1
|
Kirshenbaum GS, Chang CY, Bompolaki M, Bradford VR, Bell J, Kosmidis S, Shansky RM, Orlandi J, Savage LM, Harris AZ, David Leonardo E, Dranovsky A. Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging. Mol Psychiatry 2023; 28:5337-5349. [PMID: 37479778 DOI: 10.1038/s41380-023-02167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023]
Abstract
Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span. Long-term suppression of neurogenesis as occurs during stress and aging resulted in an accelerated decline in hippocampal acetylcholine signaling and a slow and progressing emergence of profound working memory deficits. These deficits were accompanied by compensatory reorganization of cholinergic dentate gyrus inputs with increased cholinergic innervation to the ventral hippocampus and recruitment of ventrally projecting neurons by the dorsal projection. While increased cholinergic innervation was dysfunctional and corresponded to overall decreases in cholinergic levels and signaling, it could be recruited to correct the resulting memory dysfunction even in old animals. Our study demonstrates that hippocampal neurogenesis supports memory by maintaining the septohippocampal cholinergic circuit across the lifespan. It also provides a systems level explanation for the progressive nature of memory deterioration during normal and pathological aging and indicates that the brain connectome is malleable by experience.
Collapse
Affiliation(s)
- Greer S Kirshenbaum
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Chia-Yuan Chang
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Maria Bompolaki
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Victoria R Bradford
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph Bell
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Rebecca M Shansky
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | | | - Lisa M Savage
- Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Alex Dranovsky
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Dranovsky A, Kirshenbaum G, Chang CY, Bompolaki M, Bradford V, Bell J, Kosmidis S, Shansky R, Orlandi J, Savage L, Leonardo E, Harris A. Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging. RESEARCH SQUARE 2023:rs.3.rs-1851645. [PMID: 36778445 PMCID: PMC9915786 DOI: 10.21203/rs.3.rs-1851645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span. Long-term suppression of neurogenesis as occurs during stress and aging resulted in an accelerated decline in hippocampal acetylcholine signaling and a slow and progressing emergence of profound working memory deficits. These deficits were accompanied by compensatory reorganization of cholinergic dentate gyrus inputs with increased cholinergic innervation to the ventral hippocampus and recruitment of ventrally projecting neurons by the dorsal projection. While increased cholinergic innervation was dysfunctional and corresponded to overall decreases in cholinergic levels and signaling, it could be recruited to correct the resulting memory dysfunction even in old animals. Our study demonstrates that hippocampal neurogenesis supports memory by maintaining the septohippocampal cholinergic circuit across the lifespan. It also provides a systems level explanation for the progressive nature of memory deterioration during normal and pathological aging and indicates that the brain connectome is malleable by experience.
Collapse
Affiliation(s)
- Alex Dranovsky
- Columbia University, New York State Psychiatric Institute
| | | | | | | | | | - Joseph Bell
- Columbia University, New York State Psychiatric Institute
| | | | | | - Javier Orlandi
- Columbia University, New York State Psychiatric Institute
| | | | | | | |
Collapse
|
3
|
Abstract
Microglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.
Collapse
|
4
|
Kusayama T, Wan J, Yuan Y, Chen PS. Neural Mechanisms and Therapeutic Opportunities for Atrial Fibrillation. Methodist Debakey Cardiovasc J 2021; 17:43-47. [PMID: 34104319 DOI: 10.14797/fvdn2224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk of all-cause mortality and complications. The autonomic nervous system (ANS) plays a central role in AF, with the heart regulated by both extrinsic and intrinsic properties. In the extrinsic ANS, the sympathetic fibers are derived from the major paravertebral ganglia, especially the stellate ganglion (SG), which is a source of cardiac sympathetic innervation since it connects with multiple intrathoracic nerves and structures. The major intrinsic ANS is a network of axons and ganglionated plexi that contains a variety of sympathetic and parasympathetic neurons, which communicate with the extrinsic ANS. Simultaneous sympathovagal activation contributes to the development of AF because it increases calcium entry and shortens the atrial action potential duration. In animal and human studies, neuromodulation methods such as electrical stimulation and renal denervation have indicated potential benefits in controlling AF in patients as they cause SG remodeling and reduce sympathetic outflow. This review focuses on the neural mechanisms relevant to AF and the recent developments of neuromodulation methods for AF control.
