1
|
Randolph AB, Zheng H, Rinaman L. Populations of Hindbrain Glucagon-Like Peptide 1 (GLP1) Neurons That Innervate the Hypothalamic PVH, Thalamic PVT, or Limbic Forebrain BST Have Axon Collaterals That Reach All Central Regions Innervated by GLP1 Neurons. J Neurosci 2024; 44:e2063232024. [PMID: 38811166 PMCID: PMC11293452 DOI: 10.1523/jneurosci.2063-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt) that express the glucagon gene (Gcg) give rise to glucagon-like peptide 1 (GLP1)-immunopositive axons in the spinal cord and many subcortical brain regions. Central GLP1 receptor signaling contributes to motivated behavior and stress responses in rats and mice, in which hindbrain GLP1 neurons are activated to express c-Fos in a metabolic state-dependent manner. The present study examined whether GLP1 inputs to distinct brain regions arise from distinct subsets of Gcg-expressing neurons, and mapped the distribution of axon collaterals arising from projection-defined GLP1 neural populations. Using our Gcg-Cre knock-in rat model, Cre-dependent adeno-associated virus (AAV) tracing was conducted in adult male and female rats to compare axonal projections of IRt versus cNTS GLP1 neurons. Overlapping projections were observed in all brain regions that receive GLP1 input, with the caveat that cNTS injections produced Cre-dependent labeling of some IRt neurons, and vice versa. In additional experiments, specific diencephalic or limbic forebrain nuclei were microinjected with Cre-dependent retrograde AAVs (AAVrg) that expressed reporters to fully label the axon collaterals of transduced GLP1 neurons. AAVrg injected into each forebrain site labeled Gcg-expressing neurons in both the cNTS and IRt. The collective axon collaterals of labeled neurons entered the spinal cord and every brain region previously reported to contain GLP1-positive axons. These results indicate that the axons of GLP1 neural populations that innervate the thalamic paraventricular nucleus, paraventricular nucleus of the hypothalamus, and/or bed nucleus of the stria terminalis collectively innervate all central regions that receive GLP1 axonal input.
Collapse
Affiliation(s)
- Abigail B Randolph
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
2
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Repeated stress triggers seeking of a starvation-like state in anxiety-prone female mice. Neuron 2024; 112:2130-2141.e7. [PMID: 38642553 PMCID: PMC11287784 DOI: 10.1016/j.neuron.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
Affiliation(s)
- Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Trent Pottala
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leilani Potgieter
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Hasbrouck
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
4
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. An ascending vagal sensory-central noradrenergic pathway modulates retrieval of passive avoidance memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588717. [PMID: 38645069 PMCID: PMC11030408 DOI: 10.1101/2024.04.09.588717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. Results To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. Conclusions These new findings support the view that a gut vagal afferent-to-cNTSNA-to-vlBNST circuit plays a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University
| | | | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University
| |
Collapse
|
5
|
Wood CP, Avalos B, Alvarez C, DiPatrizio NV. A Sexually Dimorphic Role for Intestinal Cannabinoid Receptor Subtype-1 in the Behavioral Expression of Anxiety. Cannabis Cannabinoid Res 2023; 8:1045-1059. [PMID: 37862126 PMCID: PMC10771877 DOI: 10.1089/can.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.
Collapse
Affiliation(s)
- Courtney P. Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Camila Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
- University of California Riverside Center for Cannabinoid Research, Riverside, California, USA
| |
Collapse
|
6
|
Fortin SM, Chen JC, Petticord MC, Ragozzino FJ, Peters JH, Hayes MR. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. SCIENCE ADVANCES 2023; 9:eadh0980. [PMID: 37729419 PMCID: PMC10511187 DOI: 10.1126/sciadv.adh0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack C. Chen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa C. Petticord
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Klich JD, Lewandowski MH. Proglucagon signalling in the rat Dorsomedial Hypothalamus - Physiology and high-fat diet-mediated alterations. Mol Cell Neurosci 2023; 126:103873. [PMID: 37295578 DOI: 10.1016/j.mcn.2023.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.
Collapse
Affiliation(s)
- A M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - K Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - L Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - J D Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle Street 10, 13125 Berlin, Germany
| | - M H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Chronic stress triggers seeking of a starvation-like state in anxiety-prone female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541013. [PMID: 37292650 PMCID: PMC10245771 DOI: 10.1101/2023.05.16.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe hunger as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether chronic stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress induction, male but not female mice showed mild aversion to AgRP stimulation. Strikingly, following chronic stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state, and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
|
9
|
Edwards CM, Guerrero IE, Zheng H, Dolezel T, Rinaman L. Blockade of Ghrelin Receptor Signaling Enhances Conditioned Passive Avoidance and Context-Associated cFos Activation in Fasted Male Rats. Neuroendocrinology 2022; 113:535-548. [PMID: 36566746 PMCID: PMC10133005 DOI: 10.1159/000528828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | | | - Huiyuan Zheng
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
10
|
Zheng H, López-Ferreras L, Krieger JP, Fasul S, Cea Salazar V, Valderrama Pena N, Skibicka KP, Rinaman L. A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery. Mol Metab 2022; 66:101631. [PMID: 36368622 PMCID: PMC9677222 DOI: 10.1016/j.molmet.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. METHODS To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. RESULTS While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. CONCLUSIONS Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lorena López-Ferreras
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Jean-Phillipe Krieger
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Stephen Fasul
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Valentina Cea Salazar
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Natalia Valderrama Pena
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, College of Health and Human Development, Huck Institute, The Pennsylvania State University, University Park, PA, USA,Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden,Corresponding author. Department of Nutritional Sciences, Pennsylvania State University, 204 Chandlee Lab, University Park, PA 16802, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA,Corresponding author. Department of Psychology, Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
11
|
Govic A, Nasser H, Levay EA, Zelko M, Ebrahimie E, Mohammadi Dehcheshmeh M, Kent S, Penman J, Hazi A. Long-Term Calorie Restriction Alters Anxiety-like Behaviour and the Brain and Adrenal Gland Transcriptomes of the Ageing Male Rat. Nutrients 2022; 14:nu14214670. [PMID: 36364936 PMCID: PMC9654051 DOI: 10.3390/nu14214670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Further examination of the molecular regulators of long-term calorie restriction (CR), reported to have an anxiolytic effect, may highlight novel therapeutic targets for anxiety disorders. Here, adult male Hooded Wistar rats were exposed to a 25% CR whilst anxiety-like behaviour was assessed at 6-, 12-, and 18-months of age via the elevated plus maze, open field, and acoustic startle tests. Next-generation sequencing was then used to measure transcriptome-wide gene expression in the hypothalamus, amygdala, pituitary, and adrenal glands. Results showed an anxiolytic behavioural profile across early, middle, and late adulthood by CR, with the strongest effects noted at 6-months. Transcriptomic analysis by seven attribute weighting algorithms, including Info Gain Ratio, Rule, Chi Squared, Gini Index, Uncertainty, Relief, and Info Gain, led to the development of a signature of long-term CR, independent of region. Complement C1q A chain (C1qa), an extracellular protein, expression was significantly decreased by CR in most regions examined. Furthermore, text mining highlighted the positive involvement of C1qa in anxiety, depression, neurodegeneration, stress, and ageing, collectively identifying a suitable biomarker candidate for CR. Overall, the current study identified anxiety-related phenotypic changes and a novel transcriptome signature of long-term CR, indicating potential therapeutic targets for anxiety, depression, and neurodegeneration.
