDI partially eased ER stress and cell apoptosis caused by accumulation of PrP-KDEL, but had less effect on cytotoxicity induced by PrP-PG15. Knockdown of endogenous PDI significantly amended cytotoxicity of PrP-PG15, but had little influence on that of PrP-KDEL. A series of membrane potential assays found that apoptosis induced by misfolded PrP proteins could be regulated by PDI via mitochondrial dysfunction. Moreover, biotin-switch assays demonstrated active S-nitrosylated modifications of PDI (SNO-PDI) both in the brains of scrapie-infected rodents and in the cells with misfolded PrP proteins. CONCLUSION/SIGNIFICANCE Current data in this study highlight that PDI and its relevant executors may function as a pleiotropic regulator in the processes of different misfolded PrP proteins and at different stages during prion infection. SNO-PDI may feed as an accomplice for PDI apoptosis.
Collapse
Affiliation(s)
- Shao-Bin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yin Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wu-Ling Xie
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ke Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
32
|
Bate C, Williams A. Neurodegeneration induced by clustering of sialylated glycosylphosphatidylinositols of prion proteins. J Biol Chem 2012; 287:7935-44. [PMID: 22262833 DOI: 10.1074/jbc.m111.275743] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transmissible spongiform encephalopathies, more commonly known as the prion diseases, are associated with the production and aggregation of disease-related isoforms of the prion protein (PrP(Sc)). The mechanisms by which PrP(Sc) accumulation causes neurodegeneration in these diseases are poorly understood. In cultured neurons, the addition of PrP(Sc) alters cell membranes, increasing cholesterol, activating cytoplasmic phospholipase A(2) (cPLA(2)), and triggering synapse damage. These effects of PrP(Sc) are dependent upon its glycosylphosphatidylinositol (GPI) anchor, suggesting that it is the increased density of GPIs that occurs following the aggregation of PrP(Sc) molecules that triggers neurodegeneration. This hypothesis was supported by observations that cross-linkage of the normal cellular prion protein (PrP(C)) also increased membrane cholesterol, activated cPLA(2), and triggered synapse damage. These effects were not seen after cross-linkage of Thy-1, another GPI-anchored protein, and were dependent on the GPI anchor attached to PrP(C) containing two acyl chains and sialic acid. We propose that the aggregation of PrP(Sc), or the cross-linkage of PrP(C), causes the clustering of sialic acid-containing GPI anchors at high densities, resulting in altered membrane composition, the pathological activation of cPLA(2), and synapse damage.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | | |
Collapse
|
33
|
Faucheux BA, Morain E, Diouron V, Brandel JP, Salomon D, Sazdovitch V, Privat N, Laplanche JL, Hauw JJ, Haïk S. Quantification of surviving cerebellar granule neurones and abnormal prion protein (PrPSc) deposition in sporadic Creutzfeldt-Jakob disease supports a pathogenic role for small PrPSc deposits common to the various molecular subtypes. Neuropathol Appl Neurobiol 2011; 37:500-12. [PMID: 21450052 DOI: 10.1111/j.1365-2990.2011.01179.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Neuronal death is a major neuropathological hallmark in prion diseases. The association between the accumulation of the disease-related prion protein (PrP(Sc) ) and neuronal loss varies within the wide spectrum of prion diseases and their experimental models. In this study, we investigated the relationships between neuronal loss and PrP(Sc) deposition in the cerebellum from cases of the six subtypes of sporadic Creutzfeldt-Jakob disease (sCJD; n=100) that can be determined according to the M129V polymorphism of the human prion protein gene (PRNP) and PrP(Sc) molecular types. METHODS The numerical density of neurones was estimated with a computer-assisted image analysis system and the accumulation of PrP(Sc) deposits was scored. RESULTS The scores of PrP(Sc) immunoreactive deposits of the punctate type (synaptic type) were correlated with neurone counts - the higher the score the higher the neuronal loss - in all sCJD subtypes. Large 5- to 50-µm-wide deposits (focal type) were found in sCJD-MV2 and sCJD-VV2 subtypes, and occasionally in a few cases of the other studied groups. By contrast, the highest scores for 5- to 50-µm-wide deposits observed in sCJD-MV2 subtype were not associated with higher neuronal loss. In addition, these scores were inversely correlated with neuronal counts in the sCJD-VV2 subtype. CONCLUSIONS These results support a putative pathogenic role for small PrP(Sc) deposits common to the various sCJD subtypes. Furthermore, the observation of a lower loss of neurones associated with PrP(Sc) type-2 large deposits is consistent with a possible 'protective' role of aggregated deposits in both sCJD-MV2 and sCJD-VV2 subtypes.
