1
|
Micheletti G, Boga C, Drius G, Bordoni S, Calonghi N. Suberoylanilide Hydroxamic Acid Analogs with Heteroaryl Amide Group and Different Chain Length: Synthesis and Effect on Histone Deacetylase. Molecules 2024; 29:238. [PMID: 38202821 PMCID: PMC10781187 DOI: 10.3390/molecules29010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Gabriele Micheletti
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Carla Boga
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Giacomo Drius
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Silvia Bordoni
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum, Università di Bologna, Viale Del Risorgimento 4, 40136 Bologna, Italy; (G.D.); (S.B.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Ricciardi NR, Modarresi F, Lohse I, Andrade NS, Newman IR, Brown JM, Borja C, Marples B, Wahlestedt CR, Volmar CH. Investigating the Synergistic Potential of Low-Dose HDAC3 Inhibition and Radiotherapy in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:4811-4827. [PMID: 37171575 PMCID: PMC10293392 DOI: 10.1007/s12035-023-03373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aβ, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aβ42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.
Collapse
Affiliation(s)
- Natalie R. Ricciardi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Farzaneh Modarresi
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Nadja S. Andrade
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Ian R. Newman
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
| | - Jonathan M. Brown
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Caroline Borja
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL 33136 USA
| | - Claes R. Wahlestedt
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Claude-Henry Volmar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
3
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
4
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
5
|
Neganova M, Aleksandrova Y, Suslov E, Mozhaitsev E, Munkuev A, Tsypyshev D, Chicheva M, Rogachev A, Sukocheva O, Volcho K, Klochkov S. Novel Multitarget Hydroxamic Acids with a Natural Origin CAP Group against Alzheimer's Disease: Synthesis, Docking and Biological Evaluation. Pharmaceutics 2021; 13:pharmaceutics13111893. [PMID: 34834312 PMCID: PMC8623418 DOI: 10.3390/pharmaceutics13111893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hydroxamic acids are one of the most promising and actively studied classes of chemical compounds in medicinal chemistry. In this study, we describe the directed synthesis and effects of HDAC6 inhibitors. Fragments of adamantane and natural terpenes camphane and fenchane, combined with linkers of various nature with an amide group, were used as the CAP groups. Accordingly, 11 original target compounds were developed, synthesized, and exposed to in vitro and in vivo biological evaluations, including in silico methods. In silico studies showed that all synthesized compounds were drug-like and could penetrate through the blood-brain barrier. According to the in vitro testing, hydroxamic acids 15 and 25, which effectively inhibited HDAC6 and exhibited anti-aggregation properties against β-amyloid peptides, were chosen as the most promising substances to study their neuroprotective activities in vivo. All in vivo studies were performed using 5xFAD transgenic mice simulating Alzheimer's disease. In these animals, the Novel Object Recognition and Morris Water Maze Test showed that the formation of hippocampus-dependent long-term episodic and spatial memory was deteriorated. Hydroxamic acid 15 restored normal memory functions to the level observed in control wild-type animals. Notably, this effect was precisely associated with the ability to restore lost cognitive functions, but not with the effect on motor and exploratory activities or on the level of anxiety in animals. Conclusively, hydroxamic acid 15 containing an adamantane fragment linked by an amide bond to a hydrocarbon linker is a possible potential multitarget agent against Alzheimer's disease.
Collapse
Affiliation(s)
- Margarita Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Evgenii Suslov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Evgenii Mozhaitsev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Aldar Munkuev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Dmitry Tsypyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Maria Chicheva
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Artem Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Konstantin Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
- Correspondence: ; Tel.: +7-(496)-5242525
| |
Collapse
|
6
|
Al-Griw MA, Shmela ME, Elhensheri MM, Bennour EM. HDAC2/3 inhibitor MI192 mitigates oligodendrocyte loss and reduces microglial activation upon injury: A potential role of epigenetics. Open Vet J 2021; 11:447-457. [PMID: 34722210 PMCID: PMC8541718 DOI: 10.5455/ovj.2021.v11.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: During development, oligodendrocyte (OL) lineage cells are susceptible to injury, leading to life-long clinical neurodevelopmental deficits, which lack effective treatments. Drugs targeting epigenetic modifications that inhibit histone deacetylases (HDACs) protect from many clinical neurodegenerative disorders. Aim: This study aimed to investigate the therapeutic potential of histone deacetylase 2/3 (HDAC2/3) inhibitor MI192 on white matter (WM) pathology in a model of neonatal rat brain injury. Methods: Wistar rats (8.5-day-old, n = 32) were used to generate brain tissues. The tissues were cultured and then randomly divided into four groups and treated as following: group I (sham); the tissues were cultured under normoxia, group II (vehicle); DMSO only, group III (injury, INJ); the tissues were exposed to 20 minutes oxygen-glucose deprivation (OGD) insult, and group IV (INJ + MI192); the tissues were subjected to the OGD insult and then treated with the MI192 inhibitor. On culture day 10, the tissues were fixed for biochemical and histological examinations. Results: The results showed that inhibition of HDAC2/3 activity alleviated WM pathology. Specifically, MI192 treatment significantly reduced cell death, minimized apoptosis, and mitigates the loss of the MBP+ OLs and their precursors (NG2+ OPCs). Additionally, MI192 decreased the density of reactive microglia (OX−42+). These findings demonstrate that the inhibition of HDAC2/3 activity post-insult alleviates WM pathology through mechanism(s) including preserving OL lineage cells and suppressing microglial activation. Conclusion: The findings of this study suggest that HDAC2/3 inhibition is a rational strategy to preserve WM or reverse its pathology upon newborn brain injury.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Mansur E Shmela
- Department of Preventive Medicine, Genetics & Animal Breeding, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Emad M Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
7
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
8
|
Schächtle MA, Rosshart SP. The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Front Cell Neurosci 2021; 15:698172. [PMID: 34335190 PMCID: PMC8321234 DOI: 10.3389/fncel.2021.698172] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past decades, microbiome research has evolved rapidly and became a hot topic in basic, preclinical and clinical research, for the pharmaceutical industry and for the general public. With the help of new high-throughput sequencing technologies tremendous progress has been made in the characterization of host-microbiota interactions identifying the microbiome as a major factor shaping mammalian physiology. This development also led to the discovery of the gut-brain axis as the crucial connection between gut microbiota and the nervous system. Consequently, a rapidly growing body of evidence emerged suggesting that the commensal gut microbiota plays a vital role in brain physiology. Moreover, it became evident that the communication along this microbiota-gut-brain axis is bidirectional and primarily mediated by biologically active microbial molecules and metabolites. Further, intestinal dysbiosis leading to changes in the bidirectional relationship between gut microbiota and the nervous system was linked to the pathogenesis of several psychiatric and neurological disorders. Here, we discuss the impact of the gut microbiota on the brain in health and disease, specifically as regards to neuronal homeostasis, development and normal aging as well as their role in neurological diseases of the highest socioeconomic burden such as Alzheimer's disease and stroke. Subsequently, we utilize Alzheimer's disease and stroke to examine the translational research value of current mouse models in the spotlight of microbiome research. Finally, we propose future strategies on how we could conduct translational microbiome research in the field of neuroscience that may lead to the identification of novel treatments for human diseases.