Collapse
Affiliation(s)
- Takashi Kusayama
- Indiana University School of Medicine, Indianapolis, Indiana.,Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Juyi Wan
- Indiana University School of Medicine, Indianapolis, Indiana.,The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuan Yuan
- Indiana University School of Medicine, Indianapolis, Indiana.,Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Sheng Chen
- Indiana University School of Medicine, Indianapolis, Indiana.,Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
5
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
6
|
Hattori Y, Naito Y, Tsugawa Y, Nonaka S, Wake H, Nagasawa T, Kawaguchi A, Miyata T. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat Commun 2020; 11:1631. [PMID: 32242005 PMCID: PMC7118101 DOI: 10.1038/s41467-020-15409-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the developing cortex, postmigratory neurons accumulate in the cortical plate (CP) to properly differentiate consolidating subtype identities. Microglia, despite their extensive surveying activity, temporarily disappear from the midembryonic CP. However, the mechanism and significance of this absence are unknown. Here, we show that microglia bidirectionally migrate via attraction by CXCL12 released from the meninges and subventricular zone and thereby exit the midembryonic CP. Upon nonphysiological excessive exposure to microglia in vivo or in vitro, young postmigratory and in vitro-grown CP neurons showed abnormal differentiation with disturbed expression of the subtype-associated transcription factors and genes implicated in functional neuronal maturation. Notably, this effect is primarily attributed to interleukin 6 and type I interferon secreted by microglia. These results suggest that “sanctuarization” from microglia in the midembryonic CP is required for neurons to appropriately fine-tune the expression of molecules needed for proper differentiation, thus securing the establishment of functional cortical circuit. Microglia temporarily disappear from the cortical plate in the midembryonic stage. This study demonstrated that microglial transient absence from the cortical plate is required for postmigratory neurons to appropriately fine-tune the expression of molecules needed for their proper differentiation.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan. .,Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yu Naito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yoji Tsugawa
- Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Japan.,Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Drug Discovery Research, iBody Inc., Nagoya, Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems, Okazaki, Japan.,Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroaki Wake
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Okazaki, Japan.,Division of System Neuroscience, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
7
|
Bellizzi AM. SATB2 in neuroendocrine neoplasms: strong expression is restricted to well-differentiated tumours of lower gastrointestinal tract origin and is most frequent in Merkel cell carcinoma among poorly differentiated carcinomas. Histopathology 2019; 76:251-264. [PMID: 31233624 DOI: 10.1111/his.13943] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
AIMS Special AT-rich sequence-binding protein 2 (SATB2) is a transcriptional regulator with critical roles in brain, craniofacial and skeletal development. It has emerged as a key marker of lower gastrointestinal (GI) tract columnar epithelial and osteoblastic differentiation. Transcription factor immunohistochemistry is useful in assigning site of origin in well-differentiated neuroendocrine tumours (NETs), and has had a limited role in poorly differentiated neuroendocrine carcinomas (NECs). This study sought to evaluate the role of SATB2 in assigning site of origin in neuroendocrine epithelial neoplasms. METHODS AND RESULTS Tissue microarrays were constructed from the following: 317 NETs (37 thyroid, 46 lung, 16 stomach, 12 duodenum, 70 pancreas, 106 jejunoileum, 24 appendix, and six rectosigmoid), 44 phaeochromocytomas/paragangliomas, and 79 NECs (29 Merkel cell, 30 lung, and 20 extrapulmonary visceral); nine appendiceal and 19 rectal NETs were examined in whole sections. SATB2 immunohistochemistry was scored for extent (%) and intensity (0-3+), with an H-score being calculated. SATB2 was expressed by 96% of rectosigmoid NETs, 79% of appendiceal NETs, and only 7% of other well-differentiated neoplasms (P < 0.0001). Expression in lower GI tract NETs (median H-score of 255) was stronger than in other positive tumours (median H-score of 7) (P < 0.0001). Any SATB2 expression was 86% sensitive/93% specific for lower GI tract origin. SATB2 was expressed by 79% of Merkel cell carcinomas (median H-score of 300), 33% of lung NECs (median H-score of 23), and 60% of extrapulmonary visceral NECs (median H-score of 110), with stronger expression in Merkel cell carcinoma (P < 0.001). At an H-score cutoff of ≥150, SATB2 was 69% sensitive/90% specific for Merkel cell carcinoma. CONCLUSIONS SATB2 is frequently and strongly expressed by lower GI tract NETs; we have adopted it as our rectal NET marker. Relatively frequent and strong expression in Merkel cell carcinoma may have value in assigning NEC site of origin.
