1
|
Stocke S, Samuelsen CL. Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. J Neurosci 2024; 44:e0071242024. [PMID: 38548337 PMCID: PMC11097261 DOI: 10.1523/jneurosci.0071-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.
Collapse
Affiliation(s)
- Sanaya Stocke
- Departments of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
2
|
Schnepel P, Paricio-Montesinos R, Ezquerra-Romano I, Haggard P, Poulet JFA. Cortical cellular encoding of thermotactile integration. Curr Biol 2024; 34:1718-1730.e3. [PMID: 38582078 DOI: 10.1016/j.cub.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/24/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.
Collapse
Affiliation(s)
- Philipp Schnepel
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ricardo Paricio-Montesinos
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivan Ezquerra-Romano
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London (UCL), London WC1N 3AZ, UK
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin-Buch, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
3
|
Choi I, Demir I, Oh S, Lee SH. Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220338. [PMID: 37545309 PMCID: PMC10404930 DOI: 10.1098/rstb.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023] Open
Abstract
Multisensory integration (MSI) occurs in a variety of brain areas, spanning cortical and subcortical regions. In traditional studies on sensory processing, the sensory cortices have been considered for processing sensory information in a modality-specific manner. The sensory cortices, however, send the information to other cortical and subcortical areas, including the higher association cortices and the other sensory cortices, where the multiple modality inputs converge and integrate to generate a meaningful percept. This integration process is neither simple nor fixed because these brain areas interact with each other via complicated circuits, which can be modulated by numerous internal and external conditions. As a result, dynamic MSI makes multisensory decisions flexible and adaptive in behaving animals. Impairments in MSI occur in many psychiatric disorders, which may result in an altered perception of the multisensory stimuli and an abnormal reaction to them. This review discusses the diversity and flexibility of MSI in mammals, including humans, primates and rodents, as well as the brain areas involved. It further explains how such flexibility influences perceptual experiences in behaving animals in both health and disease. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Ilsong Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ilayda Demir
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seungmi Oh
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Seung-Hee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of biological sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Bean NL, Smyre SA, Stein BE, Rowland BA. Noise-rearing precludes the behavioral benefits of multisensory integration. Cereb Cortex 2023; 33:948-958. [PMID: 35332919 PMCID: PMC9930622 DOI: 10.1093/cercor/bhac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
Concordant visual-auditory stimuli enhance the responses of individual superior colliculus (SC) neurons. This neuronal capacity for "multisensory integration" is not innate: it is acquired only after substantial cross-modal (e.g. auditory-visual) experience. Masking transient auditory cues by raising animals in omnidirectional sound ("noise-rearing") precludes their ability to obtain this experience and the ability of the SC to construct a normal multisensory (auditory-visual) transform. SC responses to combinations of concordant visual-auditory stimuli are depressed, rather than enhanced. The present experiments examined the behavioral consequence of this rearing condition in a simple detection/localization task. In the first experiment, the auditory component of the concordant cross-modal pair was novel, and only the visual stimulus was a target. In the second experiment, both component stimuli were targets. Noise-reared animals failed to show multisensory performance benefits in either experiment. These results reveal a close parallel between behavior and single neuron physiology in the multisensory deficits that are induced when noise disrupts early visual-auditory experience.
Collapse
Affiliation(s)
- Naomi L Bean
- Corresponding author: Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States.
| | | | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, United States
| |
Collapse
|
5
|
Jiang H, Stanford TR, Rowland BA, Stein BE. Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training. Cereb Cortex 2021; 31:5015-5023. [PMID: 34056645 DOI: 10.1093/cercor/bhab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/14/2022] Open
Abstract
Hemianopia induced by unilateral visual cortex lesions can be resolved by repeatedly exposing the blinded hemifield to auditory-visual stimuli. This rehabilitative "training" paradigm depends on mechanisms of multisensory plasticity that restore the lost visual responsiveness of multisensory neurons in the ipsilesional superior colliculus (SC) so that they can once again support vision in the blinded hemifield. These changes are thought to operate via the convergent visual and auditory signals relayed to the SC from association cortex (the anterior ectosylvian sulcus [AES], in cat). The present study tested this assumption by cryogenically deactivating ipsilesional AES in hemianopic, anesthetized cats during weekly multisensory training sessions. No signs of visual recovery were evident in this condition, even after providing animals with up to twice the number of training sessions required for effective rehabilitation. Subsequent training under the same conditions, but with AES active, reversed the hemianopia within the normal timeframe. These results indicate that the corticotectal circuit that is normally engaged in SC multisensory plasticity has to be operational for the brain to use visual-auditory experience to resolve hemianopia.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Rezaul Karim AKM, Proulx MJ, de Sousa AA, Likova LT. Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain. PSYCHOLOGY & NEUROSCIENCE 2021; 14:298-334. [PMID: 36937077 PMCID: PMC10019101 DOI: 10.1037/pne0000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.
Collapse
|
7
|
Smyre SA, Wang Z, Stein BE, Rowland BA. Multisensory enhancement of overt behavior requires multisensory experience. Eur J Neurosci 2021; 54:4514-4527. [PMID: 34013578 DOI: 10.1111/ejn.15315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022]
Abstract
The superior colliculus (SC) is richly endowed with neurons that integrate cues from different senses to enhance their physiological responses and the overt behaviors they mediate. However, in the absence of experience with cross-modal combinations (e.g., visual-auditory), they fail to develop this characteristic multisensory capability: Their multisensory responses are no greater than their most effective unisensory responses. Presumably, this impairment in neural development would be reflected as corresponding impairments in SC-mediated behavioral capabilities such as detection and localization performance. Here, we tested that assumption directly in cats raised to adulthood in darkness. They, along with a normally reared cohort, were trained to approach brief visual or auditory stimuli. The animals were then tested with these stimuli individually and in combination under ambient light conditions consistent with their rearing conditions and home environment as well as under the opposite lighting condition. As expected, normally reared animals detected and localized the cross-modal combinations significantly better than their individual component stimuli. However, dark-reared animals showed significant defects in multisensory detection and localization performance. The results indicate that a physiological impairment in single multisensory SC neurons is predictive of an impairment in overt multisensory behaviors.