Collapse
Affiliation(s)
- Melanie Anna Schächtle
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Patrick Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Lv Z, Xiao L, Tang Y, Chen Y, Chen D. Rb deficiency induces p21cip1 expression and delays retinal degeneration in rd1 mice. Exp Eye Res 2021; 210:108701. [PMID: 34252413 DOI: 10.1016/j.exer.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.
Collapse
Affiliation(s)
- Zhongping Lv
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lirong Xiao
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Stephan JS, Sleiman SF. Exercise Factors Released by the Liver, Muscle, and Bones Have Promising Therapeutic Potential for Stroke. Front Neurol 2021; 12:600365. [PMID: 34108925 PMCID: PMC8181424 DOI: 10.3389/fneur.2021.600365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world. Stroke not only affects the patients, but also their families who serve as the primary caregivers. Discovering novel therapeutic targets for stroke is crucial both from a quality of life perspective as well as from a health economic perspective. Exercise is known to promote neuroprotection in the context of stroke. Indeed, exercise induces the release of blood-borne factors that promote positive effects on the brain. Identifying the factors that mediate the positive effects of exercise after ischemic stroke is crucial for the quest for novel therapies. This approach will yield endogenous molecules that normally cross the blood brain barrier (BBB) and that can mimic the effects of exercise. In this minireview, we will discuss the roles of exercise factors released by the liver such as beta-hydroxybutyrate (DBHB), by the muscle such as lactate and irisin and by the bones such as osteocalcin. We will also address their therapeutic potential in the context of ischemic stroke.
Collapse
Affiliation(s)
- Joseph S Stephan
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sama F Sleiman
- Biology Program, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
11
|
Zaidi SAH, Guzman W, Singh S, Mehrotra S, Husain S. Changes in Class I and IIb HDACs by δ-Opioid in Chronic Rat Glaucoma Model. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 33263714 PMCID: PMC7718808 DOI: 10.1167/iovs.61.14.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose This study determines if δ-opioid receptor agonist (i.e. SNC-121)-induced epigenetic changes via regulation of histone deacetylases (HDACs) for retinal ganglion cell (RGC) neuroprotection in glaucoma model. Methods Intraocular pressure was raised in rat eyes by injecting 2M hypertonic saline into the limbal veins. SNC-121 (1 mg/kg; i.p.) was administered to the animals for 7 days. Retinas were collected at days 7 and 42, post-injury followed by measurement of HDAC activities, mRNA, and protein expression by enzyme assay, quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry. Results The visual acuity, contrast sensitivity, and pattern electroretinograms (ERGs) were declined in ocular hypertensive animals, which were significantly improved by SNC-121 treatment. Class I and IIb HDACs activities were significantly increased at days 7 and 42 in ocular hypertensive animals. The mRNA and protein expression of HDAC 1 was increased by 1.33 ± 0.07-fold and 20.2 ± 2.7%, HDAC 2 by 1.4 ± 0.05-fold and 17.0 ± 2.4%, HDAC 3 by 1.4 ± 0.06-fold and 17.4 ± 3.4%, and HDAC 6 by 1.5 ± 0.09-fold and 15.1 ± 3.3% at day 7, post-injury. Both the mRNA and protein expression of HDACs were potentiated further at day 42 in ocular hypertensive animals. HDAC activities, mRNA, and protein expression were blocked by SNC-121 treatment at days 7 and 42 in ocular hypertensive animals. Conclusions Data suggests that class I and IIb HDACs are activated and upregulated during early stages of glaucoma. Early intervention with δ-opioid receptor activation resulted in the prolonged suppression of class I and IIb HDACs activities and expression, which may, in part, play a crucial role in RGC neuroprotection.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wendy Guzman
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sudha Singh
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
12
|
Rroji O, Kumar A, Karuppagounder SS, Ratan RR. Epigenetic regulators of neuronal ferroptosis identify novel therapeutics for neurological diseases: HDACs, transglutaminases, and HIF prolyl hydroxylases. Neurobiol Dis 2020; 147:105145. [PMID: 33127469 DOI: 10.1016/j.nbd.2020.105145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
A major thrust of our laboratory has been to identify how physiological stress is transduced into transcriptional responses that feed back to overcome the inciting stress or its consequences, thereby fostering survival and repair. To this end, we have adopted the use of an in vitro model of ferroptosis, a caspase-independent, but iron-dependent form of cell death (Dixon et al., 2012; Ratan, 2020). In this review, we highlight three distinct epigenetic targets that have evolved from our studies and which have been validated in vivo studies. In the first section, we discuss our studies of broad, pan-selective histone deacetylase (HDAC) inhibitors in ferroptosis and how these studies led to the validation of HDAC inhibitors as candidate therapeutics in a host of disease models. In the second section, we discuss our studies that revealed a role for transglutaminase as an epigenetic modulator of proferroptotic pathways and how these studies set the stage for recent elucidation of monoamines as post-translation modifiers of histone function. In the final section, we discuss our studies of iron-, 2-oxoglutarate-, and oxygen-dependent dioxygenases and the role of one family of these enzymes, the HIF prolyl hydroxylases, in mediating transcriptional events necessary for ferroptosis in vitro and for dysfunction in a host of neurological conditions. Overall, our studies highlight the importance of epigenetic proteins in mediating prodeath and prosurvival responses to ferroptosis. Pharmacological agents that target these epigenetic proteins are showing robust beneficial effects in diverse rodent models of stroke, Parkinson's disease, Huntington's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Orjon Rroji
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Amit Kumar
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA.
| |
Collapse
|
13
|
Ratan RR. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem Biol 2020; 27:479-498. [PMID: 32243811 DOI: 10.1016/j.chembiol.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Over the past five decades, thanatology has come to include the study of how individual cells in our bodies die appropriately and inappropriately in response to physiological and pathological stimuli. Morphological and biochemical criteria have been painstakingly established to create clarity around definitions of distinct types of cell death and mechanisms for their activation. Among these, ferroptosis has emerged as a unique, oxidative stress-induced cell death pathway with implications for diseases as diverse as traumatic brain injury, hemorrhagic stroke, Alzheimer's disease, cancer, renal ischemia, and heat stress in plants. In this review, I highlight some of the formative studies that fostered its recognition in the nervous system and describe how chemical biological tools have been essential in defining events necessary for its execution. Finally, I discuss emerging opportunities for antiferroptotic agents as therapeutic agents in neurological diseases.