Collapse
Affiliation(s)
- B A Faucheux
- Assistance Publique - Hôpitaux de Paris (AP-HP), Laboratoire de Neuropathologie, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital Centre de Recherche de l'Institut du Cerveau et de la Moelle, INSERM UMRS975, CNRS UMR7225, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bate C, Williams A. Amyloid-β-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J Biol Chem 2011; 286:37955-37963. [PMID: 21900234 DOI: 10.1074/jbc.m111.248724] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein (PrP(C)), which is highly expressed at synapses, was identified as a receptor for the amyloid-β (Aβ) oligomers that are associated with dementia in Alzheimer disease. Here, we report that Aβ oligomers secreted by 7PA2 cells caused synapse damage in cultured neurons via a PrP(C)-dependent process. Exogenous PrP(C) added to Prnp knock-out((0/0)) neurons was targeted to synapses and significantly increased Aβ-induced synapse damage. In contrast, the synapse damage induced by a phospholipase A(2)-activating peptide was independent of PrP(C). In Prnp wild-type((+/+)) neurons Aβ oligomers activated synaptic cytoplasmic phospholipase A(2) (cPLA(2)). In these cells, the addition of Aβ oligomers triggered the translocation of cPLA(2) in synapses to cholesterol dense membranes (lipid rafts) where it formed a complex also containing Aβ and PrP(C). In contrast, the addition of Aβ to Prnp((0/0)) neurons did not activate synaptic cPLA(2), which remained in the cytoplasm and was not associated with Aβ. Filtration assays and non-denaturing gels demonstrated that Aβ oligomers cross-link PrP(C). We propose that it is the cross-linkage of PrP(C) by Aβ oligomers that triggers abnormal activation of cPLA(2) and synapse damage. This hypothesis was supported by our observation that monoclonal antibody mediated cross-linkage of PrP(C) also activated synaptic cPLA(2) and caused synapse damage.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, United Kingdom.
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
35
|
Calero O, Bullido MJ, Clarimón J, Frank-García A, Martínez-Martín P, Lleó A, Rey MJ, Rábano A, Blesa R, Gómez-Isla T, Valdivieso F, de Pedro-Cuesta J, Ferrer I, Calero M. Genetic cross-interaction between APOE and PRNP in sporadic Alzheimer's and Creutzfeldt-Jakob diseases. PLoS One 2011; 6:e22090. [PMID: 21799773 PMCID: PMC3140492 DOI: 10.1371/journal.pone.0022090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD) represent two distinct clinical entities belonging to a wider group, generically named as conformational disorders that share common pathophysiologic mechanisms. It is well-established that the APOE ε4 allele and homozygosity at polymorphic codon 129 in the PRNP gene are the major genetic risk factors for AD and human prion diseases, respectively. However, the roles of PRNP in AD, and APOE in CJD are controversial. In this work, we investigated for the first time, APOE and PRNP genotypes simultaneously in 474 AD and 175 sporadic CJD (sCJD) patients compared to a common control population of 335 subjects. Differences in genotype distribution between patients and control subjects were studied by logistic regression analysis using age and gender as covariates. The effect size of risk association and synergy factors were calculated using the logistic odds ratio estimates. Our data confirmed that the presence of APOE ε4 allele is associated with a higher risk of developing AD, while homozygosity at PRNP gene constitutes a risk for sCJD. Opposite, we found no association for PRNP with AD, nor for APOE with sCJD. Interestingly, when AD and sCJD patients were stratified according to their respective main risk genes (APOE for AD, and PRNP for sCJD), we found statistically significant associations for the other gene in those strata at higher previous risk. Synergy factor analysis showed a synergistic age-dependent interaction between APOE and PRNP in both AD (SF = 3.59, p = 0.027), and sCJD (SF = 7.26, p = 0.005). We propose that this statistical epistasis can partially explain divergent data from different association studies. Moreover, these results suggest that the genetic interaction between APOE and PRNP may have a biological correlate that is indicative of shared neurodegenerative pathways involved in AD and sCJD.