Collapse
Affiliation(s)
- Scott A Smyre
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Zhengyang Wang
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Barry E Stein
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Benjamin A Rowland
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Oess T, Löhr MPR, Schmid D, Ernst MO, Neumann H. From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration. Front Neurorobot 2020; 14:29. [PMID: 32499692 PMCID: PMC7243343 DOI: 10.3389/fnbot.2020.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
While interacting with the world our senses and nervous system are constantly challenged to identify the origin and coherence of sensory input signals of various intensities. This problem becomes apparent when stimuli from different modalities need to be combined, e.g., to find out whether an auditory stimulus and a visual stimulus belong to the same object. To cope with this problem, humans and most other animal species are equipped with complex neural circuits to enable fast and reliable combination of signals from various sensory organs. This multisensory integration starts in the brain stem to facilitate unconscious reflexes and continues on ascending pathways to cortical areas for further processing. To investigate the underlying mechanisms in detail, we developed a canonical neural network model for multisensory integration that resembles neurophysiological findings. For example, the model comprises multisensory integration neurons that receive excitatory and inhibitory inputs from unimodal auditory and visual neurons, respectively, as well as feedback from cortex. Such feedback projections facilitate multisensory response enhancement and lead to the commonly observed inverse effectiveness of neural activity in multisensory neurons. Two versions of the model are implemented, a rate-based neural network model for qualitative analysis and a variant that employs spiking neurons for deployment on a neuromorphic processing. This dual approach allows to create an evaluation environment with the ability to test model performances with real world inputs. As a platform for deployment we chose IBM's neurosynaptic chip TrueNorth. Behavioral studies in humans indicate that temporal and spatial offsets as well as reliability of stimuli are critical parameters for integrating signals from different modalities. The model reproduces such behavior in experiments with different sets of stimuli. In particular, model performance for stimuli with varying spatial offset is tested. In addition, we demonstrate that due to the emergent properties of network dynamics model performance is close to optimal Bayesian inference for integration of multimodal sensory signals. Furthermore, the implementation of the model on a neuromorphic processing chip enables a complete neuromorphic processing cascade from sensory perception to multisensory integration and the evaluation of model performance for real world inputs.
Collapse
Affiliation(s)
- Timo Oess
- Applied Cognitive Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Maximilian P R Löhr
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Daniel Schmid
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Marc O Ernst
- Applied Cognitive Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Heiko Neumann
- Vision and Perception Science Lab, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Carlsen AN, Maslovat D, Kaga K. An unperceived acoustic stimulus decreases reaction time to visual information in a patient with cortical deafness. Sci Rep 2020; 10:5825. [PMID: 32242039 PMCID: PMC7118083 DOI: 10.1038/s41598-020-62450-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/13/2020] [Indexed: 11/16/2022] Open
Abstract
Responding to multiple stimuli of different modalities has been shown to reduce reaction time (RT), yet many different processes can potentially contribute to multisensory response enhancement. To investigate the neural circuits involved in voluntary response initiation, an acoustic stimulus of varying intensities (80, 105, or 120 dB) was presented during a visual RT task to a patient with profound bilateral cortical deafness and an intact auditory brainstem response. Despite being unable to consciously perceive sound, RT was reliably shortened (~100 ms) on trials where the unperceived acoustic stimulus was presented, confirming the presence of multisensory response enhancement. Although the exact locus of this enhancement is unclear, these results cannot be attributed to involvement of the auditory cortex. Thus, these data provide new and compelling evidence that activation from subcortical auditory processing circuits can contribute to other cortical or subcortical areas responsible for the initiation of a response, without the need for conscious perception.
Collapse
Affiliation(s)
| | - Dana Maslovat
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Kimitaka Kaga
- National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
10
|
Stein BE, Rowland BA. Using superior colliculus principles of multisensory integration to reverse hemianopia. Neuropsychologia 2020; 141:107413. [PMID: 32113921 DOI: 10.1016/j.neuropsychologia.2020.107413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
The diversity of our senses conveys many advantages; it enables them to compensate for one another when needed, and the information they provide about a common event can be integrated to facilitate its processing and, ultimately, adaptive responses. These cooperative interactions are produced by multisensory neurons. A well-studied model in this context is the multisensory neuron in the output layers of the superior colliculus (SC). These neurons integrate and amplify their cross-modal (e.g., visual-auditory) inputs, thereby enhancing the physiological salience of the initiating event and the probability that it will elicit SC-mediated detection, localization, and orientation behavior. Repeated experience with the same visual-auditory stimulus can also increase the neuron's sensitivity to these individual inputs. This observation raised the possibility that such plasticity could be engaged to restore visual responsiveness when compromised. For example, unilateral lesions of visual cortex compromise the visual responsiveness of neurons in the multisensory output layers of the ipsilesional SC and produces profound contralesional blindness (hemianopia). The possibility that multisensory plasticity could restore the visual responses of these neurons, and reverse blindness, was tested in the cat model of hemianopia. Hemianopic subjects were repeatedly presented with spatiotemporally congruent visual-auditory stimulus pairs in the blinded hemifield on a daily or weekly basis. After several weeks of this multisensory exposure paradigm, visual responsiveness was restored in SC neurons and behavioral responses were elicited by visual stimuli in the previously blind hemifield. The constraints on the effectiveness of this procedure proved to be the same as those constraining SC multisensory plasticity: whereas repetitions of a congruent visual-auditory stimulus was highly effective, neither exposure to its individual component stimuli, nor to these stimuli in non-congruent configurations was effective. The restored visual responsiveness proved to be robust, highly competitive with that in the intact hemifield, and sufficient to support visual discrimination.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Dong CM, Leong ATL, Manno FA, Lau C, Ho LC, Chan RW, Feng Y, Gao PP, Wu EX. Functional MRI Investigation of Audiovisual Interactions in Auditory Midbrain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5527-5530. [PMID: 30441589 DOI: 10.1109/embc.2018.8513629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The brain integrates information from different sensory modalities to form a representation of the environment and facilitate behavioral responses. The auditory midbrain or inferior colliculus (IC) is a pivotal station in the auditory system, integrating ascending and descending information from various auditory sources and cortical systems. The present study investigated the modulation of auditory responses in the IC by visual stimuli of different frequencies and intensities in rats using functional MRI (fMRI). Low-frequency (1 Hz) high-intensity visual stimulus suppressed IC auditory responses. However, high-frequency (10 Hz) or low-intensity visual stimuli did not alter the IC auditory responses. This finding demonstrates that cross-modal processing occurs in the IC in a manner that depends on the stimulus. Furthermore, only low-frequency high-intensity visual stimulus elicited responses in non-visual cortical regions, suggesting that the above cross-modal modulation effect may arise from top-down cortical feedback. These fMRI results provide insight to guide future studies of cross-modal processing in sensory pathways.
Collapse
|
12
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Abstract
Although impairment in sensory integration is suggested in the autism spectrum (AS), empirical evidences remain equivocal. We assessed the integration of low-level visual and tactile information within and across modalities in AS and typically developing (TD) individuals. TD individuals demonstrated increased redundancy gain for cross-modal relative to double tactile or visual stimulation, while AS individuals showed similar redundancy gain between cross-modal and double tactile conditions. We further observed that violation of the race model inequality for cross-modal conditions was observed over a wider proportion of the reaction times distribution in TD than AS individuals. Importantly, the reduced cross-modal integration in AS individuals was not related to atypical attentional shift between modalities. We conclude that AS individuals displays selective decrease of cross-modal integration of low-level information.