Collapse
Affiliation(s)
- Rajiv R Ratan
- Burke Neurological Institute at Weill Cornell Medicine, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| |
Collapse
|
14
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
15
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
16
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
17
|
Xia P, Liu Y, Chen J, Cheng Z. Cell Cycle Proteins as Key Regulators of Postmitotic Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:641-650. [PMID: 31866779 PMCID: PMC6913832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cell cycle progression in dividing cells, characterized by faithful replication of the genomic materials and duplication of the original cell, is fundamental for growth and reproduction of all mammalian organisms. Functional maturation of postmitotic cells, however, requires cell cycle exit and terminal differentiation. In mature postmitotic cells, many cell cycle proteins remain to be expressed, or can be induced and reactivated in pathological conditions such as traumatic injury and degenerative diseases. Interestingly, elevated levels of cell cycle proteins in postmitotic cells often do not induce proliferation, but result in aberrant cell cycle reentry and cell death. At present, the cell cycle machinery is known predominantly for regulating cell cycle progression and cell proliferation, albeit accumulating evidence indicates that cell cycle proteins may also control cell death, especially in postmitotic tissues. Herein, we provide a brief summary of these findings and hope to highlight the connection between cell cycle reentry and postmitotic cell death. In addition, we also outline the signaling pathways that have been identified in cell cycle-related cell death. Advanced understanding of the molecular mechanisms underlying cell cycle-related death is of paramount importance because this knowledge can be applied to develop protective strategies against pathologies in postmitotic tissues. Moreover, a full-scope understanding of the cell cycle machinery will allow fine tuning to favor cell proliferation over cell death, thereby potentially promoting tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Zhaokang Cheng
- To whom all correspondence should be addressed: Zhaokang Cheng, PhD, Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd. Spokane, WA 99202-2131; Tel: 509-358-7741,
| |
Collapse
|
18
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn 2019; 248:850-865. [PMID: 31226225 DOI: 10.1002/dvdy.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance. RESULTS Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro. Using the developing visual system of the chicken as a model, the present study found that SA-β-GAL detected in the developing retina corresponded to lysosomal β-galactosidase activity, and that SA-β-GAL activity did not correlate with the chronotopographical distribution of apoptotic cells. However, SA-β-GAL staining in the undifferentiated retina coincided with the appearance of early differentiating neurons. In the laminated retina, SA-β-GAL staining was concentrated in the ganglion, amacrine, and horizontal cell layers. The photoreceptors and pigment epithelial cells also exhibited SA-β-GAL activity throughout retinal development. We have also found that SA-β-GAL staining strongly correlated p21 immunoreactivity. CONCLUSION In conclusion, the results clearly show that SA-β-GAL activity cannot be regarded as a specific marker of senescence during retinal development, and that it is mainly expressed in subpopulations of postmitotic neurons, which are nonproliferative cells, even at early stages of cell differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The current review analyzes recent findings that suggest that axon degeneration is a druggable process in the treatment of neurodegenerative disorders and a subset of traumas. RECENT FINDINGS Emerging evidence reveals that axon degeneration is an active and regulated process in the early progression of some neurodegenerative diseases and acute traumas, which is orchestrated through a combination of axon-intrinsic and somatically derived signaling events. The identification of these pathways has presented appealing drug targets whose specificity for the nervous system and phenotypes in mouse models offers significant clinical opportunity. SUMMARY As the biology of axon degeneration becomes clear, so too has the realization that the pathways driving axon degeneration overlap in part with those that drive neuronal apoptosis and, importantly, axon regeneration. Axon-specific disorders like those seen in CIPN, where injury signaling to the nucleus is not a prominent feature, have been shown to benefit from disruption of Sarm1. In injury and disease contexts, where involvement of somatic events is prominent, inhibition of the MAP Kinase DLK exhibits promise for neuroprotection. Here, however, interfering with somatic signaling may preclude the ability of an axon or a circuit to regenerate or functionally adapt following acute injuries.
Collapse
|
20
|
Pfister JA, Ma C, D’Mello SR. Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. PLoS One 2019; 14:e0215208. [PMID: 30973934 PMCID: PMC6459503 DOI: 10.1371/journal.pone.0215208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/28/2019] [Indexed: 12/25/2022] Open
Abstract
SIRT1, a NAD+-dependent deacetylase, protects neurons in a variety of in vitro and in vivo models of neurodegenerative disease. We have previously described a neuroprotective effect by SIRT1 independent of its catalytic activity. To confirm this conclusion we tested a panel of SIRT1 deletion mutant constructs, designated Δ1–Δ10, in cerebellar granule neurons induced to undergo apoptosis by low potassium treatment. We find that deletions of its N-terminal, those lacking portions of the catalytic domain, as well as one that lacks the ESA (Essential for SIRT1 Activity) motif, are as protective as wild-type SIRT1. In contrast, deletion of the region spanning residues 542–609, construct Δ8, substantially reduced the neuroprotective activity of SIRT1. As observed with LK-induced apoptosis, all SIRT1 constructs except Δ8 protect neurons against mutant huntingtin toxicity. Although its own catalytic activity is not required, neuroprotection by SIRT1 is abolished by inhibitors of Class I HDACs as well as by knockdown of endogenous HDAC1. We find that SIRT1 interacts with HDAC1 and this interaction is greatly increased by deleting regions of SIRT1 necessary for its catalytic activity. However, SIRT1-mediated protection is not dependent on HDAC1 deacetylase activity. Although other studies have described that catalytic activity of SIRT1 mediates is neuroprotective effect, our study suggests that in cerebellar granule neurons its deacetylase activity is not important and that HDAC1 contributes to the neuroprotective effect of SIRT1.