Collapse
Affiliation(s)
- Olga Calero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Encefalopatías Espongiformes, Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Madrid, Spain
| | - María J. Bullido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Institute of Sanitary Research “Hospital la Paz” (IdIPaz), Madrid, Spain
| | - Jordi Clarimón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Frank-García
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute of Sanitary Research “Hospital la Paz” (IdIPaz), Madrid, Spain
- Neurology Service, Hospital Universitario La Paz (UAM), Madrid, Spain
| | - Pablo Martínez-Martín
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Jesús Rey
- Banco de Tejidos Neurológicos Universidad de Barcelona-Hospital Clínico, Barcelona, Spain
| | - Alberto Rábano
- Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Rafael Blesa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Gómez-Isla
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Valdivieso
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Institute of Sanitary Research “Hospital la Paz” (IdIPaz), Madrid, Spain
| | - Jesús de Pedro-Cuesta
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Área de Epidemiologia Aplicada, Centro Nacional de Epidemiología, Instituto de Salud Carlos III (CNM-ISCIII), Madrid, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute of Neuropathology (INP), IDIBELL-Hospital Universitari de Bellvitge, Faculty of Medicine, University of Barcelona, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Miguel Calero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Unidad de Encefalopatías Espongiformes, Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
Zou WQ, Zhou X, Yuan J, Xiao X. Insoluble cellular prion protein and its association with prion and Alzheimer diseases. Prion 2011; 5:172-8. [PMID: 21847014 DOI: 10.4161/pri.5.3.16894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The soluble cellular prion protein (PrP(C)) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrP(Sc)). However, its deleterious effects independent of PrP(Sc) have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrP(C) itself seems to have broad physiologic functions including involvement in cognitive processes. The PrP(C) that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrP(C) conformer (termed iPrP(C) ) in uninfected human and animal brains. Remarkably, the PrP(Sc) -like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrP(Sc) species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrP(C) has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition, and hypothesizes first, that beneficial and deleterious effects of PrP(C) are attributable to the chameleon-like conformation of the protein and second, that the iPrP(C) conformer is associated with PrD and AD.
Collapse
Affiliation(s)
- Wen-Quan Zou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
37
|
Miyazawa K, Emmerling K, Manuelidis L. Replication and spread of CJD, kuru and scrapie agents in vivo and in cell culture. Virulence 2011; 2:188-99. [PMID: 21527829 DOI: 10.4161/viru.2.3.15880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transmissible Spongiform Encephalopathy (TSE) agents are defined by their virulence for particular species, their spread in the population, their incubation time to cause disease, and their neuropathological sequelae. Murine adapted human agents, including sporadic CJD (sCJD), New Guinea kuru, and Japanese CJD agents, display particularly distinct incubation times and maximal infectious brain titers. They also induce agent-specific patterns of neurodegeneration. When these TSE agents are transmitted to cultured hypothalamic GT1 cells they maintain their unique identities. Nevertheless, the human kuru (kCJD) and Japanese FU-CJD agents, as well as the sheep 22L and 263K scrapie agents display doubling times that are 8x to 33x faster in cells than in brain, indicating release from complex innate immune responses. These data are most consistent with a foreign viral structure, rather than an infectious form of host prion protein (PrP-res). Profound agent-specific inhibitory effects are also apparent in GT1 cells, and maximal titer plateau in kCJD and FU-CJD differed by 1,000-fold in a cell-based assay. Remarkably, the lower titer kCJD agent rapidly induced de novo PrP-res in GT1 cells, whereas the high titer FU-CJD agent replicated silently for multiple passages. Although PrP-res is often considered to be toxic, PrP-res instead may be part of a primal defense and/or clearance mechanism against TSE environmental agents. Limited spread of particular TSE agents through nanotubes and cell-to-cell contacts probably underlies the long peripheral phase of human CJD.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Yale Medical School, Section of Neuropathology, New Haven, CT, USA
| | | | | |
Collapse
|
38
|
Wadsworth JDF, Asante EA, Collinge J. Review: contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 2011; 36:576-97. [PMID: 20880036 PMCID: PMC3017745 DOI: 10.1111/j.1365-2990.2010.01129.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease.