Collapse
Affiliation(s)
- Antonina Govic
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
- Correspondence: or ; Tel.: +61-3-9780-9996
| | - Helen Nasser
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Elizabeth A. Levay
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Matt Zelko
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Manijeh Mohammadi Dehcheshmeh
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
| | - Jim Penman
- Epigenes Australia Pty Ltd., Melbourne, VIC 3010, Australia
| | - Agnes Hazi
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3010, Australia
| |
Collapse
|
12
|
Krieger JP, Asker M, van der Velden P, Börchers S, Richard JE, Maric I, Longo F, Singh A, de Lartigue G, Skibicka KP. Neural Pathway for Gut Feelings: Vagal Interoceptive Feedback From the Gastrointestinal Tract Is a Critical Modulator of Anxiety-like Behavior. Biol Psychiatry 2022; 92:709-721. [PMID: 35965105 PMCID: PMC11438499 DOI: 10.1016/j.biopsych.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Anxiety disorders are associated with an altered perception of the body's internal state. Therefore, understanding the neuronal basis of interoception can foster novel anxiety therapies. In rodents, the feeding status bidirectionally modulates anxiety-like behavior but how the sensing of gastrointestinal state affects anxiety remains unclear. METHODS We combined chemogenetics, neuropharmacology, and behavioral approaches in male and female rats to test whether vagal afferents terminating in the gastrointestinal tract mediate feeding-induced tuning of anxiety. Using saporin-based lesions and transcriptomics, we investigated the chronic impact of this gut-brain circuit on anxiety-like behavior. RESULTS Both feeding and selective chemogenetic activation of gut-innervating vagal afferents increased anxiety-like behavior. Conversely, chemogenetic inhibition blocked the increase in anxiety-like behavior induced by feeding. Using a selective saporin-based lesion, we demonstrate that the loss of gut-innervating vagal afferent signaling chronically reduces anxiety-like behavior in male rats but not in female rats. We next identify a vagal circuit that connects the gut to the central nucleus of the amygdala, using anterograde transsynaptic tracing from the nodose ganglia. Lesion of this gut-brain vagal circuit modulated the central amygdala transcriptome in both sexes but selectively affected a network of GABA (gamma-aminobutyric acid)-related genes only in males, suggesting a potentiation of inhibitory control. Blocking GABAergic signaling in the central amygdala re-established normal anxiety levels in male rats. CONCLUSIONS Vagal sensory signals from the gastrointestinal tract are critical for baseline and feeding-induced tuning of anxiety via the central amygdala in rats. Our results suggest vagal gut-brain signaling as a target to normalize interoception in anxiety disorders.
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Mohammed Asker
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | | | - Stina Börchers
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Jennifer E Richard
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Ivana Maric
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Francesco Longo
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida
| | - Karolina P Skibicka
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden; Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, State College, Pennsylvania.
| |
Collapse
|
13
|
Evans B, Stoltzfus B, Acharya N, Nyland JE, Arnold AC, Freet CS, Bunce SC, Grigson PS. Dose titration with the glucagon-like peptide-1 agonist, liraglutide, reduces cue- and drug-induced heroin seeking in high drug-taking rats. Brain Res Bull 2022; 189:163-173. [PMID: 36038016 PMCID: PMC10757750 DOI: 10.1016/j.brainresbull.2022.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/13/2023]
Abstract
Opioid use disorder (OUD), like other substance use disorders (SUDs), is widely understood to be a disorder of persistent relapse. Despite the use of three FDA-approved medications for OUD, typically in conjunction with behavioral treatments, relapse rates remain unacceptably high. Whereas medication assisted therapy (MAT) reduces the risk of opioid overdose mortality, the benefits of MAT are negated when people discontinue the medications. Currently approved medications present barriers to efficient use, including daily visits to a treatment center or work restrictions. With spiking increases in opioid relapse and death, it is imperative to identify new treatments that can reduce the risk of relapse. Recent evidence suggests that glucagon-like peptide-1 receptor agonists (GLP-1RAs), currently FDA-approved to treat obesity and type two diabetes, may be promising candidates to reduce relapse. GLP-1RAs have been shown to reduce relapse in rats, whether elicited by cues, drug, and/or stress. However, GLP-1RAs also can cause gastrointestinal malaise, and therefore, in humans, the medication typically is titrated up to full dose when initiating treatment. Here, we used a rodent model to test whether cue- and drug-induced heroin seeking can be reduced by the GLP-1RA, liraglutide, when the dose is titrated across the abstinence period and prior to test. The results show this titration regimen is effective in reducing both cue-induced heroin seeking and drug-induced reinstatement of heroin seeking, particularly in rats with a history of high drug-taking. Importantly, this treatment regimen had no effect on either circulating glucose or insulin. GLP-1RAs, then, appear strong candidates for the non-opioid prevention of relapse to opioids.
Collapse
Affiliation(s)
- Brianna Evans
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Brooke Stoltzfus
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nikhil Acharya
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jennifer E Nyland
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher S Freet
- Department of Psychiatry and Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Scott C Bunce
- Department of Psychiatry and Behavioral Health, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Addiction Center for Translation, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Bales MB, Centanni SW, Luchsinger JR, Fathi P, Biddinger JE, Le TDV, Nwaba KG, Paldrmic IM, Winder DG, Ayala JE. High fat diet blunts stress-induced hypophagia and activation of Glp1r dorsal lateral septum neurons in male but not in female mice. Mol Metab 2022; 64:101571. [PMID: 35953023 PMCID: PMC9418981 DOI: 10.1016/j.molmet.2022.101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE While stress typically reduces caloric intake (hypophagia) in chow-fed rodents, presentation of palatable, high calorie substances during stress can increase caloric consumption (i.e. "comfort feeding") and promote obesity. However, little is known about how obesity itself affects feeding behavior in response to stress and the mechanisms that can influence stress-associated feeding in the context of obesity. METHODS We assessed food intake and other metabolic parameters in lean and obese male and female mice following acute restraint stress. We also measured real-time activity of glucagon-like peptide-1 (Glp1) receptor (Glp1r)-expressing neurons in the dorsal lateral septum (dLS) during stress in lean and obese mice using fiber photometry. Glp1r activation in various brain regions, including the dLS, promotes hypophagia in response to stress. Finally, we used inhibitory Designer Receptors Activated Exclusively by Designer Drugs (DREADDs) to test whether activation of Glp1r-expressing neurons in the LS is required for stress-induced hypophagia. RESULTS Lean male mice display the expected hypophagic response following acute restraint stress, but obese male mice are resistant to this acute stress-induced hypophagia. Glp1r-positive neurons in the dLS are robustly activated during acute restraint stress in lean but not in obese male mice. This raises the possibility that activation of dLS Glp1r neurons during restraint stress contributes to subsequent hypophagia. Supporting this, we show that chemogenetic inhibition of LS Glp1r neurons attenuates acute restraint stress hypophagia in male mice. Surprisingly, we show that both lean and obese female mice are resistant to acute restraint stress-induced hypophagia and activation of dLS Glp1r neurons. CONCLUSIONS These results suggest that dLS Glp1r neurons contribute to the hypophagic response to acute restraint stress in male mice, but not in female mice, and that obesity disrupts this response in male mice. Broadly, these findings show sexually dimorphic mechanisms and feeding behaviors in lean vs. obese mice in response to acute stress.
Collapse
Affiliation(s)
- Michelle B Bales
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Samuel W Centanni
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Joseph R Luchsinger
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Payam Fathi
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Jessica E Biddinger
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Thao D V Le
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Kaitlyn Ginika Nwaba
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Isabella M Paldrmic
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Julio E Ayala
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Börchers S, Krieger JP, Asker M, Maric I, Skibicka KP. Commonly-used rodent tests of anxiety-like behavior lack predictive validity for human sex differences. Psychoneuroendocrinology 2022; 141:105733. [PMID: 35367714 DOI: 10.1016/j.psyneuen.2022.105733] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Women are more likely to develop an anxiety disorder than men. Yet, preclinical models of anxiety were largely developed in male rodents, with poorly understood predictive validity for sex differences. Here, we investigate whether commonly-used anxiety-like behavior tests, elevated plus maze (EPM) and open field (OF), represent the human sex difference in adult Sprague-Dawley rats. When interpreted by EPM or OF, female rats displayed less anxiety-like behavior compared to males, as they spent twice as much time in the open arms of the EPM or the center of the OF compared to males. However, they also displayed vastly different levels of locomotor activity, possibly confounding interpretation of these locomotion-dependent tests. To exclude locomotion from the assessment, the acoustic startle response (ASR) test was used. When interpreted by the ASR test, females displayed more anxiety-like behavior compared to males, as indicated by a nearly two-fold higher startle amplitude. The observed sex differences were not driven by gonadal steroids. Overall, all but one of the tests fail to mirror the sex difference in anxiety reported in humans. Our findings suggest that the ASR might be a better fit in modelling female anxiety-like behavior.