Collapse
Affiliation(s)
- Jason A. Pfister
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
| | - Chi Ma
- National Institutes of Health, Bethesda, MD, United States of America
| | - Santosh R. D’Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V, Zimprich CA, Kutil Z, Zhang G, Bařinka C, Robers MB, Van Den Bosch L, Eubanks JH, Jope RS. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem Neurosci 2019; 10:1679-1695. [PMID: 30511829 DOI: 10.1021/acschemneuro.8b00600] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Maurício T. Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dora Szarics
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | | | - Zsófia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - James H. Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
22
|
Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. EMBO J 2019; 38:embj.2018100024. [PMID: 30804002 PMCID: PMC6418418 DOI: 10.15252/embj.2018100024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
NEDD8 is a ubiquitin‐like protein that activates cullin‐RING E3 ubiquitin ligases (CRLs). Here, we identify a novel role for NEDD8 in regulating the activity of poly(ADP‐ribose) polymerase 1 (PARP‐1) in response to oxidative stress. We show that treatment of cells with H2O2 results in the accumulation of NEDD8 chains, likely by directly inhibiting the deneddylase NEDP1. One chain type, an unanchored NEDD8 trimer, specifically bound to the second zinc finger domain of PARP‐1 and attenuated its activation. In cells in which Nedp1 is deleted, large amounts of tri‐NEDD8 constitutively form, resulting in inhibition of PARP‐1 and protection from PARP‐1‐dependent cell death. Surprisingly, these NEDD8 trimers are additionally acetylated, as shown by mass spectrometry analysis, and their binding to PARP‐1 is reduced by the overexpression of histone de‐acetylases, which rescues PARP‐1 activation. Our data suggest that trimeric, acetylated NEDD8 attenuates PARP‐1 activation after oxidative stress, likely to delay the initiation of PARP‐1‐dependent cell death.
Collapse
Affiliation(s)
- Matthew J Keuss
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Roland Hjerpe
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Oliver Hsia
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard Burchmore
- Glasgow Polyomics, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Trost
- The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Thimo Kurz
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Ferroptosis in Neurons and Cancer Cells Is Similar But Differentially Regulated by Histone Deacetylase Inhibitors. eNeuro 2019; 6:eN-NWR-0263-18. [PMID: 30783618 PMCID: PMC6378329 DOI: 10.1523/eneuro.0263-18.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023] Open
Abstract
Ferroptotic death is a mechanism for tumor suppression by pharmacological inhibitors that target the Xc− transporter (cystine/glutamate antiporter) in a host of non-CNS and CNS tumors. Inhibition of this transporter leads to reduction of cystine uptake, cyst(e)ine deprivation, subsequent depletion of the versatile antioxidant glutathione, and reactive lipid species-dependent death. Accordingly, pharmacological inhibitors of the Xc− transporter can also induce neuronal cell death raising concerns about toxicity in the CNS and PNS if these agents are used for chemotherapy. Here, we show that ferroptotic death induced by the canonical ferroptosis inducer erastin is similar in HT1080 fibrosarcoma cells and primary cortical neurons although cell death is mediated more potently in cancer cells. Reducing the toxicity of ferroptosis inducers will require, among other things, the identification of agents that protect neurons from ferroptosis but exacerbate it in tumor cells. Although we show that a number of agents known to block ferroptosis in primary mouse neurons also inhibit ferroptosis in fibrosarcoma cells, class I histone deacetylase (HDAC) inhibitors selectively protect neurons while augmenting ferroptosis in cancer cells. Our results further suggest that cell death pathways induced by erastin in these two cell types are statistically identical to each other and identical to oxidative glutamate toxicity in neurons, where death is also mediated via inhibition of Xc− cystine transport. Together, these studies identify HDACs inhibitors as a novel class of agents to augment tumor suppression by ferroptosis induction and to minimize neuronal toxicity that could manifest as peripheral neuropathy or chemo brain.
Collapse
|
24
|
Merkouris S, Barde YA, Binley KE, Allen ND, Stepanov AV, Wu NC, Grande G, Lin CW, Li M, Nan X, Chacon-Fernandez P, DiStefano PS, Lindsay RM, Lerner RA, Xie J. Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc Natl Acad Sci U S A 2018; 115:E7023-E7032. [PMID: 29987039 PMCID: PMC6065019 DOI: 10.1073/pnas.1806660115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The diverse physiological roles of the neurotrophin family have long prompted exploration of their potential as therapeutic agents for nerve injury and neurodegenerative diseases. To date, clinical trials of one family member, brain-derived neurotrophic factor (BDNF), have disappointingly failed to meet desired endpoints. Contributing to these failures is the fact that BDNF is pharmaceutically a nonideal biologic drug candidate. It is a highly charged, yet is a net hydrophobic molecule with a low molecular weight that confers a short t1/2 in man. To circumvent these shortcomings of BDNF as a drug candidate, we have employed a function-based cellular screening assay to select activating antibodies of the BDNF receptor TrkB from a combinatorial human short-chain variable fragment antibody library. We report here the successful selection of several potent TrkB agonist antibodies and detailed biochemical and physiological characterization of one such antibody, ZEB85. By using a human TrkB reporter cell line and BDNF-responsive GABAergic neurons derived from human ES cells, we demonstrate that ZEB85 is a full agonist of TrkB, comparable in potency to BDNF toward human neurons in activation of TrkB phosphorylation, canonical signal transduction, and mRNA transcriptional regulation.
Collapse
Affiliation(s)
- Spyros Merkouris
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Kate E Binley
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Nicholas D Allen
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Alexey V Stepanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nicholas C Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Meng Li
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Xinsheng Nan
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | | | | | | | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
25
|
Jhelum P, Karisetty BC, Kumar A, Chakravarty S. Implications of Epigenetic Mechanisms and their Targets in Cerebral Ischemia Models. Curr Neuropharmacol 2018; 15:815-830. [PMID: 27964703 PMCID: PMC5652028 DOI: 10.2174/1570159x14666161213143907] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Bhanu C Karisetty
- Chemical Biology, CSIR, Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR, Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, India
| |
Collapse
|
26
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
27
|
Kadzielawa K, Mathew B, Stelman CR, Lei AZ, Torres L, Roth S. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 2018; 256:935-949. [PMID: 29504043 DOI: 10.1007/s00417-018-3905-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia. METHODS To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed. RESULTS There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions. CONCLUSION Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.