Collapse
|
14
|
Diederich A, Colonius H. Multisensory Integration and Exogenous Spatial Attention: A Time-window-of-integration Analysis. J Cogn Neurosci 2019; 31:699-710. [PMID: 30822208 DOI: 10.1162/jocn_a_01386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although it is well documented that occurrence of an irrelevant and nonpredictive sound facilitates motor responses to a subsequent target light appearing nearby, the cause of this "exogenous spatial cuing effect" has been under discussion. On the one hand, it has been postulated to be the result of a shift of visual spatial attention possibly triggered by parietal and/or cortical supramodal "attention" structures. On the other hand, the effect has been considered to be due to multisensory integration based on the activation of multisensory convergence structures in the brain. Recent RT experiments have suggested that multisensory integration and exogenous spatial cuing differ in their temporal profiles of facilitation: When the nontarget occurs 100-200 msec before the target, facilitation is likely driven by crossmodal exogenous spatial attention, whereas multisensory integration effects are still seen when target and nontarget are presented nearly simultaneously. Here, we develop an extension of the time-window-of-integration model that combines both mechanisms within the same formal framework. The model is illustrated by fitting it to data from a focused attention task with a visual target and an auditory nontarget presented at horizontally or vertically varying positions. Results show that both spatial cuing and multisensory integration may coexist in a single trial in bringing about the crossmodal facilitation of RT effects. Moreover, the formal analysis via time window of integration allows to predict and quantify the contribution of either mechanism as they occur across different spatiotemporal conditions.
Collapse
|
15
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Juiz JM, Varela-Nieto I. Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1 -/- Mouse. Front Cell Neurosci 2019; 13:67. [PMID: 30881288 PMCID: PMC6405628 DOI: 10.3389/fncel.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Rodríguez-de la Rosa
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Isabel Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
16
|
Cross-Modal Competition: The Default Computation for Multisensory Processing. J Neurosci 2018; 39:1374-1385. [PMID: 30573648 DOI: 10.1523/jneurosci.1806-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022] Open
Abstract
Mature multisensory superior colliculus (SC) neurons integrate information across the senses to enhance their responses to spatiotemporally congruent cross-modal stimuli. The development of this neurotypic feature of SC neurons requires experience with cross-modal cues. In the absence of such experience the response of an SC neuron to congruent cross-modal cues is no more robust than its response to the most effective component cue. This "default" or "naive" state is believed to be one in which cross-modal signals do not interact. The present results challenge this characterization by identifying interactions between visual-auditory signals in male and female cats reared without visual-auditory experience. By manipulating the relative effectiveness of the visual and auditory cross-modal cues that were presented to each of these naive neurons, an active competition between cross-modal signals was revealed. Although contrary to current expectations, this result is explained by a neuro-computational model in which the default interaction is mutual inhibition. These findings suggest that multisensory neurons at all maturational stages are capable of some form of multisensory integration, and use experience with cross-modal stimuli to transition from their initial state of competition to their mature state of cooperation. By doing so, they develop the ability to enhance the physiological salience of cross-modal events thereby increasing their impact on the sensorimotor circuitry of the SC, and the likelihood that biologically significant events will elicit SC-mediated overt behaviors.SIGNIFICANCE STATEMENT The present results demonstrate that the default mode of multisensory processing in the superior colliculus is competition, not non-integration as previously characterized. A neuro-computational model explains how these competitive dynamics can be implemented via mutual inhibition, and how this default mode is superseded by the emergence of cooperative interactions during development.
Collapse
|
17
|
Xu J, Bi T, Wu J, Meng F, Wang K, Hu J, Han X, Zhang J, Zhou X, Keniston L, Yu L. Spatial receptive field shift by preceding cross-modal stimulation in the cat superior colliculus. J Physiol 2018; 596:5033-5050. [PMID: 30144059 DOI: 10.1113/jp275427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS It has been known for some time that sensory information of one type can bias the spatial perception of another modality. However, there is a lack of evidence of this occurring in individual neurons. In the present study, we found that the spatial receptive field of superior colliculus multisensory neurons could be dynamically shifted by a preceding stimulus in a different modality. The extent to which the receptive field shifted was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. This result provides a neural mechanism that could underlie the process of cross-modal spatial calibration. ABSTRACT Psychophysical studies have shown that the different senses can be spatially entrained by each other. This can be observed in certain phenomena, such as ventriloquism, in which a visual stimulus can attract the perceived location of a spatially discordant sound. However, the neural mechanism underlying this cross-modal spatial recalibration has remained unclear, as has whether it takes place dynamically. We explored these issues in multisensory neurons of the cat superior colliculus (SC), a midbrain structure that involves both cross-modal and sensorimotor integration. Sequential cross-modal stimulation showed that the preceding stimulus can shift the receptive field (RF) of the lagging response. This cross-modal spatial calibration took place in both auditory and visual RFs, although auditory RFs shifted slightly more. By contrast, if a preceding stimulus was from the same modality, it failed to induce a similarly substantial RF shift. The extent of the RF shift was dependent on both temporal and spatial gaps between the preceding and following stimuli, as well as the salience of the preceding stimulus. A narrow time gap and high stimulus salience were able to induce larger RF shifts. In addition, when both visual and auditory stimuli were presented simultaneously, a substantial RF shift toward the location-fixed stimulus was also induced. These results, taken together, reveal an online cross-modal process and reflect the details of the organization of SC inter-sensory spatial calibration.