Collapse
Affiliation(s)
- Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
17
|
Khodir SA, Faried MA, Abd-Elhafiz HI, Sweed EM. Sitagliptin Attenuates the Cognitive Deficits in L-Methionine-Induced Vascular Dementia in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7222590. [PMID: 35265716 PMCID: PMC8898801 DOI: 10.1155/2022/7222590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 02/05/2023]
Abstract
Vascular dementia (VaD) is the second most prevalent type of dementia characterized by progressive cognitive deficits and is a major risk factor for the development of Alzheimer's disease and other neurodegenerative disorders. This study is aimed at determining the potential neuroprotective effect of sitagliptin (STG) on cognitive deficits in L-methionine-induced VaD in rats and the possible underlying mechanisms. 30 adult male Wistar albino rats were divided equally (n = 10) into three groups: control, VaD, and VaD + STG groups. The cognitive performance of the animals was conducted by open field, elevated plus maze, Y-maze, novel object recognition, and Morris water maze tests. Serum homocysteine, TNF-α, IL-6, IL-10, total cholesterol, and triglycerides levels were assessed together with hippocampal MDA, SOD, and BDNF. Histopathological and immunohistochemical assessments of the thoracic aorta and hippocampus (CA1 region) were also performed. Chronic L-methionine administration impaired memory and learning and induced anxiety. On the other hand, STG protected against cognitive deficits through improving oxidative stress biomarkers, inflammatory mediators, lipid profiles, and hippocampus level of BDNF as well as decreasing caspase-3 and GFAP and increasing Ki-67 immunoreactions in the hippocampus. Also, STG improved the endothelial dysfunction via upregulation of aortic eNOS immunoreaction. STG improved the cognitive deficits of L-methionine-induced VaD by its antioxidant, anti-inflammatory, antiapoptotic, and neurotrophic effects. These findings suggest that STG may be a promising future agent for protection against VaD.
Collapse
Affiliation(s)
- Suzan A. Khodir
- 1Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Manar A. Faried
- 2Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Huda I. Abd-Elhafiz
- 3Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Eman M. Sweed
- 3Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| |
Collapse
|
18
|
Börchers S, Krieger JP, Maric I, Carl J, Abraham M, Longo F, Asker M, Richard JE, Skibicka KP. From an Empty Stomach to Anxiolysis: Molecular and Behavioral Assessment of Sex Differences in the Ghrelin Axis of Rats. Front Endocrinol (Lausanne) 2022; 13:901669. [PMID: 35784535 PMCID: PMC9243305 DOI: 10.3389/fendo.2022.901669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin, a stomach-produced hormone, is well-recognized for its role in promoting feeding, controlling energy homeostasis, and glucoregulation. Ghrelin's function to ensure survival extends beyond that: its release parallels that of corticosterone, and ghrelin administration and fasting have an anxiolytic and antidepressant effect. This clearly suggests a role in stress and anxiety. However, most studies of ghrelin's effects on anxiety have been conducted exclusively on male rodents. Here, we hypothesize that female rats are wired for higher ghrelin sensitivity compared to males. To test this, we systematically compared components of the ghrelin axis between male and female Sprague Dawley rats. Next, we evaluated whether anxiety-like behavior and feeding response to endogenous or exogenous ghrelin are sex divergent. In line with our hypothesis, we show that female rats have higher serum levels of ghrelin and lower levels of the endogenous antagonist LEAP-2, compared to males. Furthermore, circulating ghrelin levels were partly dependent on estradiol; ovariectomy drastically reduced circulating ghrelin levels, which were partly restored by estradiol replacement. In contrast, orchiectomy did not affect circulating plasma ghrelin. Additionally, females expressed higher levels of the endogenous ghrelin receptor GHSR1A in brain areas involved in feeding and anxiety: the lateral hypothalamus, hippocampus, and amygdala. Moreover, overnight fasting increased GHSR1A expression in the amygdala of females, but not males. To evaluate the behavioral consequences of these molecular differences, male and female rats were tested in the elevated plus maze (EPM), open field (OF), and acoustic startle response (ASR) after three complementary ghrelin manipulations: increased endogenous ghrelin levels through overnight fasting, systemic administration of ghrelin, or blockade of fasting-induced ghrelin signaling with a GHSR1A antagonist. Here, females exhibited a stronger anxiolytic response to fasting and ghrelin in the ASR, in line with our findings of sex differences in the ghrelin axis. Most importantly, after GHSR1A antagonist treatment, females but not males displayed an anxiogenic response in the ASR, and a more pronounced anxiogenesis in the EPM and OF compared to males. Collectively, female rats are wired for higher sensitivity to fasting-induced anxiolytic ghrelin signaling. Further, the sex differences in the ghrelin axis are modulated, at least partly, by gonadal steroids, specifically estradiol. Overall, ghrelin plays a more prominent role in the regulation of anxiety-like behavior of female rats.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ivana Maric
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jil Carl
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Maral Abraham
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Longo
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E. Richard
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Karolina P. Skibicka,
| |
Collapse
|
19
|
McKay NJ, Giorgianni NR, Czajka KE, Brzyski MG, Lewandowski CL, Hales ML, Sequeira IK, Bernardo MB, Mietlicki-Baase EG. Plasma levels of ghrelin and GLP-1, but not leptin or amylin, respond to a psychosocial stressor in women and men. Horm Behav 2021; 134:105017. [PMID: 34174584 DOI: 10.1016/j.yhbeh.2021.105017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
It is well known that stress elevates intake of total calories and shifts food preference toward unhealthy food choices. There is, however, little known on the physiological mechanisms that drive stress-induced hyperphagia. In order to better understand how to reduce stress eating, it is critical to identify mechanisms in humans that are points of convergence between stress and eating. The feeding-related hormones ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and amylin are likely candidates. It was hypothesized that ghrelin, an orexigenic hormone, would increase in response to an acute laboratory stressor, but that leptin, GLP-1, and amylin (anorexigenic hormones) would decrease after stress. To this aim, participants (n = 47) came into the laboratory and had feeding-related hormones, salivary cortisol and α-amylase, and self-rated anxiety measured. Then they underwent either exposure to a stressor (n = 24), which reliably elevates measures of stress and energy intake, or a no-stress condition (n = 23). Feeding hormones, stress hormones, and self-rated anxiety were measured twice more after the stressor. Elevated self-rated anxiety and α-amylase confirmed the validity of the stressor. Furthermore, there was a time X condition interaction for both ghrelin and GLP-1. Ghrelin was significantly elevated after stress compared to baseline (p = .02) and there was a trend for GLP-1 to be higher in the stress condition over the no-stress condition immediately after the stressor (p = .07). Overall, ghrelin is the most likely candidate driving energy intake after stress in humans.
Collapse
Affiliation(s)
- Naomi J McKay
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA.
| | - Nicolas R Giorgianni
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Kristin E Czajka
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Michael G Brzyski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Cassandra L Lewandowski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Marnee L Hales
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Isabelle K Sequeira
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | | | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
20
|
Holt MK. Mind affects matter: Hindbrain GLP1 neurons link stress, physiology and behaviour. Exp Physiol 2021; 106:1853-1862. [PMID: 34302307 DOI: 10.1113/ep089445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This Lecture covers the role of caudal brainstem GLP1 neurons in acute and chronic stress responses. What advances does it highlight? This Lecture focuses on the recent advances in our understanding of GLP1 neurons and their physiological role in many aspects of stress. Particular focus is given to the recent elucidation, in part, of the anatomical basis for recruitment of GLP1 neurons in response to acute stress. Finally, the potential, but at this time somewhat speculative, role of GLP1 neurons in chronic stress is discussed. ABSTRACT The brain responds rapidly to stressful stimuli by increasing sympathetic outflow, activating the hypothalamic-pituitary-adrenal axis and eliciting avoidance behaviours to limit risks to safety. Stress responses are adaptive and essential but can become maladaptive when the stress is chronic, causing autonomic imbalance, hypothalamic-pituitary-adrenal axis hyper-reactivity and a state of hypervigilance. Ultimately, this contributes to the development of cardiovascular disease and affective disorders, including major depression and anxiety. Stress responses are often thought to be driven mainly by forebrain areas; however, the brainstem nucleus of the solitary tract (NTS) is ideally located to control both autonomic outflow and behaviour in response to stress. Here, I review the preclinical evidence that the NTS and its resident glucagon-like peptide-1 (GLP1)-expressing neurons are prominent mediators of stress responses. This Lecture introduces the reader to the idea of good and bad stress and outlines the types of stress that engage the NTS and GLP1 neurons. I describe in particular detail the recent studies by myself and others aimed at mapping sources of synaptic inputs to GLP1 neurons and consider the implications for our understanding of the role of GLP1 neurons in stress. This is followed by a discussion of the contribution of brain GLP1 and GLP1 neurons to behavioural and physiological stress responses. The evidence reviewed highlights a potentially prominent role for GLP1 neurons in the response of the brain to acute stress and reveals important unanswered questions regarding their role in chronic stress.