Collapse
Affiliation(s)
- Konrad Kadzielawa
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R Stelman
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Arden Zhengdeng Lei
- Center for Research Bioinformatics, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Anesthesiology, MC 515, University of Illinois Medical Center, 1740 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein. eNeuro 2018; 5:eN-NWR-0240-17. [PMID: 29497702 PMCID: PMC5830348 DOI: 10.1523/eneuro.0240-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Damage to the CNS results in neuronal and axonal degeneration, and subsequent neurological dysfunction. Endogenous repair in the CNS is impeded by inhibitory chemical and physical barriers, such as chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon regeneration. Previously, it has been demonstrated that the inhibition of axonal histone deacetylase-6 (HDAC6) can promote microtubule α-tubulin acetylation and restore the growth of CSPGs- and MAG-inhibited axons. Since the acetylation of α-tubulin is regulated by two opposing enzymes, HDAC6 (deacetylation) and α-tubulin acetyltransferase-1 (αTAT1; acetylation), we have investigated the regulation of these enzymes downstream of a growth inhibitory signal. Our findings show that exposure of primary mouse cortical neurons to soluble CSPGs and MAG substrates cause an acute and RhoA-kinase-dependent reduction in α-tubulin acetylation and αTAT1 protein levels, without changes to either HDAC6 levels or HDAC6 activity. The CSPGs- and MAG-induced reduction in αTAT1 occurs primarily in the distal and middle regions of neurites and reconstitution of αTAT1, either by Rho-associated kinase (ROCK) inhibition or lentiviral-mediated αTAT1 overexpression, can restore neurite growth. Lastly, we demonstrate that CSPGs and MAG signaling decreases αTAT1 levels posttranscriptionally via a ROCK-dependent increase in αTAT1 protein turnover. Together, these findings define αTAT1 as a novel potential therapeutic target for ameliorating CNS injury characterized by growth inhibitory substrates that are prohibitive to axonal regeneration.
Collapse
|
29
|
Schiavone S, Trabace L. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders. Molecules 2018; 23:molecules23020411. [PMID: 29438357 PMCID: PMC6017408 DOI: 10.3390/molecules23020411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|
30
|
Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke. Int J Mol Sci 2018; 19:ijms19010172. [PMID: 29316653 PMCID: PMC5796121 DOI: 10.3390/ijms19010172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.
Collapse
|
31
|
Johnson J, Pajarillo EAB, Taka E, Reams R, Son DS, Aschner M, Lee E. Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 2017; 64:230-239. [PMID: 28610743 DOI: 10.1016/j.neuro.2017.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
Manganese (Mn) is an essential trace element, but chronic overexposure to this metal, either environmentally or occupationally may cause manganism, a disease analogous to Parkinson's disease. Inhibitors of histone deacetylases, such as valproic acid (VPA) and sodium butyrate (NaB) exert neuroprotective effects in various animal models of neurological disorders. Thus, the present study investigated whether VPA or NaB prevent Mn-induced neurotoxicity by assessing locomotor activities and expression of astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST), in C57BL/6 mice. C57BL/6 mice were pretreated with VPA (200mg/kg, i.p.) or NaB (1200mg/kg, i.p.) prior to intranasal instillation of Mn (30mg/kg) continually for 21days, followed by open-field and rota-rod behavioral tests and analyses of astrocytic glutamate transporters GLT-1 and GLAST protein/mRNA levels. The results showed that Mn significantly decreased locomotor activity as determined by total distance travelled, stereotypic and ambulatory counts. Mn also significantly decreased rota-rod activity reflecting altered motor coordination. Pretreatment with VPA and NaB with Mn reversed the effects of Mn on the locomotor activity and motor coordination. VPA and NaB also attenuated the Mn-induced decrease in GLT-1 and GLAST mRNA and protein levels in the cerebral cortical and cerebellar regions of mice. These results suggest that VPA and NaB exert protective effects against Mn toxicity seem in vitro are also shown in vivo. VPA and NaB pretreatment in mice enhancing astrocytic glutamate transporter GLT-1 expression as well as locomotor activities. Future research endeavors are warranted to determine if the therapeutic potential of VPA and NaB is via common molecular mechanism, namely, inhibition of histone deacetylases.
Collapse
Affiliation(s)
- James Johnson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Edward Alain B Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Equar Taka
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Romonia Reams
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
32
|
Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease. J Neurosci 2017; 37:6575-6587. [PMID: 28550168 DOI: 10.1523/jneurosci.3612-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine expansion in the huntington protein (htt). The neuropathological hallmark of HD is the loss of neurons in the striatum and, to a lesser extent, in the cortex. Foxp1 is a member of the Forkhead family of transcription factors expressed selectively in the striatum and the cortex. In the brain, three major Foxp1 isoforms are expressed: isoform-A (∼90 kDa), isoform-D (∼70 kDa), and isoform-C (∼50 kDa). We find that expression of Foxp1 isoform-A and -D is selectively reduced in the striatum and cortex of R6/2 HD mice as well as in the striatum of HD patients. Furthermore, expression of mutant htt in neurons results in the downregulation of Foxp1 Elevating expression of isoform-A or -D protects cortical neurons from death caused by the expression of mutant htt On the other hand, knockdown of Foxp1 promotes death in otherwise healthy neurons. Neuroprotection by Foxp1 is likely to be mediated by the transcriptional stimulation of the cell-cycle inhibitory protein p21Waf1/Cip1 Consistently, Foxp1 activates transcription of the p21Waf1/Cip1 gene promoter, and overexpression of Foxp1 in neurons results in the elevation of p21 expression. Moreover, knocking down of p21Waf1/Cip1 blocks the ability of Foxp1 to protect neurons from mut-Htt-induced neurotoxicity. We propose that the selective vulnerability of neurons of the striatum and cortex in HD is related to the loss of expression of Foxp1, a protein that is highly expressed in these neurons and required for their survival.SIGNIFICANCE STATEMENT Although the mutant huntingtin gene is expressed widely, neurons of the striatum and cortex are selectively affected in Huntington's disease (HD). Our results suggest that this selectivity is attributable to the reduced expression of Foxp1, a protein expressed selectively in striatal and cortical neurons that plays a neuroprotective role in these cells. We show that protection by Foxp1 involves stimulation of the p21Waf1/Cip1 (Cdkn1a) gene. Although three major Foxp1 isoforms (A, C, and D) are expressed in the brain, only isoform-A has been studied in the nervous system. We show that isoform-D is also expressed selectively, neuroprotective and downregulated in HD mice and patients. Our results suggest that Foxp1 might be an attractive therapeutic target for HD.