Collapse
Affiliation(s)
- J D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | |
Collapse
|
39
|
Park KW, Li L. Prion protein in Caenorhabditis elegans: Distinct models of anti-BAX and neuropathology. Prion 2011; 5:28-38. [PMID: 21084837 DOI: 10.4161/pri.5.1.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The infectious agent of prion diseases is believed to be nucleic acid-free particles composed of misfolded conformational isomers of a host protein known as prion protein (PrP). Although this "protein-only" concept is generally accepted, decades of extensive research have not been able to elucidate the mechanisms by which PrP misfolding leads to neurodegeneration and infectivity. The challenges in studying prion diseases relate in part to the limitations of mammalian prion models, which include the long incubation period post-infection until symptoms develop, the high expense of maintaining mammals for extended periods, as well as safety issues. In order to develop prion models incorporating a genetically tractable simple system with a well-defined neuronal system, we generated transgenic C. elegans expressing the mouse PrP behind the pan-neuronal ric-19 promoter (Pric-19). We show here that high expression of Pric-19::PrP in C. elegans can result in altered morphology, defective mobility, and shortened lifespan. Low expression of Pric-19::PrP, however, does not cause any detectable harm. Using the dopamine neuron specific promoter Pdat-1, we also show that expression of the murine BAX, a pro-apoptotic member of the Bcl-2 family, causes dopamine neuron destruction in the nematode. However, co-expression of PrP inhibits BAX-mediated dopamine neuron degeneration, demonstrating for the first time that PrP has anti-BAX activity in living animals. Thus, these distinct PrP-transgenic C. elegans lines recapitulate a number of functional and neuropathological features of mammalian prion models, and provide an opportunity for facile identification of genetic and environmental contributors to prion-associated pathology.
Collapse
Affiliation(s)
- Kyung-Won Park
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
40
|
Park Y, Kim W, Kim AY, Choi HJ, Choi JK, Park N, Koh EK, Seo J, Koh YH. Normal prion protein in Drosophila enhances the toxicity of pathogenic polyglutamine proteins and alters susceptibility to oxidative and autophagy signaling modulators. Biochem Biophys Res Commun 2010; 404:638-45. [PMID: 21146501 DOI: 10.1016/j.bbrc.2010.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/05/2010] [Indexed: 12/18/2022]
Abstract
To investigate the in vivo functions of normal prion protein (PrP) in Drosophila, we utilized characterized transgenic flies expressing ³(F)⁴-tagged mouse PrP (Mo-PrP³(F)⁴). The neurotoxicity of pathogenic Machado-Joseph Disease (MJD) glutamine (Q) 78 and 127Q proteins were enhanced by the co-expression of Mo-PrP³(F)⁴in the fly eyes, while the eyes of controls flies and flies expressing Mo-PrP³(F)⁴) alone or together with MJD-Q27 or 20Q proteins did not show any defect. Susceptibilities to H₂O₂, paraquat, and Dithiothreitol (DTT) were altered in Mo-PrP³(F)⁴ flies. In addition, Mo-PrP³(F)⁴ flies were significantly more susceptible to the perturbation of autophagy signaling by an autophagy inhibitor, 3-methyladenine (3-MA), and inducer, LiCl. Taken together, our data suggest that Mo-PrP³(F)⁴ may enhance the neurotoxicity of pathogenic Poly-Q proteins by perturbing oxidative and autophagy signaling.
Collapse
Affiliation(s)
- Yunwoong Park
- ILSONG Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 431-060, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Choi JK, Jeon YC, Lee DW, Oh JM, Lee HP, Jeong BH, Carp RI, Koh YH, Kim YS. A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome. Hum Mol Genet 2010; 19:4474-89. [PMID: 20829230 DOI: 10.1093/hmg/ddq379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have established a Drosophila model of Gerstmann-Sträussler-Scheinker (GSS) syndrome by expressing mouse prion protein (PrP) having leucine substitution at residue 101 (MoPrP(P101L)). Flies expressing MoPrP(P101L), but not wild-type MoPrP (MoPrP(3F4)), showed severe defects in climbing ability and early death. Expressed MoPrP(P101L) in Drosophila was differentially glycosylated, localized at the synaptic terminals and mainly present as deposits in adult brains. We found that behavioral defects and early death of MoPrP(P101L) flies were not due to Caspase 3-dependent programmed cell death signaling. In addition, we found that Type 1 glutamatergic synaptic boutons in larval neuromuscular junctions of MoPrP(P101L) flies showed significantly increased numbers of satellite synaptic boutons. Furthermore, the amount of Bruchpilot and Discs large in MoPrP(P101L) flies was significantly reduced. Brains from scrapie-infected mice showed significantly decreased ELKS, an active zone matrix marker compared with those of age-matched control mice. Thus, altered active zone structures at the molecular level may be involved in the pathogenesis of GSS syndrome in Drosophila and scrapie-infected mice.