Collapse
Affiliation(s)
- Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
21
|
Povysheva N, Zheng H, Rinaman L. Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiol Stress 2021; 15:100363. [PMID: 34277897 PMCID: PMC8271176 DOI: 10.1016/j.ynstr.2021.100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/14/2023] Open
Abstract
We previously reported that GABAergic neurons within the ventral anterior lateral bed nucleus of the stria terminalis (alBST) express glucagon-like peptide 1 receptor (GLP1R) in rats, and that virally-mediated “knock-down” of GLP1R expression in the alBST prolongs the hypothalamic-pituitary-adrenal axis response to acute stress. Given other evidence that a GABAergic projection pathway from ventral alBST serves to limit stress-induced activation of the HPA axis, we hypothesized that GLP1 signaling promotes activation of GABAergic ventral alBST neurons that project directly to the paraventricular nucleus of the hypothalamus (PVN). After PVN microinjection of fluorescent retrograde tracer followed by preparation of ex vivo rat brain slices, whole-cell patch clamp recordings were made in identified PVN-projecting neurons within the ventral alBST. Bath application of Exendin-4 (a specific GLP1R agonist) indirectly depolarized PVN-projecting neurons in the ventral alBST and adjacent hypothalamic parastrial nucleus (PS) through a network-dependent increase in excitatory synaptic inputs, coupled with a network-independent reduction in inhibitory inputs. Additional retrograde tracing experiments combined with in situ hybridization confirmed that PVN-projecting neurons within the ventral alBST/PS are GABAergic, and do not express GLP1R mRNA. Conversely, GLP1R mRNA is expressed by a subset of neurons that project into the ventral alBST and were likely contained within coronal ex vivo slices, including GABAergic neurons within the oval subnucleus of the dorsal alBST and glutamatergic neurons within the substantia innominata. Our novel findings reveal potential GLP1R-mediated mechanisms through which the alBST exerts inhibitory control over the endocrine HPA axis.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huiyuan Zheng
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
22
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
23
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
24
|
Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol 2021; 179:642-658. [PMID: 34050926 PMCID: PMC8820208 DOI: 10.1111/bph.15576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon‐like peptide‐1 (GLP‐1) and prolactin‐releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP‐1 neurons. We outline their co‐activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP‐1 neurons and outline unexplored areas of the research field. Based on the current state‐of‐knowledge, PrRP and GLP‐1 neurons may be compelling targets in the treatment of stress‐related disorders.
Collapse
Affiliation(s)
- Marie K Holt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
25
|
Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021; 179:571-583. [PMID: 33990944 DOI: 10.1111/bph.15535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is well known as a gut hormone and also acts as a neuropeptide, produced in a discrete population of caudal brainstem neurons that project widely throughout the brain. GLP-1 receptors are expressed in many brain areas of relevance to energy balance, and stimulation of these receptors at many of these sites potently suppresses food intake. This review surveys the current evidence for effects mediated by GLP-1 receptors on feeding behaviour at a wide array of brain sites and discusses behavioural and neurophysiological mechanisms for the effects identified thus far. Taken together, it is clear that GLP-1 receptor activity in the brain can influence feeding by diverse means, including mediation of gastrointestinal satiation and/or satiety signalling, suppression of motivation for food reward, induction of nausea and mediation of restraint stress-induced hypophagia, but many questions about the organization of this system remain.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
26
|
Abstract
In recent years, plenty of researches have reported in obese individuals with abnormal brain processes implicated in homeostatic regulation, reward, emotion, memory, attention, and executive function in eating behaviors. Thus, treating obesity cannot remain "brainless." Behavioral and psychological interventions activate the food reward, attention, and motivation system, leading to minimal weight loss and high relapse rates. Pharmacotherapy is an effective weight loss method and regulate brain activity but with concerns about its brain function safety problems. Obesity surgery, the most effective therapy currently available for obesity, shows pronounced effects on brain activity, such as deactivation of reward and attention system, and activation of inhibition control toward food cues. In this review, we present an overview of alterations in the brain after the three common weight loss methods.
Collapse
|
27
|
Leon RM, Borner T, Stein LM, Urrutia NA, De Jonghe BC, Schmidt HD, Hayes MR. Activation of PPG neurons following acute stressors differentially involves hindbrain serotonin in male rats. Neuropharmacology 2021; 187:108477. [PMID: 33581143 DOI: 10.1016/j.neuropharm.2021.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022]
Abstract
Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.
Collapse
Affiliation(s)
- Rosa M Leon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norma A Urrutia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Kong Q, Li Y, Yue J, Wu X, Xu M. Reducing alcohol and/or cocaine-induced reward and toxicity via an epidermal stem cell-based gene delivery platform. Mol Psychiatry 2021; 26:5266-5276. [PMID: 33619338 PMCID: PMC8380265 DOI: 10.1038/s41380-021-01043-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Alcohol use disorder (AUD) is one of the foremost public health problems. Alcohol is also frequently co-abused with cocaine. There is a huge unmet need for the treatment of AUD and/or cocaine co-abuse. We recently demonstrated that skin grafts generated from mouse epidermal stem cells that had been engineered by CRISPR-mediated genome editing could be transplanted onto mice as a gene delivery platform. Here, we show that expression of the glucagon-like peptide-1 (GLP1) gene delivered by epidermal stem cells attenuated development and reinstatement of alcohol-induced drug-taking and seeking as well as voluntary oral alcohol consumption. GLP1 derived from the skin grafts decreased alcohol-induced increase in dopamine levels in the nucleus accumbens. In exploring the potential of this platform in reducing concurrent use of drugs, we developed a novel co-grafting procedure for both modified human butyrylcholinesterase (hBChE)- and GLP1-expressing cells. Epidermal stem cell-derived hBChE and GLP1 reduced acquisition of drug-taking and toxicity induced by alcohol and cocaine co-administration. These results imply that cutaneous gene delivery through skin transplants may add a new option to treat drug abuse and co-abuse.
Collapse
Affiliation(s)
- Qingyao Kong
- grid.170205.10000 0004 1936 7822Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL USA
| | - Yuanyuan Li
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Jiping Yue
- grid.170205.10000 0004 1936 7822Ben May Department for Cancer Research, The University of Chicago, Chicago, IL USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Biddinger JE, Lazarenko RM, Scott MM, Simerly R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 2020; 9:59857. [PMID: 33206596 PMCID: PMC7673779 DOI: 10.7554/elife.59857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus of the solitary tract (NTS) is critical for the central integration of signals from visceral organs and contains preproglucagon (PPG) neurons, which express leptin receptors in the mouse and send direct projections to the paraventricular nucleus of the hypothalamus (PVH). Here, we visualized projections of PPG neurons in leptin-deficient Lepob/ob mice and found that projections from PPG neurons are elevated compared with controls, and PPG projections were normalized by targeted rescue of leptin receptors in LepRbTB/TB mice, which lack functional neuronal leptin receptors. Moreover, Lepob/ob and LepRbTB/TB mice displayed increased levels of neuronal activation in the PVH following vagal stimulation, and whole-cell patch recordings of GLP-1 receptor-expressing PVH neurons revealed enhanced excitatory neurotransmission, suggesting that leptin acts cell autonomously to suppress representation of excitatory afferents from PPG neurons, thereby diminishing the impact of visceral sensory information on GLP-1 receptor-expressing neurons in the PVH.