Collapse
|
33
|
A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology 2017; 42:524-539. [PMID: 27550730 PMCID: PMC5399234 DOI: 10.1038/npp.2016.163] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 12/26/2022]
Abstract
The targeting of two independent but synergistic enzymatic activities, histone deacetylases (HDACs, class I and HDAC6) and phosphodiesterase 5 (PDE5), has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). Here we report the discovery of a new first-in-class small-molecule (CM-414) that acts as a dual inhibitor of PDE5 and HDACs. We have used this compound as a chemical probe to validate this systems therapeutics strategy, where an increase in the activation of cAMP/cGMP-responsive element-binding protein (CREB) induced by PDE5 inhibition, combined with moderate HDAC class I inhibition, leads to efficient histone acetylation. This molecule rescued the impaired long-term potentiation evident in hippocampal slices from APP/PS1 mice. Chronic treatment of Tg2576 mice with CM-414 diminished brain Aβ and tau phosphorylation (pTau) levels, increased the inactive form of GSK3β, reverted the decrease in dendritic spine density on hippocampal neurons, and reversed their cognitive deficits, at least in part by inducing the expression of genes related to synaptic transmission. Thus, CM-414 may serve as the starting point to discover balanced dual inhibitors with an optimal efficacy and safety profile for clinical testing on AD patients.
Collapse
|
34
|
Patnala R, Arumugam TV, Gupta N, Dheen ST. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke. Mol Neurobiol 2016; 54:6391-6411. [PMID: 27722928 DOI: 10.1007/s12035-016-0149-z] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia leads to neuroinflammation and activation of microglia which further contribute to stroke pathology. Understanding regulation of microglial activation will aid in the development of therapeutic strategies that mitigate microglia-mediated neurotoxicity in neuropathologies, including ischemia. In this study, we investigated the epigenetic regulation of microglial activation by studying histone modification histone 3-lysine 9-acetylation (H3K9ac) and its regulation by histone deacetylase (HDAC) inhibitors. In vitro analysis of activated microglia showed that HDAC inhibitor, sodium butyrate (SB), alters H3K9ac enrichment and transcription at the promoters of pro-inflammatory (Tnf-α, Nos2, Stat1, Il6) and anti-inflammatory (Il10) genes while inducing the expression of genes downstream of the IL10/STAT3 anti-inflammatory pathway. In an experimental mouse (C57BL/6NTac) model of middle cerebral artery occlusion (MCAO), we observed that SB mediates neuroprotection by epigenetically regulating the microglial inflammatory response, via downregulating the expression of pro-inflammatory mediators, TNF-α and NOS2, and upregulating the expression of anti-inflammatory mediator IL10, in activated microglia. Interestingly, H3K9ac levels were found to be upregulated in activated microglia distributed in the cortex, striatum, and hippocampus of MCAO mice. A similar upregulation of H3K9ac was detected in lipopolysaccharide (LPS)-activated microglia in the Wistar rat brain, indicating that H3K9ac upregulation is consistently associated with microglial activation in vivo. Altogether, these results show evidence of HDAC inhibition being a promising molecular switch to epigenetically modify microglial behavior from pro-inflammatory to anti-inflammatory which could mitigate microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Radhika Patnala
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, The Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117597, Singapore
| | - Neelima Gupta
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore
| | - S Thameem Dheen
- Department of Anatomy, The Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore, 117594, Singapore.
| |
Collapse
|
35
|
Hakim V, Cohen LD, Zuchman R, Ziv T, Ziv NE. The effects of proteasomal inhibition on synaptic proteostasis. EMBO J 2016; 35:2238-2262. [PMID: 27613546 PMCID: PMC5069550 DOI: 10.15252/embj.201593594] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin-proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.
Collapse
Affiliation(s)
- Vicky Hakim
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laurie D Cohen
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel.,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rina Zuchman
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Faculty of Biology, Technion, Haifa, Israel
| | - Noam E Ziv
- The Rappaport Faculty of Medicine and Research Institute, Haifa, Israel .,Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Zhao H, Han Z, Ji X, Luo Y. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke. Aging Dis 2016; 7:295-306. [PMID: 27330844 PMCID: PMC4898926 DOI: 10.14336/ad.2015.1009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ziping Han
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- 22Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
37
|
Gebremedhin KG, Rademacher DJ. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex. Neurosci Lett 2016; 627:121-5. [PMID: 27241718 DOI: 10.1016/j.neulet.2016.05.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
Although the role of epigenetics in Parkinson's disease (PD) has not been extensively studied, α-synuclein, the main component of Lewy bodies, decreased histone H3 acetylation. Here, we determined if there were histone acetylation changes in the primary motor cortex which, according to the Braak model, is one of the last brain regions affected in PD. Net histone H3 acetylation, histone H3 lysine 9 (H3K9), histone H3 lysine 14 (H3K14), histone H3 lysine 18 (H3K18), and histone H3 lysine 23 (H3K23) acetylation was assessed in the primary motor cortex of those affected and unaffected by PD. There was net increase in histone H3 acetylation due to increased H3K14 and H3K18 acetylation. There was a decrease in H3K9 acetylation. No between-groups difference was detected in H3K23 acetylation. Relationships between Unified Lewy Body Staging scores and histone H3 acetylation and substantia nigra depigmentation scores and histone H3 acetylation were observed. No relationships were detected between postmortem interval and histone H3 acetylation and expired age and histone H3 acetylation. These correlational data support the notion that the histone H3 acetylation changes observed here are not due to the postmortem interval or aging. Instead, they are due to PD and/or factors that covary with PD. The data suggest enhanced gene transcription in the primary motor cortex of the PD brain due to increase H3K14 and H3K18 acetylation. This effect is partially offset by a decreased H3K9 acetylation, which might repress gene transcription.