Collapse
Affiliation(s)
- Jinghong Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Tingting Bi
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jing Wu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Fanzhu Meng
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Kun Wang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jiawei Hu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Xiao Han
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
18
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Juiz JM. An Oral Combination of Vitamins A, C, E, and Mg ++ Improves Auditory Thresholds in Age-Related Hearing Loss. Front Neurosci 2018; 12:527. [PMID: 30108480 PMCID: PMC6079267 DOI: 10.3389/fnins.2018.00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 12/02/2022] Open
Abstract
The increasing rate of age-related hearing loss (ARHL), with its subsequent reduction in quality of life and increase in health care costs, requires new therapeutic strategies to reduce and delay its impact. The goal of this study was to determine if ARHL could be reduced in a rat model by administering a combination of antioxidant vitamins A, C, and E acting as free radical scavengers along with Mg++, a known powerful cochlear vasodilator (ACEMg). Toward this goal, young adult, 3 month-old Wistar rats were divided into two groups: one was fed with a diet composed of regular chow (“normal diet,” ND); the other received a diet based on chow enriched in ACEMg (“enhanced diet,” ED). The ED feeding began 10 days before the noise stimulation. Auditory brainstem recordings (ABR) were performed at 0.5, 1, 2, 4, 8, 16, and 32 kHz at 3, 6–8, and 12–14 months of age. No differences were observed at 3 months of age, in both ND and ED animals. At 6–8 and 12–14 months of age there were significant increases in auditory thresholds and a reduction in the wave amplitudes at all frequencies tested, compatible with progressive development of ARHL. However, at 6–8 months threshold shifts in ED rats were significantly lower in low and medium frequencies, and wave amplitudes were significantly larger at all frequencies when compared to ND rats. In the oldest animals, differences in the threshold shift persisted, as well as in the amplitude of the wave II, suggesting a protective effect of ACEMg on auditory function during aging. These findings indicate that oral ACEMg may provide an effective adjuvant therapeutic intervention for the treatment of ARHL, delaying the progression of hearing impairment associated with age.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
19
|
Development of the Mechanisms Governing Midbrain Multisensory Integration. J Neurosci 2018; 38:3453-3465. [PMID: 29496891 DOI: 10.1523/jneurosci.2631-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 01/19/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to integrate information across multiple senses enhances the brain's ability to detect, localize, and identify external events. This process has been well documented in single neurons in the superior colliculus (SC), which synthesize concordant combinations of visual, auditory, and/or somatosensory signals to enhance the vigor of their responses. This increases the physiological salience of crossmodal events and, in turn, the speed and accuracy of SC-mediated behavioral responses to them. However, this capability is not an innate feature of the circuit and only develops postnatally after the animal acquires sufficient experience with covariant crossmodal events to form links between their modality-specific components. Of critical importance in this process are tectopetal influences from association cortex. Recent findings suggest that, despite its intuitive appeal, a simple generic associative rule cannot explain how this circuit develops its ability to integrate those crossmodal inputs to produce enhanced multisensory responses. The present neurocomputational model explains how this development can be understood as a transition from a default state in which crossmodal SC inputs interact competitively to one in which they interact cooperatively. Crucial to this transition is the operation of a learning rule requiring coactivation among tectopetal afferents for engagement. The model successfully replicates findings of multisensory development in normal cats and cats of either sex reared with special experience. In doing so, it explains how the cortico-SC projections can use crossmodal experience to craft the multisensory integration capabilities of the SC and adapt them to the environment in which they will be used.SIGNIFICANCE STATEMENT The brain's remarkable ability to integrate information across the senses is not present at birth, but typically develops in early life as experience with crossmodal cues is acquired. Recent empirical findings suggest that the mechanisms supporting this development must be more complex than previously believed. The present work integrates these data with what is already known about the underlying circuit in the midbrain to create and test a mechanistic model of multisensory development. This model represents a novel and comprehensive framework that explains how midbrain circuits acquire multisensory experience and reveals how disruptions in this neurotypic developmental trajectory yield divergent outcomes that will affect the multisensory processing capabilities of the mature brain.
Collapse
|
20
|
Bach EC, Vaughan JW, Stein BE, Rowland BA. Pulsed Stimuli Elicit More Robust Multisensory Enhancement than Expected. Front Integr Neurosci 2018; 11:40. [PMID: 29354037 PMCID: PMC5758560 DOI: 10.3389/fnint.2017.00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022] Open
Abstract
Neurons in the superior colliculus (SC) integrate cross-modal inputs to generate responses that are more robust than to either input alone, and are frequently greater than their sum (superadditive enhancement). Previously, the principles of a real-time multisensory transform were identified and used to accurately predict a neuron's responses to combinations of brief flashes and noise bursts. However, environmental stimuli frequently have more complex temporal structures that elicit very different response dynamics than previously examined. The present study tested whether such stimuli (i.e., pulsed) would be treated similarly by the multisensory transform. Pulsing visual and auditory stimuli elicited responses composed of higher discharge rates that had multiple peaks temporally aligned to the stimulus pulses. Combinations pulsed cues elicited multiple peaks of superadditive enhancement within the response window. Measured over the entire response, this resulted in larger enhancements than expected given enhancements elicited by non-pulsed (“sustained”) stimuli. However, as with sustained stimuli, the dynamics of multisensory responses to pulsed stimuli were highly related to the temporal dynamics of the unisensory inputs. This suggests that the specific characteristics of the multisensory transform are not determined by the external features of the cross-modal stimulus configuration; rather the temporal structure and alignment of the unisensory inputs is the dominant driving factor in the magnitudes of the multisensory product.
Collapse
Affiliation(s)
- Eva C Bach
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John W Vaughan
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Barry E Stein
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Benjamin A Rowland
- Department Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
21
|
Meredith MA, Wallace MT, Clemo HR. Do the Different Sensory Areas Within the Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent a Network Multisensory Hub? Multisens Res 2018; 31:793-823. [PMID: 31157160 PMCID: PMC6542292 DOI: 10.1163/22134808-20181316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian Sulcus - FAES) and somatosensory (Fourth somatosensory representation - SIV). To better understand the nature of cortical network hubs, the present report reviews the biological features of the AESc. Within the AESc, each area has extensive external cortical connections as well as among one another. Each of these core representations is separated by a transition zone characterized by bimodal neurons that share sensory properties of both adjoining core areas. Finally, core and transition zones are underlain by a continuous sheet of layer 5 neurons that project to common output structures. Altogether, these shared properties suggest that the collective AESc region represents a multiple sensory/multisensory cortical network hub. Ultimately, such an interconnected, composite structure adds complexity and biological detail to the understanding of cortical network hubs and their function in cortical processing.
Collapse
Affiliation(s)
- M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University,
Nashville, TN 37240 USA
| | - H. Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
22
|
Xu J, Bi T, Keniston L, Zhang J, Zhou X, Yu L. Deactivation of Association Cortices Disrupted the Congruence of Visual and Auditory Receptive Fields in Superior Colliculus Neurons. Cereb Cortex 2017; 27:5568-5578. [PMID: 27797831 DOI: 10.1093/cercor/bhw324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 11/13/2022] Open
Abstract
Physiological and behavioral studies in cats show that corticotectal inputs play a critical role in the information-processing capabilities of neurons in the deeper layers of the superior colliculus (SC). Among them, the sensory inputs from functionally related associational cortices are especially critical for SC multisensory integration. However, the underlying mechanism supporting this influence is still unclear. Here, results demonstrate that deactivation of relevant cortices can both dislocate SC visual and auditory spatial receptive fields (RFs) and decrease their overall size, resulting in reduced alignment. Further analysis demonstrated that this RF separation is significantly correlated with the decrement of neurons' multisensory enhancement and is most pronounced in low stimulus intensity conditions. In addition, cortical deactivation could influence the degree of stimulus effectiveness, thereby illustrating the means by which higher order cortices may modify the multisensory activity of SC.