Collapse
Affiliation(s)
- Jessica E Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Roman M Lazarenko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Michael M Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, United States
| | - Richard Simerly
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
30
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
31
|
Navarro I Batista K, Schraner M, Riediger T. Brainstem prolactin-releasing peptide contributes to cancer anorexia-cachexia syndrome in rats. Neuropharmacology 2020; 180:108289. [PMID: 32890590 DOI: 10.1016/j.neuropharm.2020.108289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Up to 80% of cancer patients are affected by the cancer anorexia-cachexia syndrome (CACS), which leads to excessive body weight loss, reduced treatment success and increased lethality. The area postrema/nucleus of the solitary tract (AP/NTS) region emerged as a central nervous key structure in this multi-factorial process. Neurons in this area are targeted by cytokines and signal to downstream sites involved in energy homeostasis. NTS neurons expressing prolactin-releasing peptide (PrRP) are implicated in the control of energy intake and hypothalamus-pituitary-adrenal (HPA) axis activation, which contributes to muscle wasting. To explore if brainstem PrRP neurons contribute to CACS, we selectively knocked down PrRP expression in the NTS of hepatoma tumor-bearing rats by an AAV/shRNA gene silencing approach. PrRP knockdown reduced body weight loss and anorexia compared to tumor-bearing controls treated with a non-silencing AAV. Gastrocnemius and total hind limb muscle weight was higher in PrPR knockdown rats. Corticosterone levels were increased in the early phase after tumor induction at day 6 in both groups but returned to baseline levels at day 21 in the PrRP knockdown group. While we did not detect significant changes in gene expression of markers for muscle protein metabolism (MuRF-1, myostatin, mTOR and REDD1), mTOR and REDD1 tended to be lower after disruption PrRP signalling. In conclusion, we identified brainstem PrRP as a possible neuropeptide mediator of CACS in hepatoma tumor-bearing rats. The central and peripheral downstream mechanisms require further investigation and might involve HPA axis activation.
Collapse
Affiliation(s)
| | - Marissa Schraner
- University of Zurich, Institute of Veterinary Physiology, Zurich, Switzerland
| | - Thomas Riediger
- University of Zurich, Institute of Veterinary Physiology, Zurich, Switzerland.
| |
Collapse
|
32
|
PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Mol Metab 2020; 39:101024. [PMID: 32446875 PMCID: PMC7317700 DOI: 10.1016/j.molmet.2020.101024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/07/2023] Open
Abstract
Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects. Methods We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-DTA. Results Systemic administration of the GLP-1RA Ex-4 increased resting HR in anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect was abolished by β-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine. Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting HR. Furthermore, the application of GLP-1 within the subarachnoid space of the middle thoracic spinal cord, a major projection target of PPG neurons, increased HR. Conclusions These results demonstrate that both systemic application of Ex-4 or GLP-1 and chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These neurons therefore do not play a significant role in controlling resting HR and ABP but are capable of inducing tachycardia and so are likely involved in cardiovascular responses to acute stress. Activation of PPG neurons triggers increases in heart rate in mice. PPG neurons do not provide a tonic sympathetic drive to the heart. The tachycardic effect of systemic Ex-4 is not mediated by PPG neurons. GLP-1 receptor activation has a sympathoexcitatory effect that increases heart rate. Local activation of GLP-1R in the spinal cord is sufficient to elicit tachycardia.
Collapse
|
33
|
Maniscalco JW, Edwards CM, Rinaman L. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1014-R1023. [PMID: 32292065 DOI: 10.1152/ajpregu.00346.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In rats, overnight fasting reduces the ability of systemic cholecystokinin-8 (CCK) to suppress food intake and to activate cFos in the caudal nucleus of the solitary tract (cNTS), specifically within glucagon-like peptide-1 (GLP-1) and noradrenergic (NA) neurons of the A2 cell group. Systemic CCK increases vagal sensory signaling to the cNTS, an effect that is amplified by leptin and reduced by ghrelin. Since fasting reduces plasma leptin and increases plasma ghrelin levels, we hypothesized that peripheral leptin administration and/or antagonism of ghrelin receptors in fasted rats would rescue the ability of CCK to activate GLP-1 neurons and a caudal subset of A2 neurons that coexpress prolactin-releasing peptide (PrRP). To test this, cFos expression was examined in ad libitum-fed and overnight food-deprived (DEP) rats after intraperitoneal CCK, after coadministration of leptin and CCK, or after intraperitoneal injection of a ghrelin receptor antagonist (GRA) before CCK. In fed rats, CCK activated cFos in ~60% of GLP-1 and PrRP neurons. Few or no GLP-1 or PrRP neurons expressed cFos in DEP rats treated with CCK alone, CCK combined with leptin, or GRA alone. However, GRA pretreatment increased the ability of CCK to activate GLP-1 and PrRP neurons and also enhanced the hypophagic effect of CCK in DEP rats. Considered together, these new findings suggest that reduced behavioral sensitivity to CCK in fasted rats is at least partially due to ghrelin-mediated suppression of hindbrain GLP-1 and PrRP neural responsiveness to CCK.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Psychology and Neuroscience, Regis University, Denver, Colorado
| | - Caitlyn M Edwards
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
34
|
Abstract
ABSTRACT Objective To evaluate the effects of macronutrients (protein, carbohydrate and/or lipid) in the diet of young adult (72 days) and adult (182 days) Wistar rats treated ad libitum and with 30% restriction from birth on anxiety in the elevated plus-maze. Methods We used 238 rats treated from birth, composing the groups: Control, Protein, Carbohydrate, Lipid, Carbohydrate and Lipid, Control Restriction, Protein Restriction, Carbohydrate Restriction, Lipid Restriction and Carbohydrate and Lipid Restriction. The animals were weighed at the beginning and at the end of the experiment and tested in the elevated plus-maze. Data were submitted to analysis of variance, followed by the Newman-Keuls Test (p<0.05). Results Among the animals treated ad libitum, the Control, Carbohydrate plus Lipid and Lipid gained more weight than the Carbohydrate and Protein; ad libitum animals gained more weight than those on restriction; among the restrictions, Carbohydrate Restriction rats were the ones that gained less weight. Diet-restricted animals exhibited reduced first-entry latency, greater percentage of entries and time spent, frequency of open arm extremity visits, head dipping (protected and unprotected), and length of stay in the central area of the elevated plus-maze. The animals with 182 days presented greater latency for first entry, reduced frequency of false entries and visits to the ends of the open arms and protected head dipping. Conclusion Food restricted animals, regardless of the macronutrient present in the diet, were less anxious and/or increased their impulsivity and those at 182 days were more anxious and/or with reduced impulsivity.
Collapse
|
35
|
Konanur VR, Hsu TM, Kanoski SE, Hayes MR, Roitman MF. Phasic dopamine responses to a food-predictive cue are suppressed by the glucagon-like peptide-1 receptor agonist Exendin-4. Physiol Behav 2019; 215:112771. [PMID: 31821815 DOI: 10.1016/j.physbeh.2019.112771] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
Phasic dopamine activity is evoked by reliable predictors of food reward and plays a role in cue-triggered, goal-directed behavior. While this important signal is modulated by physiological state (e.g. hunger, satiety), the mechanisms by which physiological state is integrated by dopamine neurons is only beginning to be elucidated. Activation of central receptors for glucagon-like peptide-1 (GLP-1R) via long-acting agonists (e.g., Exendin-4) suppresses food intake and food-directed motivated behavior, in part, through action in regions with dopamine cell bodies, terminals, and/or neural populations that directly target the mesolimbic dopamine system. However, the effects of GLP-1R activation on cue-evoked, phasic dopamine signaling remain unknown. Here, in vivo fiber photometry was used to capture real-time signaling dynamics selectively from dopamine neurons in the ventral tegmental area of male and female transgenic (tyrosine hydroxylase-Cre; TH:Cre+) rats trained to associate an audio cue with the brief availability of a sucrose solution. Cue presentation evoked a brief spike in dopamine activity. Administration of Exendin-4 (Ex4; 0, 0.05, 0.1 μg) to the lateral ventricle both dose-dependently suppressed sucrose-directed behaviors and the magnitude of cue-evoked dopamine activity. Moreover, the amplitude of cue evoked dopamine activity was significantly correlated with subsequent sucrose-directed behaviors. While female rats exhibited overall reduced dopamine responses to the sucrose-paired cue relative to males, there was no significant interaction with Ex4. Together, these findings support a role for central GLP-1Rs in modulating a form of dopamine signaling that influences approach behavior and provide a potential mechanism whereby GLP-1 suppresses food-directed behaviors.