Collapse
Affiliation(s)
- Andrew M Bellizzi
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, IA, USA.,University of Iowa Neuroendocrine Cancer Program, University of Iowa Hospitals and Clinics and Holden Comprehensive Cancer Center, Iowa City, IA, USA
| |
Collapse
|
8
|
Ozair MZ, Kirst C, van den Berg BL, Ruzo A, Rito T, Brivanlou AH. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell 2018; 23:60-73.e6. [PMID: 29937203 DOI: 10.1016/j.stem.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.
Collapse
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology and Kavli Neural Systems Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bastiaan L van den Berg
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098XH Amsterdam, the Netherlands
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tiago Rito
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Abstract
Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place. Neurotransmitter switching produces up or down reversals of behavior. It is also observed in response to disease. These findings raise the possibility that neurotransmitter switching contributes to depression, schizophrenia, and other illnesses. Many early discoveries of the single gain or loss of a neurotransmitter may have been harbingers of neurotransmitter switching.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0357;
| |
Collapse
|
10
|
Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130. J Neurosci 2016; 36:479-88. [PMID: 26758839 DOI: 10.1523/jneurosci.3556-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
Collapse
|
11
|
Borodinsky LN, Belgacem YH. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification. J Chem Neuroanat 2015; 73:3-8. [PMID: 26686293 DOI: 10.1016/j.jchemneu.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States.
| | - Yesser H Belgacem
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children, University of California Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
12
|
Schütz B, Schäfer MKH, Gördes M, Eiden LE, Weihe E. Satb2-independent acquisition of the cholinergic sudomotor phenotype in rodents. Cell Mol Neurobiol 2014; 35:205-16. [PMID: 25239161 DOI: 10.1007/s10571-014-0113-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
Expression of Satb2 (Special AT-rich sequence-binding protein-2) elicits expression of the vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) in cultured rat sympathetic neurons exposed to soluble differentiation factors. Here, we determined whether or not Satb2 plays a similar role in cholinergic differentiation in vivo, by comparing the postnatal profile of Satb2 expression in the rodent stellate ganglion to that of VAChT and ChAT. Throughout postnatal development, VAChT and ChAT were found to be co-expressed in a numerically stable subpopulation of rat stellate ganglion neurons. Nerve fibers innervating rat forepaw sweat glands on P1 were VAChT immunoreactive, while ChAT was detectable at this target only after P5. The postnatal abundance of VAChT transcripts in the stellate ganglion was at maximum already on P1, whereas ChAT mRNA levels increased from low levels on P1 to reach maximum levels between P5 and P21. Satb2 mRNA was detected in cholinergic neurons in the stellate ganglion beginning with P8, thus coincident with the onset of unequivocal detection of ChAT immunoreactivity in forepaw sweat gland endings. Satb2 knockout mice exhibited no change in the P1 cholinergic VAChT/ChAT co-phenotype in stellate ganglion neurons. Thus, cholinergic phenotype maturation involves first, early target (sweat-gland)-independent expression and trafficking of VAChT, and later, potentially target- and Satb2-dependent elevation of ChAT mRNA and protein transport into sweat gland endings. In rat sudomotor neurons that, unlike mouse sudomotor neurons, co-express calcitonin gene-related peptide (CGRP), Satb2 may also be related to the establishment of species-specific neuropeptide co-phenotypes during postnatal development.