Collapse
Affiliation(s)
- Jin-Kyu Choi
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyangdong Dongangu, Anyang, Gyeonggi-Do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fernandez-Funez P, Zhang Y, Casas-Tinto S, Xiao X, Zou WQ, Rincon-Limas DE. Sequence-dependent prion protein misfolding and neurotoxicity. J Biol Chem 2010; 285:36897-908. [PMID: 20817727 DOI: 10.1074/jbc.m110.174391] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are neurodegenerative disorders caused by misfolding of the normal prion protein (PrP) into a pathogenic "scrapie" conformation. To better understand the cellular and molecular mechanisms that govern the conformational changes (conversion) of PrP, we compared the dynamics of PrP from mammals susceptible (hamster and mouse) and resistant (rabbit) to prion diseases in transgenic flies. We recently showed that hamster PrP induces spongiform degeneration and accumulates into highly aggregated, scrapie-like conformers in transgenic flies. We show now that rabbit PrP does not induce spongiform degeneration and does not convert into scrapie-like conformers. Surprisingly, mouse PrP induces weak neurodegeneration and accumulates small amounts of scrapie-like conformers. Thus, the expression of three highly conserved mammalian prion proteins in transgenic flies uncovered prominent differences in their conformational dynamics. How these properties are encoded in the amino acid sequence remains to be elucidated.
Collapse
Affiliation(s)
- Pedro Fernandez-Funez
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Weiss E, Ramljak S, Asif AR, Ciesielczyk B, Schmitz M, Gawinecka J, Schulz-Schaeffer W, Behrens C, Zerr I. Cellular prion protein overexpression disturbs cellular homeostasis in SH-SY5Y neuroblastoma cells but does not alter p53 expression: a proteomic study. Neuroscience 2010; 169:1640-50. [PMID: 20547212 DOI: 10.1016/j.neuroscience.2010.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 11/29/2022]
Abstract
The definite physiological role of the cellular prion protein (PrP(c)) remains elusive. There is ample in vitro and in vivo evidence suggesting a neuroprotective role for PrP(c). On the other hand, several in vitro and in vivo studies demonstrated detrimental effects of PrP(c) overexpression through activation of a p53 pathway. Recently, we reported that transient overexpression of PrP(c) in human embryonic kidney 293 cells elicits proteome expression changes which point to deregulation of proteins involved in energy metabolism and cellular homeostasis. Here we report proteome expression changes following stable PrP(c) overexpression in human neuronal SH-SY5Y cells. In total 18 proteins that are involved in diverse biological processes were identified as differentially regulated. The majority of these proteins is involved in cell signaling, cytoskeletal organization and protein folding. Annexin V exhibited a several fold up-regulation following stable PrP(c) overexpression in SH-SY5Y cells. This finding has been reproduced in alternative, mouse N2a and human SK-N-LO neuroblastoma cell lines transiently overexpressing PrP(c). Annexin V plays an important role in maintenance of calcium homeostasis which when disturbed can activate a p53-dependent cell death. Although we did not detect changes in p53 expression between PrP(c) overexpressing SH-SY5Y and control cells, deregulation of several proteins including annexin V, polyglutamine tract-binding protein-1, spermine synthase and transgelin 2 indicates disrupted cellular equilibrium. We conclude that stable PrP(c) overexpression in SH-SY5Y cells is sufficient to perturb cellular balance but insufficient to affect p53 expression.
Collapse
Affiliation(s)
- E Weiss
- Department of Neurology, Georg-August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rane NS, Chakrabarti O, Feigenbaum L, Hegde RS. Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. ACTA ACUST UNITED AC 2010; 188:515-26. [PMID: 20156965 PMCID: PMC2828915 DOI: 10.1083/jcb.200911115] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improving the efficiency of PrP translocation into the ER decreases levels of transmembrane bound protein and rescues mice from prion disease. Protein translocation into the endoplasmic reticulum is mediated by signal sequences that vary widely in primary structure. In vitro studies suggest that such signal sequence variations may correspond to subtly different functional properties. Whether comparable functional differences exist in vivo and are of sufficient magnitude to impact organism physiology is unknown. Here, we investigate this issue by analyzing in transgenic mice the impact of signal sequence efficiency for mammalian prion protein (PrP). We find that replacement of the average efficiency signal sequence of PrP with more efficient signals rescues mice from neurodegeneration caused by otherwise pathogenic PrP mutants in a downstream hydrophobic domain (HD). This effect is explained by the demonstration that efficient signal sequence function precludes generation of a cytosolically exposed, disease-causing transmembrane form of PrP mediated by the HD mutants. Thus, signal sequences are functionally nonequivalent in vivo, with intrinsic inefficiency of the native PrP signal being required for pathogenesis of a subset of disease-causing PrP mutations.