Collapse
Affiliation(s)
- Vaibhav R Konanur
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
| | - Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, 1007W. Harrison St., Chicago, IL 60607-7137, United States
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, 1007W. Harrison St., Chicago, IL 60607-7137, United States.
| |
Collapse
|
36
|
Synaptic Inputs to the Mouse Dorsal Vagal Complex and Its Resident Preproglucagon Neurons. J Neurosci 2019; 39:9767-9781. [PMID: 31666353 PMCID: PMC6891065 DOI: 10.1523/jneurosci.2145-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
Stress responses are coordinated by widespread neural circuits. Homeostatic and psychogenic stressors activate preproglucagon (PPG) neurons in the caudal nucleus of the solitary tract (cNTS) that produce glucagon-like peptide-1; published work in rodents indicates that these neurons play a crucial role in stress responses. While the axonal targets of PPG neurons are well established, their afferent inputs are unknown. Stress responses are coordinated by widespread neural circuits. Homeostatic and psychogenic stressors activate preproglucagon (PPG) neurons in the caudal nucleus of the solitary tract (cNTS) that produce glucagon-like peptide-1; published work in rodents indicates that these neurons play a crucial role in stress responses. While the axonal targets of PPG neurons are well established, their afferent inputs are unknown. Here we use retrograde tracing with cholera toxin subunit b to show that the cNTS in male and female mice receives axonal inputs similar to those reported in rats. Monosynaptic and polysynaptic inputs specific to cNTS PPG neurons were revealed using Cre-conditional pseudorabies and rabies viruses. The most prominent sources of PPG monosynaptic input include the lateral (LH) and paraventricular (PVN) nuclei of the hypothalamus, parasubthalamic nucleus, lateral division of the central amygdala, and Barrington's nucleus (Bar). Additionally, PPG neurons receive monosynaptic vagal sensory input from the nodose ganglia and spinal sensory input from the dorsal horn. Sources of polysynaptic input to cNTS PPG neurons include the hippocampal formation, paraventricular thalamus, and prefrontal cortex. Finally, cNTS-projecting neurons within PVN, LH, and Bar express the activation marker cFOS in mice after restraint stress, identifying them as potential sources of neurogenic stress-induced recruitment of PPG neurons. In summary, cNTS PPG neurons in mice receive widespread monosynaptic and polysynaptic input from brain regions implicated in coordinating behavioral and physiological stress responses, as well as from vagal and spinal sensory neurons. Thus, PPG neurons are optimally positioned to integrate signals of homeostatic and psychogenic stress. SIGNIFICANCE STATEMENT Recent research has indicated a crucial role for glucagon-like peptide-1-producing preproglucagon (PPG) neurons in regulating both appetite and behavioral and autonomic responses to acute stress. Intriguingly, the central glucagon-like peptide-1 system defined in rodents is conserved in humans, highlighting the translational importance of understanding its anatomical organization. Findings reported here indicate that PPG neurons receive significant monosynaptic and polysynaptic input from brain regions implicated in autonomic and behavioral responses to stress, as well as direct input from vagal and spinal sensory neurons. Improved understanding of the neural pathways underlying the recruitment of PPG neurons may facilitate the development of novel therapies for the treatment of stress-related disorders.
Collapse
|
37
|
Wall KD, Olivos DR, Rinaman L. High Fat Diet Attenuates Cholecystokinin-Induced cFos Activation of Prolactin-Releasing Peptide-Expressing A2 Noradrenergic Neurons in the Caudal Nucleus of the Solitary Tract. Neuroscience 2019; 447:113-121. [PMID: 31518655 DOI: 10.1016/j.neuroscience.2019.08.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Cholecystokinin (CCK) released from the small intestine increases the activity of vagal afferents that relay satiety signals to the caudal nucleus of the solitary tract (cNTS). A caudal subset of A2 noradrenergic neurons within the cNTS that express prolactin-releasing peptide (PrRP) have been proposed to mediate CCK-induced satiety. However, the ability of exogenous CCK to activate cFos expression by PrRP neurons has only been reported in rats and mice after a very high dose (i.e., 50 μg/kg BW) that also activates the hypothalamic-pituitary-adrenal stress axis. The present study examined the ability of a much lower CCK dose (1.0 µg/kg BW, i.p) to activate PrRP-positive neurons in the rat cNTS. We further examined whether maintenance of rats on high fat diet (HFD; 45% kcal from fat) alters CCK-induced activation of PrRP neurons, since HFD blunts the ability of CCK to suppress food intake. Rats maintained on HFD for 7 weeks consumed more kcal and gained more BW compared to rats maintained on Purina chow (13.5% kcal from fat). CCK-treated rats displayed increased numbers of cFos-positive cNTS neurons compared to non-injected and saline-injected controls, with no effect of diet. In chow-fed rats, a significantly larger proportion of PrRP neurons were activated after CCK treatment compared to controls; conversely, CCK did not increase PrRP neuronal activation in HFD-fed rats. Collectively, these results indicate that a relatively low dose of exogenous CCK is sufficient to activate PrRP neurons in chow-fed rats, and that this effect is blunted in rats maintained for several weeks on HFD.
Collapse
Affiliation(s)
- Kaylee D Wall
- Florida State University, Department of Psychology and Program in Neuroscience, Tallahassee, FL, USA
| | - Diana R Olivos
- University of Pittsburgh, Department of Neuroscience, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Linda Rinaman
- Florida State University, Department of Psychology and Program in Neuroscience, Tallahassee, FL, USA.
| |
Collapse
|
38
|
Endogenous GLP-1 in lateral septum promotes satiety and suppresses motivation for food in mice. Physiol Behav 2019; 206:191-199. [PMID: 30980855 DOI: 10.1016/j.physbeh.2019.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023]
Abstract
Glucagon-like peptide 1 receptors (GLP-1R) are expressed in the lateral septum (LS) of rats and mice, and we have published that endogenous LS GLP-1 affects feeding and motivation for food in rats. Here we asked if these effects are also observed in mice. In separate dose-response studies using male C57Bl6J mice, intra-LS GLP-1 or the GLP-1R antagonist Exendin 9 (Ex9) was delivered shortly before dark onset, at doses subthreshold for effect when injected intracerebroventricularly (icv). Intra-LS GLP-1 significantly suppressed chow intake early in the dark phase and tended to reduce overnight intake. However, blockade of LS GLP-1R with Ex9 had no effect on ad libitum dark onset chow intake. We then asked if LS GLP-1R blockade blunts nutrient preload-induced intake suppression. Mice were trained to consume Ensure immediately before dark onset, which suppressed subsequent chow intake, and intra-LS Ex9 attenuated that preload-induced intake suppression. We also found that restraint stress robustly activates hindbrain GLP-1-producing neurons, and that LS GLP-1R blockade attenuates 30-min restraint stress-induced hypophagia in mice. Furthermore, we have reported that in the rat, GLP-1R in the dorsal subregion of the LS (dLS) affect motivation for food. We examined this in food-restricted mice responding for sucrose pellets on a progressive ratio (PR) schedule. Intra-dLS GLP-1R stimulation significantly suppressed, and Ex9 significantly increased, operant responding, and the Ex9 effect remained after mice returned to ad libitum conditions. Similarly, we found that stimulation of dLS GLP-1 suppressed licking for sucrose and conversely, Ex9 increased licking under ad libitum feeding conditions. Together, our data suggest that endogenous activation of LS GLP-1R plays a role in feeding in mice under some but not all conditions, and that these receptors strongly influence motivation for food.