Collapse
Affiliation(s)
- Kibrom G Gebremedhin
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - David J Rademacher
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Department of Psychological Science, Carthage College, Kenosha, WI, USA.
| |
Collapse
|
38
|
Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochem Res 2016; 42:19-34. [PMID: 26915104 DOI: 10.1007/s11064-016-1848-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.
Collapse
|
39
|
Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett 2016; 625:56-63. [PMID: 26868600 DOI: 10.1016/j.neulet.2016.02.009] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration.
Collapse
Affiliation(s)
- Megan W Bourassa
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA
| | - Ishraq Alim
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA
| | - Scott J Bultman
- Department of Genetics, University of North Carolina Genetic Medicine Building, Room 5060, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Rajiv R Ratan
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA.
| |
Collapse
|
40
|
Bernstock JD, Lee YJ, Peruzzotti-Jametti L, Southall N, Johnson KR, Maric D, Volpe G, Kouznetsova J, Zheng W, Pluchino S, Hallenbeck JM. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. J Cereb Blood Flow Metab 2016; 36:426-41. [PMID: 26661196 PMCID: PMC4759677 DOI: 10.1177/0271678x15609939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023]
Abstract
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), (NINDS/NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Giulio Volpe
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| |
Collapse
|
41
|
Schmitt HM, Schlamp CL, Nickells RW. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells. Neurosci Lett 2015; 625:11-5. [PMID: 26733303 DOI: 10.1016/j.neulet.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage. These early events appear to be principally regulated by epigenetic mechanisms involving histone deacetylation. Class I histone deacetylases HDACs 1, 2, and 3 are known to play important roles in the process of early nuclear atrophy in RGCs, and studies using both inhibitors and genetic ablation of Hdacs also reveal a critical role in the cell death process. Select inhibitors, such as those being developed for cancer therapy, may also provide a viable secondary treatment option for optic neuropathies.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
42
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
43
|
Du R, Zhou J, Lorenzano S, Liu W, Charoenvimolphan N, Qian B, Xu J, Wang J, Zhang X, Wang X, Berndt A, Devan WJ, Valant VJ, Wang J, Furie KL, Rosand J, Rost N, Friedlander RM, Paigen B, Weiss ST. Integrative Mouse and Human Studies Implicate ANGPT1 and ZBTB7C as Susceptibility Genes to Ischemic Injury. Stroke 2015; 46:3514-22. [PMID: 26542693 DOI: 10.1161/strokeaha.115.010767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The extent of ischemic injury in response to cerebral ischemia is known to be affected by native vasculature. However, the nonvascular and dynamic vascular responses and their genetic basis are not well understood. METHODS We performed a genome-wide association study in 235 mice from 33 inbred strains using the middle cerebral artery occlusion model. Population structure and genetic relatedness were accounted for using the efficient mixed-model association method. Human orthologs to the genes associated with the significant and suggestive single-nucleotide polymorphisms from the mouse strain survey were examined in patients with M1 occlusions admitted with signs and symptoms of acute ischemic stroke. RESULTS We identified 4 genome-wide significant and suggestive single-nucleotide polymorphisms to be associated with infarct volume in mice (rs3694965, P=2.17×10(-7); rs31924033, P=5.61×10(-6); rs32249495, P=2.08×10(-7); and rs3677406, P=9.56×10(-6)). rs32249495, which corresponds to angiopoietin-1 (ANGPT1), was also significant in the recessive model in humans, whereas rs1944577, which corresponds to ZBTB7C, was nominally significant in both the additive and dominant genetic models in humans. ZBTB7C was shown to be upregulated in endothelial cells using both in vitro and in vivo models of ischemia. CONCLUSIONS Genetic variations of ANGPT1 and ZBTB7C are associated with increased infarct size in both mice and humans. ZBTB7C may modulate the ischemic response via neuronal apoptosis and dynamic collateralization and, in addition to ANGPT1, may serve as potential novel targets for treatments of cerebral ischemia.
Collapse
Affiliation(s)
- Rose Du
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.).
| | - Jing Zhou
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Svetlana Lorenzano
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Wenming Liu
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Nareerat Charoenvimolphan
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Baogang Qian
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jun Xu
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jian Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Xinmu Zhang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Xin Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Annerose Berndt
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - William J Devan
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Valerie J Valant
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jinyi Wang
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Karen L Furie
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Jonathan Rosand
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Natalia Rost
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Robert M Friedlander
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Beverly Paigen
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| | - Scott T Weiss
- From the Department of Neurosurgery (R.D., J.Z., W.L., N.C., B.Q., J.X., J.W., X.Z., X.W.) and Channing Division of Network Medicine, Department of Medicine (R.D., S.T.W.), Brigham and Women's Hospital, Boston, MA; Department of Neurology, Massachusetts General Hospital, Boston (S.L., W.J.D., V.J.V., J.R., N.R.); Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy (S.L.); Department of Chemical Biology, Northwest Agriculture and Forestry University, Shaanxi, People's Republic of China (W.L., J.W.); Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, People's Republic of China (J.X.); The Jackson Laboratory, Bar Harbor, ME (A.B., B.P.); Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.B.) and Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine, PA; Quinnipiac University Frank H. Netter, MD School of Medicine, Hamden, CT (W.J.D.); University of Massachusetts Medical School, Worcester (V.J.V.); and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (K.L.F.)
| |
Collapse
|
44
|
Picascia A, Grimaldi V, Iannone C, Soricelli A, Napoli C. Innate and adaptive immune response in stroke: Focus on epigenetic regulation. J Neuroimmunol 2015; 289:111-20. [PMID: 26616880 DOI: 10.1016/j.jneuroim.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Inflammation and immune response play a pivotal role in the pathophysiology of ischemic stroke giving their contribution to tissue damage and repair. Emerging evidence supports the involvement of epigenetic mechanisms such as methylation, histone modification and miRNAs in the pathogenesis of stroke. Interestingly, epigenetics can influence the molecular events involved in ischemic injury by controlling the switch from pro- to anti-inflammatory response, however, this is still a field to be fully explored. The knowledge of epigenetic processes could to allow for the discovery of more sensitive and specific biomarkers for risk, onset, and progression of disease as well as further novel tools to be used in both primary prevention and therapy of stroke. Indeed, studies performed in vitro and in small animal models seem to suggest a neuroprotective role of HDAC inhibitors (e.g. valproic acid) and antagomir (e.g. anti-miR-181a) in ischemic condition by modulation of both immune and inflammatory pathways. Thus, the clinical implications of altered epigenetic mechanisms for the prevention of stroke are very promising but clinical prospective studies and translational approaches are still warranted.