Collapse
Affiliation(s)
- Neena S Rane
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Rangel A, Madroñal N, Massó AGI, Gavín R, Llorens F, Sumoy L, Torres JM, Delgado-García JM, Río JAD. Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 2009; 4:e7592. [PMID: 19855845 PMCID: PMC2763346 DOI: 10.1371/journal.pone.0007592] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice. Conclusions/Significance Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer's disease. However, our results indicate that a “gain of function” strategy in Alzheimer's disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Collapse
Affiliation(s)
- Alejandra Rangel
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Noelia Madroñal
- Division de Neurociencias. Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lauro Sumoy
- Institute of Predictive and Personalized Medicine of Cancer, Badalona, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Madrid, Spain
| | | | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (JADR); (JMDG)
| |
Collapse
|
46
|
Steele AD, Zhou Z, Jackson WS, Zhu C, Auluck P, Moskowitz MA, Chesselet MF, Lindquist S. Context dependent neuroprotective properties of prion protein (PrP). Prion 2009; 3:240-9. [PMID: 19901559 DOI: 10.4161/pri.3.4.10135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure--independent of infectious prion conformation--to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-beta, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP's neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson disease or tauopathy. Deletion of PrP in one of two Huntington disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.
Collapse
Affiliation(s)
- Andrew D Steele
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Askanas V, Engel WK, Nogalska A. Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol 2009; 19:493-506. [PMID: 19563541 PMCID: PMC8094750 DOI: 10.1111/j.1750-3639.2009.00290.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/12/2009] [Indexed: 12/31/2022] Open
Abstract
Sporadic inclusion body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause, and there is no enduring treatment. Abnormal accumulation of intracellular multi-protein inclusions is a characteristic feature of the s-IBM phenotype, and as such s-IBM can be considered a "conformational disorder," caused by protein unfolding/misfolding combined with the formation of inclusion bodies. Abnormal intracellular accumulation of unfolded proteins may lead to their aggregation and inclusion body formation. The present article is focusing on the multiple proteins that are accumulated in the form of aggregates within s-IBM muscle fibers, and it explores the most recent research advances directed toward a better understanding of mechanisms causing their impaired degradation and abnormal aggregation. We illustrate that, among other factors, abnormal misfolding, accumulation and aggregation of proteins are associated with their inadequate disposal-and these factors are combined with, and perhaps provoked by, an aging intracellular milieu. Other concurrent and possibly provocative phenomena known within s-IBM muscle fibers are: endoplasmic reticulum stress and unfolded protein response, mitochondrial abnormalities, proteasome inhibition, lysosome abnormality and endodissolution. Together, these appear to lead to the s-IBM-specific vacuolar degeneration, and muscle fiber atrophy, concluding with muscle fiber death.
Collapse
Affiliation(s)
- Valerie Askanas
- USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, Los Angeles, CA 90017-1912, USA.
| | | | | |
Collapse
|
48
|
In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms. PLoS Genet 2009; 5:e1000507. [PMID: 19503596 PMCID: PMC2683939 DOI: 10.1371/journal.pgen.1000507] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/06/2009] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders. Creutzfeldt-Jakob disease is a type of dementia caused by the deposition of the prion protein in the brain. This disorder belongs to a unique class of degenerative diseases that includes mad-cow disease in bovine and scrapie in sheep. An abnormal form of the prion protein is not only responsible for the disease in several mammals, but is also an infectious agent that can transmit the disease within or across species. To shed light on how the prion protein changes from its normal to the disease-causing form, we expressed the prion protein from hamster in transgenic flies. We observed that the prion protein progressively converts to the pathological form and induces neuronal loss in the brain. Thus, the prion protein experiences its typical transition from normal to disease-causing form in flies. This behavior gave us the opportunity to investigate whether other proteins can regulate such transition. We found that the stress-related protein Hsp70 prevents the accumulation of abnormal prion protein and prevents neuronal loss. We also determined that Hsp70 directly interacts with the prion protein in specific membrane domains. Overall, our studies provide new insight into the mechanisms that regulate the accumulation of abnormal prion protein. This discovery could have therapeutic applications in treating these devastating disorders.
Collapse
|