Collapse
|
39
|
Zheng H, Reiner DJ, Hayes MR, Rinaman L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci 2019; 39:2649-2663. [PMID: 30683681 PMCID: PMC6445994 DOI: 10.1523/jneurosci.2180-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/26/2023] Open
Abstract
The anterior lateral bed nucleus of the stria terminalis (alBST) expresses glucagon-like peptide-1 receptors (GLP1Rs) and receives input from caudal brainstem GLP1 neurons. GLP1 administered centrally reduces food intake and increases anxiety-like behavior and plasma corticosterone (cort) levels in rats, whereas central GLP1R antagonism has opposite effects. Anxiogenic threats and other stressors robustly activate c-fos expression in both GLP1-producing neurons and also in neurons within alBST subregions expressing GLP1R. To examine the functional role of GLP1R signaling within the alBST, adult male Sprague Dawley rats received bilateral alBST-targeted injections of an adeno-associated virus (AAV) vector expressing short hairpin RNA (shRNA) to knock down the translation of GLP1R mRNA (GLP1R-KD rats), or similar injections of a control AAV (CTRL rats). In situ hybridization revealed that GLP1R mRNA is expressed in a subset of GABAergic alBST neurons, and quantitative real-time PCR confirmed that GLP1R-KD rats displayed a significant 60% reduction in translatable GLP1R mRNA. Compared with CTRL rats, GLP1R-KD rats gained more body weight over time and displayed less anxiety-like behavior, including a loss of light-enhanced acoustic startle and less stress-induced hypophagia. Conversely, while baseline plasma cort levels were similar in GLP1R-KD and CTRL rats, GLP1R-KD rats displayed a prolonged stress-induced elevation of plasma cort levels. GLP1R-KD and CTRL rats displayed similar home cage food intake and a similar hypophagic response to systemic Exendin-4, a GLP1R agonist that crosses the blood-brain barrier. We conclude that GLP1R expressed within the alBST contributes to multiple behavioral responses to anxiogenic threats, yet also serves to limit the plasma cort response to acute stress.SIGNIFICANCE STATEMENT Anxiety is an affective and physiological state that supports threat avoidance. Identifying the neural bases of anxiety-like behaviors in animal models is essential for understanding mechanisms that contribute to normative and pathological anxiety in humans. In rats, anxiety/avoidance behaviors can be elicited or enhanced by visceral or cognitive threats that increase glucagon-like peptide-1 (GLP1) signaling from the caudal brainstem to the hypothalamus and limbic forebrain. Data reported here support a role for limbic GLP1 receptor signaling to enhance anxiety-like behavior and to attenuate stress-induced elevations in plasma cort levels in rats. Improved understanding of central GLP1 neural pathways that impact emotional responses to stress could expand potential therapeutic options for anxiety and other stress-related disorders in humans.
Collapse
MESH Headings
- Animals
- Anxiety/metabolism
- Anxiety/prevention & control
- Anxiety/psychology
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Biomarkers/blood
- Corticosterone/blood
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Male
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Septal Nuclei/metabolism
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| | - David J Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| |
Collapse
|
40
|
Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, Grycel K, Shevchouk OT, Micallef P, Olofsson CS, Wernstedt Asterholm I, Grill HJ, Nogueiras R, Skibicka KP. Parabrachial Interleukin-6 Reduces Body Weight and Food Intake and Increases Thermogenesis to Regulate Energy Metabolism. Cell Rep 2019; 26:3011-3026.e5. [PMID: 30865890 PMCID: PMC6418345 DOI: 10.1016/j.celrep.2019.02.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/15/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic low-grade inflammation and increased serum levels of the cytokine IL-6 accompany obesity. For brain-produced IL-6, the mechanisms by which it controls energy balance and its role in obesity remain unclear. Here, we show that brain-produced IL-6 is decreased in obese mice and rats in a neuroanatomically and sex-specific manner. Reduced IL-6 mRNA localized to lateral parabrachial nucleus (lPBN) astrocytes, microglia, and neurons, including paraventricular hypothalamus-innervating lPBN neurons. IL-6 microinjection into lPBN reduced food intake and increased brown adipose tissue (BAT) thermogenesis in male lean and obese rats by increasing thyroid and sympathetic outflow to BAT. Parabrachial IL-6 interacted with leptin to reduce feeding. siRNA-mediated reduction of lPBN IL-6 leads to increased weight gain and adiposity, reduced BAT thermogenesis, and increased food intake. Ambient cold exposure partly normalizes the obesity-induced suppression of lPBN IL-6. These results indicate that lPBN-produced IL-6 regulates feeding and metabolism and pinpoints (patho)physiological contexts interacting with lPBN IL-6.
Collapse
Affiliation(s)
- Devesh Mishra
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ivana Maric
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Begona Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Saliha Musovic
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kim Eerola
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorena López-Ferreras
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Eduard Peris
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Katarzyna Grycel
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Peter Micallef
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Harvey J Grill
- Lynch Laboratory, Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Karolina P Skibicka
- Department of Physiology and Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
41
|
Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. Physiol Behav 2019; 204:355-363. [PMID: 30831183 DOI: 10.1016/j.physbeh.2019.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Despite generally being a reinforcing drug of abuse, amphetamine (amph) also produces effects such as hypophagia and conditioned taste avoidance (CTA), which may indicate that amph acts as an aversive homeostatic stressor. Stress-responsive prolactin-releasing peptide (PrRP)-positive noradrenergic and glucagon-like peptide-1 (GLP-1)-positive neurons in the caudal nucleus of the solitary tract (cNTS) are modulated by metabolic state, and are prime candidates for mediating amph-induced hypophagia and CTA. The present study used dual immunolabeling and fluorescent in situ hybridization (RNAscope) to examine acute amph-induced activation of cFos expression in phenotypically-identified cNTS neurons in ad lib-fed vs. overnight-fasted male Sprague Dawley rats. We also examined the impact of food deprivation on amph-induced CTA. Compared to control saline treatment, amph activated significantly more cNTS neurons, including PrRP-negative noradrenergic (NA) neurons, GABAergic neurons, and glutamatergic neurons, but not PrRP or GLP-1 neurons. Amph also increased neural activation within a subset of central cNTS projection targets, including the lateral parabrachial nucleus and central amygdala, but not the paraventricular hypothalamus. Food deprivation did not alter amph-induced neural activation or impact the ability of amph to support CTA. These findings indicate that PrRP-negative NA and other cNTS neurons are recruited by acute amph treatment regardless of metabolic state, and may participate in amph-induced hypophagia and CTA.
Collapse
|
42
|
Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2019; 33:151-167. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to regulating the ingestion and digestion of food, sensory feedback from gut to brain modifies emotional state and motivated behavior by subconsciously shaping cognitive and affective responses to events that bias behavioral choice. This focused review highlights evidence that gut-derived signals impact motivated behavior by engaging vagal afferents and central neural circuits that generally serve to limit or terminate goal-directed approach behaviors, and to initiate or maintain behavioral avoidance.
Collapse
Affiliation(s)
- J W Maniscalco
- Department of Psychology, University of Illinois at Chicago, Chicago, Illionois
| | - L Rinaman
- Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
43
|
Holt MK, Richards JE, Cook DR, Brierley DI, Williams DL, Reimann F, Gribble FM, Trapp S. Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes 2019; 68:21-33. [PMID: 30279161 PMCID: PMC6314470 DOI: 10.2337/db18-0729] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/21/2018] [Indexed: 01/13/2023]
Abstract
Centrally administered glucagon-like peptide 1 (GLP-1) supresses food intake. Here we demonstrate that GLP-1-producing (PPG) neurons in the nucleus tractus solitarii (NTS) are the predominant source of endogenous GLP-1 within the brain. Selective ablation of NTS PPG neurons by viral expression of diphtheria toxin subunit A substantially reduced active GLP-1 concentrations in brain and spinal cord. Contrary to expectations, this loss of central GLP-1 had no significant effect on the ad libitum feeding of mice, affecting neither daily chow intake nor body weight or glucose tolerance. Only after bigger challenges to homeostasis were PPG neurons necessary for food intake control. PPG-ablated mice increased food intake after a prolonged fast and after a liquid diet preload. Consistent with our ablation data, acute inhibition of hM4Di-expressing PPG neurons did not affect ad libitum feeding; however, it increased refeeding intake after fast and blocked stress-induced hypophagia. Additionally, chemogenetic PPG neuron activation through hM3Dq caused a strong acute anorectic effect. We conclude that PPG neurons are not involved in primary intake regulation but form part of a secondary satiation/satiety circuit, which is activated by both psychogenic stress and large meals. Given their hypophagic capacity, PPG neurons might be an attractive drug target in obesity treatment.