Collapse
Affiliation(s)
- Burkhard Schütz
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Straße 8, 35037, Marburg, Germany,
| | | | | | | | | |
Collapse
|
13
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
14
|
Zhao X, Qu Z, Tickner J, Xu J, Dai K, Zhang X. The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev 2013; 25:35-44. [PMID: 24411565 DOI: 10.1016/j.cytogfr.2013.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/15/2013] [Indexed: 02/06/2023]
Abstract
Since the discovery of SATB2 (special AT-rich sequence binding protein 2) a decade ago, its pivotal roles in development and tissue regeneration have emerged, particularly in craniofacial patterning and development, palate formation, and osteoblast differentiation and maturation. As a member of the special AT-rich binding proteins family that bind to nuclear matrix-attachment regions (MAR), it also displays functional versatility in central nervous development, especially corpus callosum and pons formation, cancer development and prognosis, as well as in immune regulation. At the molecular level, Satb2 gene expression appears to be tissue and stage-specific, and is regulated by several cytokines and growth factors, such as BMP2/4/7, insulin, CNTF, and LIF via ligand receptor signaling pathways. SATB2 mainly performs a twofold role as a transcription regulator by directly binding to AT-rich sequences in MARs to modulate chromatin remodeling, or through association with other transcription factors to modulate the cis-regulation elements and thus to regulate the expression of down-stream target genes and a wide range of biological processes. This contemporary review provides an exploration of the molecular characteristics and function of SATB2; including its expression and cytokine regulation, its involvement in human disease, and its potential roles in skeletogenesis.
Collapse
Affiliation(s)
- Xiaoying Zhao
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 200031, China
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia (M504), 35 Stirling Highway, Crawley WA 6009, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia (M504), 35 Stirling Highway, Crawley WA 6009, Australia.
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China; Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China; Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
15
|
Tlx3 controls cholinergic transmitter and Peptide phenotypes in a subset of prenatal sympathetic neurons. J Neurosci 2013; 33:10667-75. [PMID: 23804090 DOI: 10.1523/jneurosci.0192-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The embryonic sympathetic nervous system consists of predominantly noradrenergic neurons and a very small population of cholinergic neurons. Postnatal development further allows target-dependent switch of a subset of noradrenergic neurons into cholinergic phenotype. How embryonic cholinergic neurons are specified at the prenatal stages remains largely unknown. In this study, we found that the expression of transcription factor Tlx3 was progressively restricted to a small population of embryonic sympathetic neurons in mice. Immunostaining for vesicular acetylcholine transporter (VAChT) showed that Tlx3 was highly expressed in cholinergic neurons at the late embryonic stage E18.5. Deletion of Tlx3 resulted in the loss of Vacht expression at E18.5 but not E12.5. By contrast, Tlx3 was required for expression of the cholinergic peptide vasoactive intestinal polypeptide (VIP), and somatostatin (SOM) at both E12.5 and E18.5. Furthermore, we found that, at E18.5 these putative cholinergic neurons expressed glial cell line-derived neurotrophic factor family coreceptor Ret but not tyrosine hydroxylase (Ret(+)/TH(-)). Deletion of Tlx3 also resulted in disappearance of high-level Ret expression. Last, unlike Tlx3, Ret was required for the expression of VIP and SOM at E18.5 but not E12.5. Together, these results indicate that transcription factor Tlx3 is required for the acquisition of cholinergic phenotype at the late embryonic stage as well as the expression and maintenance of cholinergic peptides VIP and SOM throughout prenatal development of mouse sympathetic neurons.
Collapse
|
16
|
Leoyklang P, Suphapeetiporn K, Srichomthong C, Tongkobpetch S, Fietze S, Dorward H, Cullinane AR, Gahl WA, Huizing M, Shotelersuk V. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene. Hum Genet 2013; 132:1383-93. [PMID: 23925499 DOI: 10.1007/s00439-013-1345-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient's leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knockout mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 activates UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction.