Collapse
Affiliation(s)
- Antonietta Picascia
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy.
| | - Carmela Iannone
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Andrea Soricelli
- IRCCS Research Institute SDN, Naples, Italy; Department of Studies of Institutions and Territorial Systems, University of Naples Parthenope, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy; IRCCS Research Institute SDN, Naples, Italy
| |
Collapse
|
45
|
A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease. Neurobiol Aging 2015; 37:103-116. [PMID: 26545632 DOI: 10.1016/j.neurobiolaging.2015.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/17/2015] [Accepted: 10/02/2015] [Indexed: 11/24/2022]
Abstract
With increased histone deacetylase (HDAC) activity and histone hypoacetylation being implicated in neurodegeneration, HDAC inhibitors have been reported to have considerable therapeutic potential. Yet, existing inhibitors lack specificity and may show substantial adverse effect. In this study, we identified a novel HDAC1/2 isoform-specific inhibitor, K560, with protective effects against 1-methyl-4-phenylpyridinium (MPP(+))- and/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuronal death in both in vitro and in vivo Parkinson's disease model. K560 attenuated cell death induced by MPP(+) in differentiated SH-SY5Y cells through the sustained expression of an antiapoptotic protein, X-linked inhibitor of apoptosis (XIAP). Inhibition of XIAP expression by locked nucleic acid antisense oligonucleotides abolished the protective effect of K560. Inactivation of mitogen-activated protein kinase cascades, reduced p53 phosphorylation, and down-regulation of p53-upregulated modulator of apoptosis on K560 treatment were also observed. Furthermore, pre- and post-oral administration of K560 to mice prevented MPTP-induced loss of dopaminergic neurons in substantia nigra, suggesting that selective inhibition of HDAC1 and HDAC2 by K560 may pave the way to new strategies for Parkinson's disease treatment.
Collapse
|
46
|
Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A, Märschenz S. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab 2015; 35:1640-7. [PMID: 25966950 PMCID: PMC4640311 DOI: 10.1038/jcbfm.2015.99] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/04/2023]
Abstract
Cerebral ischemia induces a complex transcriptional response with global changes in gene expression. It is essentially regulated by transcription factors as well as epigenetic players. While it is well known that the inhibition of transcriptionally repressive histone deacetylases leads to neuroprotection, the role of histone methyltransferases in the postischemic transcriptional response remains elusive. We investigated the effects of inhibition of the repressive H3K9 histone methyltransferases SUV39H1 and G9a on neuronal survival, H3K9 promoter signatures and gene expression. Their inhibition either with the specific blocker chaetocin or by use of RNA interference promoted neuronal survival in oxygen glucose deprivation (OGD). Brain-derived neurotrophic factor (BDNF) was upregulated and BDNF promoter regions showed an increase in histone marks characteristic for active transcription. The BDNF blockade with K252a abrogated the protective effect of chaetocin treatment. In conclusion, inhibition of histone methyltransferases SUV39H1 and G9a confers neuroprotection in a model of hypoxic metabolic stress, which is at least in part mediated by BDNF.
Collapse
Affiliation(s)
- Sophie Schweizer
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Lerch
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Flynn
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Hecht
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ferah Yildirim
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Marson CM, Matthews CJ, Atkinson SJ, Lamadema N, Thomas NSB. Potent and Selective Inhibitors of Histone Deacetylase-3 Containing Chiral Oxazoline Capping Groups and a N-(2-Aminophenyl)-benzamide Binding Unit. J Med Chem 2015; 58:6803-18. [PMID: 26287310 DOI: 10.1021/acs.jmedchem.5b00545] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel series of potent chiral inhibitors of histone deacetylase (HDAC) is described that contains an oxazoline capping group and a N-(2-aminophenyl)-benzamide unit. Among several new inhibitors of this type exhibiting Class I selectivity and potent inhibition of HDAC3-NCoR2, in vitro assays for the inhibition of HDAC1, HDAC2, and HDAC3-NCoR2 by N-(2-aminophenyl)-benzamide 15k gave respective IC50 values of 80, 110, and 6 nM. Weak inhibition of all other HDAC isoforms (HDAC4, 5, 6, 7, and 9: IC50 > 100 000 nM; HDAC8: IC50 = 25 000 nM; HDAC10: IC50 > 4000 nM; HDAC11: IC50 > 2000 nM) confirmed the Class I selectivity of 15k. 2-Aminoimidazolinyl, 2-thioimidazolinyl, and 2-aminooxazolinyl units were shown to be effective replacements for the pyrimidine ring present in many other 2-(aminophenyl)-benzamides previously reported, but the 2-aminooxazolinyl unit was the most potent in inhibiting HDAC3-NCoR2. Many of the new HDAC inhibitors showed higher solubilities and lower binding to human serum albumin than that of Mocetinostat. Increases in histone H3K9 acetylation in the human cell lines U937 and PC-3 was observed for all three oxazolinyl inhibitors evaluated; those HDAC inhibitors also lowered cyclin E expression in U937 cells but not in PC-3 cells, indicating underlying differences in the mechanisms of action of the inhibitors on those two cell lines.
Collapse
Affiliation(s)
- Charles M Marson
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Christopher J Matthews
- Department of Chemistry, University College London , Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, U.K
| | - Stephen J Atkinson
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline , Gunnels Wood Road, Stevenage, Herts SG1 2NY, U.K
| | - Nermina Lamadema
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| | - N Shaun B Thomas
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Rayne Institute, King's College London , 123 Coldharbour Lane, London SE5 9NU, U.K
| |
Collapse
|
48
|
Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 2015; 1628:273-287. [PMID: 26232572 DOI: 10.1016/j.brainres.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/11/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
|
49
|
Aune SE, Herr DJ, Kutz CJ, Menick DR. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury. Front Neurol 2015; 6:145. [PMID: 26175715 PMCID: PMC4485035 DOI: 10.3389/fneur.2015.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain.
Collapse
Affiliation(s)
- Sverre E Aune
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Daniel J Herr
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Craig J Kutz
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| | - Donald R Menick
- Gazes Cardiac Research Institute, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
50
|
Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res 2015; 291:306-314. [PMID: 26048426 DOI: 10.1016/j.bbr.2015.05.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/25/2015] [Accepted: 05/30/2015] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300 mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD.
Collapse
|