Collapse
Affiliation(s)
- Jinghong Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Tingting Bi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Les Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, China
| | - Liping Yu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
23
|
Fuentes-Santamaría V, Alvarado JC, Melgar-Rojas P, Gabaldón-Ull MC, Miller JM, Juiz JM. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss. Front Neuroanat 2017; 11:9. [PMID: 28280462 PMCID: PMC5322242 DOI: 10.3389/fnana.2017.00009] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Repeated noise exposure induces inflammation and cellular adaptations in the peripheral and central auditory system resulting in pathophysiology of hearing loss. In this study, we analyzed the mechanisms by which noise-induced inflammatory-related events in the cochlea activate glial-mediated cellular responses in the cochlear nucleus (CN), the first relay station of the auditory pathway. The auditory function, glial activation, modifications in gene expression and protein levels of inflammatory mediators and ultrastructural changes in glial-neuronal interactions were assessed in rats exposed to broadband noise (0.5-32 kHz, 118 dB SPL) for 4 h/day during 4 consecutive days to induce long-lasting hearing damage. Noise-exposed rats developed a permanent threshold shift which was associated with hair cell loss and reactive glia. Noise-induced microglial activation peaked in the cochlea between 1 and 10D post-lesion; their activation in the CN was more prolonged reaching maximum levels at 30D post-exposure. RT-PCR analyses of inflammatory-related genes expression in the cochlea demonstrated significant increases in the mRNA expression levels of pro- and anti-inflammatory cytokines, inducible nitric oxide synthase, intercellular adhesion molecule and tissue inhibitor of metalloproteinase-1 at 1 and 10D post-exposure. In noise-exposed cochleae, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) were upregulated by reactive microglia, fibrocytes, and neurons at all time points examined. In the CN, however, neurons were the sole source of these cytokines. These observations suggest that noise exposure causes peripheral and central inflammatory reactions in which TNF-α and IL-1β are implicated in regulating the initiation and progression of noise-induced hearing loss.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
24
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Jareño-Flores T, Miller JM, Juiz JM. Noise-Induced "Toughening" Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation. Front Neuroanat 2016; 10:19. [PMID: 27065815 PMCID: PMC4815363 DOI: 10.3389/fnana.2016.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this "toughening" effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with "toughening" and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Tania Jareño-Flores
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
25
|
Caruso VC, Pages DS, Sommer MA, Groh JM. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control. J Neurophysiol 2016; 115:3162-73. [PMID: 26936983 DOI: 10.1152/jn.00935.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway.
Collapse
Affiliation(s)
- Valeria C Caruso
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| | - Daniel S Pages
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| | - Marc A Sommer
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jennifer M Groh
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; and
| |
Collapse
|
26
|
Yu L, Xu J, Rowland BA, Stein BE. Multisensory Plasticity in Superior Colliculus Neurons is Mediated by Association Cortex. Cereb Cortex 2014; 26:1130-7. [PMID: 25552270 DOI: 10.1093/cercor/bhu295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to integrate information from different senses, and thereby facilitate detecting and localizing events, normally develops gradually in cat superior colliculus (SC) neurons as experience with cross-modal events is acquired. Here, we demonstrate that the portal for this experience-based change is association cortex. Unilaterally deactivating this cortex whenever visual-auditory events were present resulted in the failure of ipsilateral SC neurons to develop the ability to integrate those cross-modal inputs, even though they retained the ability to respond to them. In contrast, their counterparts in the opposite SC developed this capacity normally. The deficits were eliminated by providing cross-modal experience when cortex was active. These observations underscore the collaborative developmental processes that take place among different levels of the neuraxis to adapt the brain's multisensory (and sensorimotor) circuits to the environment in which they will be used.
Collapse
Affiliation(s)
- Liping Yu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Jinghong Xu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Stein BE, Stanford TR, Rowland BA. Development of multisensory integration from the perspective of the individual neuron. Nat Rev Neurosci 2014; 15:520-35. [PMID: 25158358 DOI: 10.1038/nrn3742] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability to use cues from multiple senses in concert is a fundamental aspect of brain function. It maximizes the brain’s use of the information available to it at any given moment and enhances the physiological salience of external events. Because each sense conveys a unique perspective of the external world, synthesizing information across senses affords computational benefits that cannot otherwise be achieved. Multisensory integration not only has substantial survival value but can also create unique experiences that emerge when signals from different sensory channels are bound together. However, neurons in a newborn’s brain are not capable of multisensory integration, and studies in the midbrain have shown that the development of this process is not predetermined. Rather, its emergence and maturation critically depend on cross-modal experiences that alter the underlying neural circuit in such a way that optimizes multisensory integrative capabilities for the environment in which the animal will function.
Collapse
|
28
|
Abstract
Detecting and locating environmental events are markedly enhanced by the midbrain's ability to integrate visual and auditory cues. Its capacity for multisensory integration develops in cats 1-4 months after birth but only after acquiring extensive visual-auditory experience. However, briefly deactivating specific regions of association cortex during this period induced long-term disruption of this maturational process, such that even 1 year later animals were unable to integrate visual and auditory cues to enhance their behavioral performance. The data from this animal model reveal a window of sensitivity within which association cortex mediates the encoding of cross-modal experience in the midbrain. Surprisingly, however, 3 years later, and without any additional intervention, the capacity appeared fully developed. This suggests that, although sensitivity degrades with age, the potential for acquiring or modifying multisensory integration capabilities extends well into adulthood.
Collapse
|
29
|
Billock VA, Tsou BH. Bridging the divide between sensory integration and binding theory: Using a binding-like neural synchronization mechanism to model sensory enhancements during multisensory interactions. J Cogn Neurosci 2014; 26:1587-99. [PMID: 24456391 DOI: 10.1162/jocn_a_00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neural information combination problems are ubiquitous in cognitive neuroscience. Two important disciplines, although conceptually similar, take radically different approaches to these problems. Sensory binding theory is largely grounded in synchronization of neurons responding to different aspects of a stimulus, resulting in a coherent percept. Sensory integration focuses more on the influences of the senses on each other and is largely grounded in the study of neurons that respond to more than one sense. It would be desirable to bridge these disciplines, so that insights gleaned from either could be harnessed by the other. To link these two fields, we used a binding-like oscillatory synchronization mechanism to simulate neurons in rattlesnake that are driven by one sense but modulated by another. Mutual excitatory coupling produces synchronized trains of action potentials with enhanced firing rates. The same neural synchronization mechanism models the behavior of a population of cells in cat visual cortex that are modulated by auditory activation. The coupling strength of the synchronizing neurons is crucial to the outcome; a criterion of strong coupling (kept weak enough to avoid seriously distorting action potential amplitude) results in intensity-dependent sensory enhancement-the principle of inverse effectiveness-a key property of sensory integration.
Collapse
|
30
|
Neural responses in parietal and occipital areas in response to visual events are modulated by prior multisensory stimuli. PLoS One 2013; 8:e84331. [PMID: 24391939 PMCID: PMC3877291 DOI: 10.1371/journal.pone.0084331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022] Open
Abstract
The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual 'flash-beep' illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes--an early timeframe, from 130-160 ms, and a late timeframe, from 300-320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus.