Collapse
Affiliation(s)
- Petcharat Leoyklang
- Biomedical Science Program, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schafer MKH, Weihe E, Eiden LE. Localization and expression of VMAT2 aross mammalian species: a translational guide for its visualization and targeting in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:319-34. [PMID: 24054151 DOI: 10.1016/b978-0-12-411512-5.00015-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
VMAT2 is the vesicular monoamine transporter that allows DA, NE, Epi, His, and 5-HT uptake into neurons and endocrine cells. A second isoform, VMAT1, has similar structure and function, but does not recognize histamine as a substrate. VMAT1 is absent from neurons, and its major function appears to be in endocrine cells, that is, enterochromaffin cells, which scavenge 5-HT, but not histamine, from dietary sources. This chapter provides an update on the neuroanatomical distribution of VMAT2 across various mammalian species, including human, primate, pig, rat, and mouse. When necessary, VMAT1 expression is provided as a contrast. The main purpose of this chapter is to allow clinicians, in particular endocrinologists and diagnosing neuroradiologists and neuropathologists, an acquaintanceship with the possibilities for VMAT2 as a target for in vivo imaging, and drug development, based on this updated information.
Collapse
Affiliation(s)
- Martin K-H Schafer
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, Marburg, Germany
| | | | | |
Collapse
|
18
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
19
|
Abstract
The heart is electrically and mechanically controlled as a syncytium by the autonomic nervous system. The cardiac nervous system comprises the sympathetic, parasympathetic, and sensory nervous systems that together regulate heart function on demand. Sympathetic electric activation was initially considered the main regulator of cardiac function; however, modern molecular biotechnological approaches have provided a new dimension to our understanding of the mechanisms controlling the cardiac nervous system. The heart is extensively innervated, although the innervation density is not uniform within the heart, being high in the subepicardium and the special conduction system. We and others showed previously that the balance between neural chemoattractants and chemorepellents determine cardiac nervous development, with both factors expressed in heart. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this well-organized molecular balance and innervation density can induce sudden cardiac death due to lethal arrhythmias. In diseased hearts, various causes and mechanisms underlie cardiac sympathetic abnormalities, although their detailed pathology and significance remain contentious. We reported that cardiac sympathetic rejuvenation occurs in cardiac hypertrophy and, moreover, interleukin-6 cytokines secreted from the failing myocardium induce cholinergic transdifferentiation of the cardiac sympathetic system via a gp130 signaling pathway, affecting cardiac performance and prognosis. In this review, we summarize the molecular mechanisms involved in sympathetic development, maturation, and transdifferentiation, and propose their investigation as new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Kensuke Kimura
- Division of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
20
|
p38α and p38β mitogen-activated protein kinases determine cholinergic transdifferentiation of sympathetic neurons. J Neurosci 2011; 31:12059-67. [PMID: 21865449 DOI: 10.1523/jneurosci.0448-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the p38 mitogen-activated protein kinases are active in many neuronal populations in the peripheral and central nervous systems, little is known about the physiological functions of p38 in postmitotic neurons. We report that p38 activity determines in vitro and in vivo the switch from noradrenergic to cholinergic neurotransmission that occurs in sympathetic neurons on exposure to the neuropoietic cytokines CNTF and LIF. This transdifferentiation serves as a model for the plastic mechanisms that enable mature neurons to change some of their central functions without passing through the cell cycle. We demonstrate that in postmitotic neurons, p38 and STAT pathways are concurrently activated by neuropoietic cytokine treatment for at least 12 h overlapping with changes in neurotransmitter marker gene expression. Inhibition of p38 blocks the upregulation of the nuclear matrix protein Satb2 and of cholinergic markers by CNTF without affecting STAT3 phosphorylation. Conversely, overexpression of p38α or β in the absence of cytokines stimulates cholinergic marker expression. The neurotransmitter switch in vitro is impaired in neurons isolated from p38β(-/-) mice. Consistent with these in vitro results, a substantial loss of cells expressing cholinergic properties is observed in vivo in the stellate ganglion of mature mice deficient in the p38β isoform.