Collapse
Affiliation(s)
- Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, U.K
| | - James E Richards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, U.K
| | - Daniel R Cook
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, U.K
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, U.K
| | - Diana L Williams
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Frank Reimann
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K
| | - Fiona M Gribble
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, U.K.
| |
Collapse
|
44
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
45
|
Card JP, Johnson AL, Llewellyn‐Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol 2018; 526:2149-2164. [PMID: 30019398 PMCID: PMC6193818 DOI: 10.1002/cne.24482] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
Abstract
Glutamatergic neurons that express pre-proglucagon (PPG) and are immunopositive (+) for glucagon-like peptide-1 (i.e., GLP-1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP-1 neurons give rise to an extensive central network in which GLP-1 receptor (GLP-1R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via GLP-1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP-1R, whereas PPG neurons do not. In this study, confocal microscopy in rats confirmed that prolactin-releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP-1+ axonal varicosities. Surprisingly, GLP-1+ appositions were also observed on dendrites of PPG/GLP-1+ neurons in both species, and electron microscopy in rats revealed that GLP-1+ boutons form asymmetric synaptic contacts with GLP-1+ dendrites. However, RNAscope confirmed that rat GLP-1 neurons do not express GLP-1R mRNA. Similarly, Ca2+ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP-1, and a mouse crossbreeding strategy revealed that <1% of PPG neurons co-express GLP-1R. Collectively, these data suggest that GLP-1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local "feed-forward" synaptic network among GLP-1 neurons that apparently does not use GLP-1R signaling. This local GLP-1 network may instead use glutamatergic signaling to facilitate dynamic and potentially selective recruitment of GLP-1 neural populations that shape behavioral and physiological responses to internal and external challenges.
Collapse
Affiliation(s)
- J. Patrick Card
- Department of NeuroscienceUniversity of PittsburghPittsburghPennsylvania
| | - Aaron L. Johnson
- Department of NeuroscienceUniversity of PittsburghPittsburghPennsylvania
- Systems Neuroscience CenterUniversity of PittsburghPittsburghPennsylvania
| | - Ida J. Llewellyn‐Smith
- Cardiovascular Medicine, Human Physiology and Centre for NeuroscienceCollege of Medicine and Public Health, Flinders UniversityBedford ParkSouth AustraliaAustralia
| | - Huiyuan Zheng
- Department of PsychologyFlorida State UniversityTallahasseeFlorida
| | - Rishi Anand
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Daniel I. Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Linda Rinaman
- Department of PsychologyFlorida State UniversityTallahasseeFlorida
| |
Collapse
|
46
|
Terrill SJ, Maske CB, Williams DL. Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia. Physiol Behav 2018; 192:17-22. [PMID: 29510158 PMCID: PMC6019151 DOI: 10.1016/j.physbeh.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 01/25/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Calyn B Maske
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Diana L Williams
- Department of Psychology & Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
47
|
Davis XS, Grill H. The hindbrain is a site of energy balance action for prolactin-releasing peptide: feeding and thermic effects from GPR10 stimulation of the nucleus tractus solitarius/area postrema. Psychopharmacology (Berl) 2018; 235:2287-2301. [PMID: 29796829 PMCID: PMC8019516 DOI: 10.1007/s00213-018-4925-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE Prolactin-releasing peptide (PrRP) is a neuropeptide that suppresses food intake and increases body temperature when delivered to the forebrain ventricularly or parenchymally. However, PrRP's receptor GPR10 is widely distributed throughout the brain with particularly high levels found in the dorsomedial hindbrain. Thus, we hypothesized that hindbrain-directed PrRP administration would affect energy balance and motivated feeding behavior. METHODS To address this hypothesis, a range of behavioral and physiologic variables were measured in Sprague-Dawley rats that received PrRP delivered to the fourth ventricle (4V) or the nucleus of the solitary tract (NTS) at the level of the area postrema (AP). RESULTS 4V PrRP delivery decreased chow intake and body weight, in part, through decreasing meal size in ad libitum maintained rats tested at dark onset. PrRP inhibited feeding when delivered to the nucleus tractus solitarius (NTS), but not to more ventral hindbrain structures. In addition, 4V as well as direct NTS administration of PrRP increased core temperature. By contrast, 4V PrRP did not reduce ad libitum intake of highly palatable food or the motivation to work for or seek palatable foods. CONCLUSIONS The dorsomedial hindbrain and NTS/AP, in particular, are sites of action in PrRP/GPR10-mediated control of chow intake, core temperature, and body weight.
Collapse
Affiliation(s)
- X. S. Davis
- Department of Psychology, University of Pennsylvania, 433 S. University Avenue, Rm. 327, Philadelphia, PA 19104, USA
| | - H.J. Grill
- Department of Psychology, University of Pennsylvania, 433 S. University Avenue, Rm. 327, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry 2018; 23:1555-1565. [PMID: 28461695 PMCID: PMC5668211 DOI: 10.1038/mp.2017.91] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.
Collapse
|
49
|
Williams DL, Lilly NA, Edwards IJ, Yao P, Richards JE, Trapp S. GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology 2018; 131:83-95. [PMID: 29221794 PMCID: PMC5840513 DOI: 10.1016/j.neuropharm.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) injected into the brain reduces food intake. Similarly, activation of preproglucagon (PPG) cells in the hindbrain which synthesize GLP-1, reduces food intake. However, it is far from clear whether this happens because of satiety, nausea, reduced reward, or even stress. Here we explore the role of the bed nucleus of the stria terminalis (BNST), an area involved in feeding control as well as stress responses, in GLP-1 responses. Using cre-expressing mice we visualized projections of NTS PPG neurons and GLP-1R-expressing BNST cells with AAV-driven Channelrhodopsin-YFP expression. The BNST displayed many varicose YFP+ PPG axons in the ventral and less in the dorsal regions. Mice which express RFP in GLP-1R neurons had RFP+ cells throughout the BNST with the highest density in the dorsal part, suggesting that PPG neuron-derived GLP-1 acts in the BNST. Indeed, injection of GLP-1 into the BNST reduced chow intake during the dark phase, whereas injection of the GLP-1 receptor antagonist Ex9 increased feeding. BNST-specific GLP-1-induced food suppression was less effective in mice on high fat (HF, 60%) diet, and Ex9 had no effect. Restraint stress-induced hypophagia was attenuated by BNST Ex9 treatment, further supporting a role for endogenous brain GLP-1. Finally, whole-cell patch clamp recordings of RFP+ BNST neurons demonstrated that GLP-1 elicited either a depolarizing or hyperpolarizing reversible response that was of opposite polarity to that under dopamine. Our data support a physiological role for BNST GLP-1R in feeding, and suggest complex cellular responses to GLP-1 in this nucleus.
Collapse
Affiliation(s)
- Diana L Williams
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Nicole A Lilly
- Psychology Department & Program in Neuroscience, Florida State University, USA
| | - Ian J Edwards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Pallas Yao
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - James E Richards
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
50
|
Wang W, Zou Z, Tan X, Zhang RW, Ren CZ, Yao XY, Li CB, Wang WZ, Shi XY. Enhancement in Tonically Active Glutamatergic Inputs to the Rostral Ventrolateral Medulla Contributes to Neuropathic Pain-Induced High Blood Pressure. Neural Plast 2017; 2017:4174010. [PMID: 29158920 PMCID: PMC5660794 DOI: 10.1155/2017/4174010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain increases the risk of cardiovascular diseases including hypertension with the characteristic of sympathetic overactivity. The enhanced tonically active glutamatergic input to the rostral ventrolateral medulla (RVLM) contributes to sympathetic overactivity and blood pressure (BP) in cardiovascular diseases. We hypothesize that neuropathic pain enhances tonically active glutamatergic inputs to the RVLM, which contributes to high level of BP and sympathetic outflow. Animal model with the trigeminal neuropathic pain was induced by the infraorbital nerve-chronic constriction injury (ION-CCI). A significant increase in BP and renal sympathetic nerve activity (RSNA) was found in rats with ION-CCI (BP, n = 5, RSNA, n = 7, p < 0.05). The concentration of glutamate in the RVLM was significantly increased in the ION-CCI group (n = 4, p < 0.05). Blockade of glutamate receptors by injection of kynurenic acid into the RVLM significantly decreased BP and RSNA in the ION-CCI group (n = 5, p < 0.05). In two major sources (the paraventricular nucleus and periaqueductal gray) for glutamatergic inputs to the RVLM, the ION-CCI group (n = 5, p < 0.05) showed an increase in glutamate content and expression of glutaminase 2, vesicular glutamate transporter 2 proteins, and c-fos. Our results suggest that enhancement in tonically active glutamatergic inputs to the RVLM contributes to neuropathic pain-induced high blood pressure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and SICU, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xing Tan
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Ru-Wen Zhang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Chang-Zhen Ren
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xue-Ya Yao
- Hebei North University, Zhangjiakou, Hebei Province 075000, China
| | - Cheng-Bao Li
- Hebei North University, Zhangjiakou, Hebei Province 075000, China
| | - Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xue-Yin Shi
- Department of Anesthesiology and SICU, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| |
Collapse
|