Collapse
|
31
|
Keating P, King AJ. Developmental plasticity of spatial hearing following asymmetric hearing loss: context-dependent cue integration and its clinical implications. Front Syst Neurosci 2013; 7:123. [PMID: 24409125 PMCID: PMC3873525 DOI: 10.3389/fnsys.2013.00123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022] Open
Abstract
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
Collapse
Affiliation(s)
- Peter Keating
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
32
|
Xu J, Yu L, Rowland BA, Stanford TR, Stein BE. Noise-rearing disrupts the maturation of multisensory integration. Eur J Neurosci 2013; 39:602-13. [PMID: 24251451 DOI: 10.1111/ejn.12423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
It is commonly believed that the ability to integrate information from different senses develops according to associative learning principles as neurons acquire experience with co-active cross-modal inputs. However, previous studies have not distinguished between requirements for co-activation versus co-variation. To determine whether cross-modal co-activation is sufficient for this purpose in visual-auditory superior colliculus (SC) neurons, animals were reared in constant omnidirectional noise. By masking most spatiotemporally discrete auditory experiences, the noise created a sensory landscape that decoupled stimulus co-activation and co-variance. Although a near-normal complement of visual-auditory SC neurons developed, the vast majority could not engage in multisensory integration, revealing that visual-auditory co-activation was insufficient for this purpose. That experience with co-varying stimuli is required for multisensory maturation is consistent with the role of the SC in detecting and locating biologically significant events, but it also seems likely that this is a general requirement for multisensory maturation throughout the brain.
Collapse
Affiliation(s)
- Jinghong Xu
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | | | | | |
Collapse
|
33
|
Yu L, Xu J, Rowland BA, Stein BE. Development of cortical influences on superior colliculus multisensory neurons: effects of dark-rearing. Eur J Neurosci 2013; 37:1594-601. [PMID: 23534923 DOI: 10.1111/ejn.12182] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/27/2022]
Abstract
Rearing cats from birth to adulthood in darkness prevents neurons in the superior colliculus (SC) from developing the capability to integrate visual and non-visual (e.g. visual-auditory) inputs. Presumably, this developmental anomaly is due to a lack of experience with the combination of those cues, which is essential to form associative links between them. The visual-auditory multisensory integration capacity of SC neurons has also been shown to depend on the functional integrity of converging visual and auditory inputs from the ipsilateral association cortex. Disrupting these cortico-collicular projections at any stage of life results in a pattern of outcomes similar to those found after dark-rearing; SC neurons respond to stimuli in both sensory modalities, but cannot integrate the information they provide. Thus, it is possible that dark-rearing compromises the development of these descending tecto-petal connections and the essential influences they convey. However, the results of the present experiments, using cortical deactivation to assess the presence of cortico-collicular influences, demonstrate that dark-rearing does not prevent the association cortex from developing robust influences over SC multisensory responses. In fact, dark-rearing may increase their potency over that observed in normally-reared animals. Nevertheless, their influences are still insufficient to support SC multisensory integration. It appears that cross-modal experience shapes the cortical influence to selectively enhance responses to cross-modal stimulus combinations that are likely to be derived from the same event. In the absence of this experience, the cortex develops an indiscriminate excitatory influence over its multisensory SC target neurons.
Collapse
Affiliation(s)
- Liping Yu
- School of Life Science, East China Normal University, Shanghai, China, 2000062
| | | | | | | |
Collapse
|
34
|
Pain and analgesia: the value of salience circuits. Prog Neurobiol 2013; 104:93-105. [PMID: 23499729 DOI: 10.1016/j.pneurobio.2013.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Evaluating external and internal stimuli is critical to survival. Potentially tissue-damaging conditions generate sensory experiences that the organism must respond to in an appropriate, adaptive manner (e.g., withdrawal from the noxious stimulus, if possible, or seeking relief from pain and discomfort). The importance we assign to a signal generated by a noxious state, its salience, reflects our belief as to how likely the underlying situation is to impact our chance of survival. Importantly, it has been hypothesized that aberrant functioning of the brain circuits which assign salience values to stimuli may contribute to chronic pain. We describe examples of this phenomenon, including 'feeling pain' in the absence of a painful stimulus, reporting minimal pain in the setting of major trauma, having an 'analgesic' response in the absence of an active treatment, or reporting no pain relief after administration of a potent analgesic medication, which may provide critical insights into the role that salience circuits play in contributing to numerous conditions characterized by persistent pain. Collectively, a refined understanding of abnormal activity or connectivity of elements within the salience network may allow us to more effectively target interventions to relevant components of this network in patients with chronic pain.
Collapse
|
35
|
Cuppini C, Magosso E, Rowland B, Stein B, Ursino M. Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model. BIOLOGICAL CYBERNETICS 2012; 106:691-713. [PMID: 23011260 PMCID: PMC3552306 DOI: 10.1007/s00422-012-0511-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
The superior colliculus (SC) integrates relevant sensory information (visual, auditory, somatosensory) from several cortical and subcortical structures, to program orientation responses to external events. However, this capacity is not present at birth, and it is acquired only through interactions with cross-modal events during maturation. Mathematical models provide a quantitative framework, valuable in helping to clarify the specific neural mechanisms underlying the maturation of the multisensory integration in the SC. We extended a neural network model of the adult SC (Cuppini et al., Front Integr Neurosci 4:1-15, 2010) to describe the development of this phenomenon starting from an immature state, based on known or suspected anatomy and physiology, in which: (1) AES afferents are present but weak, (2) Responses are driven from non-AES afferents, and (3) The visual inputs have a marginal spatial tuning. Sensory experience was modeled by repeatedly presenting modality-specific and cross-modal stimuli. Synapses in the network were modified by simple Hebbian learning rules. As a consequence of this exposure, (1) Receptive fields shrink and come into spatial register, and (2) SC neurons gained the adult characteristic integrative properties: enhancement, depression, and inverse effectiveness. Importantly, the unique architecture of the model guided the development so that integration became dependent on the relationship between the cortical input and the SC. Manipulations of the statistics of the experience during the development changed the integrative profiles of the neurons, and results matched well with the results of physiological studies.
Collapse
Affiliation(s)
- C Cuppini
- Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
36
|
Yu L, Rowland BA, Xu J, Stein BE. Multisensory plasticity in adulthood: cross-modal experience enhances neuronal excitability and exposes silent inputs. J Neurophysiol 2012; 109:464-74. [PMID: 23114212 DOI: 10.1152/jn.00739.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multisensory superior colliculus neurons in cats were found to retain substantial plasticity to short-term, site-specific experience with cross-modal stimuli well into adulthood. Following cross-modal exposure trials, these neurons substantially increased their sensitivity to the cross-modal stimulus configuration as well as to its individual component stimuli. In many cases, the exposure experience also revealed a previously ineffective or "silent" input channel, rendering it overtly responsive. These experience-induced changes required relatively few exposure trials and could be retained for more than 1 h. However, their induction was generally restricted to experience with cross-modal stimuli. Only rarely were they induced by exposure to a modality-specific stimulus and were never induced by stimulating a previously ineffective input channel. This short-term plasticity likely provides substantial benefits to the organism in dealing with ongoing and sequential events that take place at a given location in space and may reflect the ability of multisensory superior colliculus neurons to rapidly alter their response properties to accommodate to changes in environmental challenges and event probabilities.