Collapse
|
21
|
Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nat Neurosci 2011; 14:965-72. [PMID: 21743471 PMCID: PMC3144989 DOI: 10.1038/nn.2859] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
Abstract
Most regions of the central nervous system contain numerous subtypes of inhibitory interneurons that play specialized roles in circuit function. In mammalian retina, the ~30 subtypes of inhibitory interneurons called amacrine cells (ACs) are generally divided into two groups: wide/medium-field GABAergic and narrow-field glycinergic, which mediate lateral and vertical interactions, respectively, within the inner plexiform layer. We used expression profiling and mouse transgenic lines to identify and characterize two closely-related narrow-field AC subtypes. Both arise postnatally and one, surprisingly, is neither glycinergic nor GABAergic (nGnG). Two transcription factors selectively expressed by these subtypes, Neurod6 and Satb2, regulate a postmitotic cell fate choice between them. Satb2 induces Neurod6, which persists in nGnG ACs and promotes their fate, but is down-regulated in the related glycinergic AC subtype. Our results support the view that cell fate decisions made in progenitors and their progeny act together to diversify ACs.
Collapse
|
22
|
Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 2011; 17:1767-76. [PMID: 21385070 DOI: 10.1089/ten.tea.2010.0503] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expressed in branchial arches and osteoblast-lineage cells, special AT-rich sequence-binding protein (SATB2) is responsible for preventing craniofacial abnormalities and defects in osteoblast function. In this study, we transduced SATB2 into murine adult stem cells, and found that SATB2 significantly increased expression levels of bone matrix proteins, osteogenic transcription factors, and a potent angiogenic factor, vascular endothelial growth factor. Using an osterix (Osx) promoter-luciferase construct and calvarial cells isolated from runt-related transcription factor 2 (Runx2)-deficient mice, we found that SATB2 upregulates Osx expression independent of Runx2, but synergistically enhances the regulatory effect of Runx2 on Osx promoter. We then transplanted SATB2-overexpressing adult stem cells genetically double-labeled with bone sialoprotein (BSP) promoter-driven luciferase and β-actin promoter-driven enhanced green fluorescent protein into mandibular bone defects. We identified increased luciferase-positive cells in SATB2-overexpressing groups, indicating more transplanted cells undergoing osteogenic differentiation. New bone formation was consequently accelerated in SATB2 groups. In conclusion, SATB2 acts as a potent transcription factor to enhance osteoblastogenesis and promote bone regeneration. The application of SATB2 in bone tissue engineering gives rise to a higher bone forming capacity as a result of multiple-level amplification of regulatory activity.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cytokines inhibit norepinephrine transporter expression by decreasing Hand2. Mol Cell Neurosci 2011; 46:671-80. [PMID: 21241805 DOI: 10.1016/j.mcn.2011.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022] Open
Abstract
Functional noradrenergic transmission requires the coordinate expression of enzymes involved in norepinephrine (NE) synthesis, as well as the norepinephrine transporter (NET) which removes NE from the synapse. Inflammatory cytokines acting through gp130 can suppress the noradrenergic phenotype in sympathetic neurons. This occurs in a subset of sympathetic neurons during development and also occurs in adult neurons after injury. For example, cytokines suppress noradrenergic function in sympathetic neurons after axotomy and during heart failure. The molecular basis for suppression of noradrenergic genes is not well understood, but previous studies implicated a reduction of Phox2a in cytokine suppression of dopamine beta hydroxylase. We used sympathetic neurons and neuroblastoma cells to investigate the role of Phox2a in cytokine suppression of NET transcription. Chromatin immunoprecipitation experiments revealed that Phox2a did not bind the NET promoter, and overexpression of Phox2a did not prevent cytokine suppression of NET transcription. Hand2 and Gata3 are transcription factors that induce noradrenergic genes during development and are present in mature sympathetic neurons. Both Hand2 and Gata3 were decreased by cytokines in sympathetic neurons and neuroblastoma cells. Overexpression of either Hand2 or Gata3 was sufficient to rescue NET transcription following suppression by cytokines. We examined expression of these genes following axotomy to determine if their expression was altered following nerve injury. NET and Hand2 mRNAs decreased significantly in sympathetic neurons 48 h after axotomy, but Gata3 mRNA was unchanged. These data suggest that cytokines can inhibit NET expression through downregulation of Hand2 or Gata3 in cultured sympathetic neurons, but axotomy in adult animals selectively suppresses Hand2 expression.
Collapse
|