Collapse
Affiliation(s)
- Liping Yu
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | |
Collapse
|
37
|
Cooke DF, Goldring AB, Yamayoshi I, Tsourkas P, Recanzone GH, Tiriac A, Pan T, Simon SI, Krubitzer L. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates. J Neurophysiol 2012; 107:3543-58. [PMID: 22402651 PMCID: PMC3378414 DOI: 10.1152/jn.01101.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/04/2012] [Indexed: 11/22/2022] Open
Abstract
We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the "cooling chip," consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm(3)) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Incorporating cross-modal statistics in the development and maintenance of multisensory integration. J Neurosci 2012; 32:2287-98. [PMID: 22396404 DOI: 10.1523/jneurosci.4304-11.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of multisensory integration capabilities in superior colliculus (SC) neurons was examined in cats whose visual-auditory experience was restricted to a circumscribed period during early life (postnatal day 30-8 months). Animals were periodically exposed to visual and auditory stimuli appearing either randomly in space and time, or always in spatiotemporal concordance. At all other times animals were maintained in darkness. Physiological testing was initiated at ∼2 years of age. Exposure to random visual and auditory stimuli proved insufficient to spur maturation of the ability to integrate cross-modal stimuli, but exposure to spatiotemporally concordant cross-modal stimuli was highly effective. The multisensory integration capabilities of neurons in the latter group resembled those of normal animals and were retained for >16 months in the absence of subsequent visual-auditory experience. Furthermore, the neurons were capable of integrating stimuli having physical properties differing significantly from those in the exposure set. These observations suggest that acquiring the rudiments of multisensory integration requires little more than exposure to consistent relationships between the modality-specific components of a cross-modal event, and that continued experience with such events is not necessary for their maintenance. Apparently, the statistics of cross-modal experience early in life define the spatial and temporal filters that determine whether the components of cross-modal stimuli are to be integrated or treated as independent events, a crucial developmental process that determines the spatial and temporal rules by which cross-modal stimuli are integrated to enhance both sensory salience and the likelihood of eliciting an SC-mediated motor response.
Collapse
|
39
|
The auditory dorsal pathway: Orienting vision. Neurosci Biobehav Rev 2011; 35:2162-73. [PMID: 21530585 DOI: 10.1016/j.neubiorev.2011.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/16/2011] [Accepted: 04/10/2011] [Indexed: 11/24/2022]
|
40
|
Perrault T, Rowland B, Stein B. The Organization and Plasticity of Multisensory Integration in the Midbrain. Front Neurosci 2011. [DOI: 10.1201/b11092-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Perrault T, Rowland B, Stein B. The Organization and Plasticity of Multisensory Integration in the Midbrain. Front Neurosci 2011. [DOI: 10.1201/9781439812174-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neurosci Biobehav Rev 2011; 36:111-33. [PMID: 21569794 DOI: 10.1016/j.neubiorev.2011.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 11/22/2022]
Abstract
In the past decade neuroscience has witnessed major advances in the field of multisensory interactions. A large body of research has revealed several new types of cross-sensory interactions. In addition, multisensory interactions have been reported at temporal and spatial system levels previously thought of as strictly unimodal. We review the findings that have led to the current broad consensus that most, if not all, higher, as well as lower level neural processes are in some form multisensory. We continue by outlining the progress that has been made in identifying the functional significance of different types of interactions, for example, in subserving stimulus binding and enhancement of perceptual certainty. Finally, we provide a critical introduction to cutting edge methods from bayes optimal integration to multivoxel pattern analysis as applied to multisensory research at different system levels.
Collapse
|
43
|
Cuppini C, Magosso E, Ursino M. Organization, maturation, and plasticity of multisensory integration: insights from computational modeling studies. Front Psychol 2011; 2:77. [PMID: 21687448 PMCID: PMC3110383 DOI: 10.3389/fpsyg.2011.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/12/2011] [Indexed: 11/15/2022] Open
Abstract
In this paper, we present two neural network models – devoted to two specific and widely investigated aspects of multisensory integration – in order to evidence the potentialities of computational models to gain insight into the neural mechanisms underlying organization, development, and plasticity of multisensory integration in the brain. The first model considers visual–auditory interaction in a midbrain structure named superior colliculus (SC). The model is able to reproduce and explain the main physiological features of multisensory integration in SC neurons and to describe how SC integrative capability – not present at birth – develops gradually during postnatal life depending on sensory experience with cross-modal stimuli. The second model tackles the problem of how tactile stimuli on a body part and visual (or auditory) stimuli close to the same body part are integrated in multimodal parietal neurons to form the perception of peripersonal (i.e., near) space. The model investigates how the extension of peripersonal space – where multimodal integration occurs – may be modified by experience such as use of a tool to interact with the far space. The utility of the modeling approach relies on several aspects: (i) The two models, although devoted to different problems and simulating different brain regions, share some common mechanisms (lateral inhibition and excitation, non-linear neuron characteristics, recurrent connections, competition, Hebbian rules of potentiation and depression) that may govern more generally the fusion of senses in the brain, and the learning and plasticity of multisensory integration. (ii) The models may help interpretation of behavioral and psychophysical responses in terms of neural activity and synaptic connections. (iii) The models can make testable predictions that can help guiding future experiments in order to validate, reject, or modify the main assumptions.
Collapse
Affiliation(s)
- Cristiano Cuppini
- Department of Electronics, Computer Science and Systems, University of Bologna Bologna, Italy
| | | | | |
Collapse
|
44
|
Stein BE, Rowland BA. Organization and plasticity in multisensory integration: early and late experience affects its governing principles. PROGRESS IN BRAIN RESEARCH 2011; 191:145-63. [PMID: 21741550 DOI: 10.1016/b978-0-444-53752-2.00007-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurons in the midbrain superior colliculus (SC) have the ability to integrate information from different senses to profoundly increase their sensitivity to external events. This not only enhances an organism's ability to detect and localize these events, but to program appropriate motor responses to them. The survival value of this process of multisensory integration is self-evident, and its physiological and behavioral manifestations have been studied extensively in adult and developing cats and monkeys. These studies have revealed, that contrary to expectations based on some developmental theories this process is not present in the newborn's brain. The data show that is acquired only gradually during postnatal life as a consequence of at least two factors: the maturation of cooperative interactions between association cortex and the SC, and extensive experience with cross-modal cues. Using these factors, the brain is able to craft the underlying neural circuits and the fundamental principles that govern multisensory integration so that they are adapted to the ecological circumstances in which they will be used.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | | |
Collapse
|
45
|
Cappe C, Murray MM, Barone P, Rouiller EM. Multisensory facilitation of behavior in monkeys: effects of stimulus intensity. J Cogn Neurosci 2010; 22:2850-63. [PMID: 20044892 DOI: 10.1162/jocn.2010.21423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.
Collapse
Affiliation(s)
- Céline Cappe
- Neuropsychology and Neurorehabilitation Service and Radiology Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
46
|
Cortical neurons combine visual cues about self-movement. Exp Brain Res 2010; 206:283-97. [PMID: 20852992 DOI: 10.1007/s00221-010-2406-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Visual cues about self-movement are derived from the patterns of optic flow and the relative motion of discrete objects. We recorded dorsal medial superior temporal (MSTd) cortical neurons in monkeys that held centered visual fixation while viewing optic flow and object motion stimuli simulating the self-movement cues seen during translation on a circular path. Twenty stimulus configurations presented naturalistic combinations of optic flow with superimposed objects that simulated either earth-fixed landmark objects or independently moving animate objects. Landmarks and animate objects yield the same response interactions with optic flow; mainly additive effects, with a substantial number of sub- and super-additive responses. Sub- and super-additive interactions reflect each neuron's local and global motion sensitivities: Local motion sensitivity is based on the spatial arrangement of directions created by object motion and the surrounding optic flow. Global motion sensitivity is based on the temporal sequence of self-movement headings that define a simulated path through the environment. We conclude that MST neurons' spatio-temporal response properties combine object motion and optic flow cues to represent self-movement in diverse, naturalistic circumstances.
Collapse
|
47
|
Bajo VM, Nodal FR, Bizley JK, King AJ. The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus. Front Neuroanat 2010; 4:18. [PMID: 20640247 PMCID: PMC2904598 DOI: 10.3389/fnana.2010.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
Descending cortical inputs to the superior colliculus (SC) contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG), and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG), predominantly in the tonotopically organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | |
Collapse
|
48
|
Initiating the development of multisensory integration by manipulating sensory experience. J Neurosci 2010; 30:4904-13. [PMID: 20371810 DOI: 10.1523/jneurosci.5575-09.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The multisensory integration capabilities of superior colliculus neurons emerge gradually during early postnatal life as a consequence of experience with cross-modal stimuli. Without such experience neurons become responsive to multiple sensory modalities but are unable to integrate their inputs. The present study demonstrates that neurons retain sensitivity to cross-modal experience well past the normal developmental period for acquiring multisensory integration capabilities. Experience surprisingly late in life was found to rapidly initiate the development of multisensory integration, even more rapidly than expected based on its normal developmental time course. Furthermore, the requisite experience was acquired by the anesthetized brain and in the absence of any of the stimulus-response contingencies generally associated with learning. The key experiential factor was repeated exposure to the relevant stimuli, and this required that the multiple receptive fields of a multisensory neuron encompassed the cross-modal exposure site. Simple exposure to the individual components of a cross-modal stimulus was ineffective in this regard. Furthermore, once a neuron acquired multisensory integration capabilities at the exposure site, it generalized this experience to other locations, albeit with lowered effectiveness. These observations suggest that the prolonged period during which multisensory integration normally appears is due to developmental factors in neural circuitry in addition to those required for incorporating the statistics of cross-modal events; that neurons learn a multisensory principle based on the specifics of experience and can then apply it to other stimulus conditions; and that the incorporation of this multisensory information does not depend on an alert brain.
Collapse
|
49
|
Cuppini C, Ursino M, Magosso E, Rowland BA, Stein BE. An emergent model of multisensory integration in superior colliculus neurons. Front Integr Neurosci 2010; 4:6. [PMID: 20431725 PMCID: PMC2861478 DOI: 10.3389/fnint.2010.00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/03/2010] [Indexed: 11/21/2022] Open
Abstract
Neurons in the cat superior colliculus (SC) integrate information from different senses to enhance their responses to cross-modal stimuli. These multisensory SC neurons receive multiple converging unisensory inputs from many sources; those received from association cortex are critical for the manifestation of multisensory integration. The mechanisms underlying this characteristic property of SC neurons are not completely understood, but can be clarified with the use of mathematical models and computer simulations. Thus the objective of the current effort was to present a plausible model that can explain the main physiological features of multisensory integration based on the current neurological literature regarding the influences received by SC from cortical and subcortical sources. The model assumes the presence of competitive mechanisms between inputs, nonlinearities in NMDA receptor responses, and provides a priori synaptic weights to mimic the normal responses of SC neurons. As a result, it provides a basis for understanding the dependence of multisensory enhancement on an intact association cortex, and simulates the changes in the SC response that occur during NMDA receptor blockade. Finally, it makes testable predictions about why significant response differences are obtained in multisensory SC neurons when they are confronted with pairs of cross-modal and within-modal stimuli. By postulating plausible biological mechanisms to complement those that are already known, the model provides a basis for understanding how SC neurons are capable of engaging in this remarkable process.
Collapse
Affiliation(s)
- Cristiano Cuppini
- Department of Electronics, Computer Science and Systems, University of Bologna Bologna, Italy
| | | | | | | | | |
Collapse
|
50
|
Adult plasticity in multisensory neurons: short-term experience-dependent changes in the superior colliculus. J Neurosci 2010; 29:15910-22. [PMID: 20016107 DOI: 10.1523/jneurosci.4041-09.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multisensory neurons in the superior colliculus (SC) have the capability to integrate signals that belong to the same event, despite being conveyed by different senses. They develop this capability during early life as experience is gained with the statistics of cross-modal events. These adaptations prepare the SC to deal with the cross-modal events that are likely to be encountered throughout life. Here, we found that neurons in the adult SC can also adapt to experience with sequentially ordered cross-modal (visual-auditory or auditory-visual) cues, and that they do so over short periods of time (minutes), as if adapting to a particular stimulus configuration. This short-term plasticity was evident as a rapid increase in the magnitude and duration of responses to the first stimulus, and a shortening of the latency and increase in magnitude of the responses to the second stimulus when they are presented in sequence. The result was that the two responses appeared to merge. These changes were stable in the absence of experience with competing stimulus configurations, outlasted the exposure period, and could not be induced by equivalent experience with sequential within-modal (visual-visual or auditory-auditory) stimuli. A parsimonious interpretation is that the additional SC activity provided by the second stimulus became associated with, and increased the potency of, the afferents responding to the preceding stimulus. This interpretation is consistent with the principle of spike-timing-dependent plasticity, which may provide the basic mechanism for short term or long term plasticity and be operative in both the adult and neonatal SC.
Collapse
|