1
|
Sun H, Zhang H, Ross A, Wang TT, Al-Chami A, Wu SH. Developmentally Regulated Rebound Depolarization Enhances Spike Timing Precision in Auditory Midbrain Neurons. Front Cell Neurosci 2020; 14:236. [PMID: 32848625 PMCID: PMC7424072 DOI: 10.3389/fncel.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
Collapse
Affiliation(s)
- Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hui Zhang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Aycheh Al-Chami
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Shu Hui Wu
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Gourévitch B, Mahrt EJ, Bakay W, Elde C, Portfors CV. GABA A receptors contribute more to rate than temporal coding in the IC of awake mice. J Neurophysiol 2020; 123:134-148. [PMID: 31721644 DOI: 10.1152/jn.00377.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Speech is our most important form of communication, yet we have a poor understanding of how communication sounds are processed by the brain. Mice make great model organisms to study neural processing of communication sounds because of their rich repertoire of social vocalizations and because they have brain structures analogous to humans, such as the auditory midbrain nucleus inferior colliculus (IC). Although the combined roles of GABAergic and glycinergic inhibition on vocalization selectivity in the IC have been studied to a limited degree, the discrete contributions of GABAergic inhibition have only rarely been examined. In this study, we examined how GABAergic inhibition contributes to shaping responses to pure tones as well as selectivity to complex sounds in the IC of awake mice. In our set of long-latency neurons, we found that GABAergic inhibition extends the evoked firing rate range of IC neurons by lowering the baseline firing rate but maintaining the highest probability of firing rate. GABAergic inhibition also prevented IC neurons from bursting in a spontaneous state. Finally, we found that although GABAergic inhibition shaped the spectrotemporal response to vocalizations in a nonlinear fashion, it did not affect the neural code needed to discriminate vocalizations, based either on spiking patterns or on firing rate. Overall, our results emphasize that even if GABAergic inhibition generally decreases the firing rate, it does so while maintaining or extending the abilities of neurons in the IC to code the wide variety of sounds that mammals are exposed to in their daily lives.NEW & NOTEWORTHY GABAergic inhibition adds nonlinearity to neuronal response curves. This increases the neuronal range of evoked firing rate by reducing baseline firing. GABAergic inhibition prevents bursting responses from neurons in a spontaneous state, reducing noise in the temporal coding of the neuron. This could result in improved signal transmission to the cortex.
Collapse
Affiliation(s)
- Boris Gourévitch
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France.,CNRS, France
| | - Elena J Mahrt
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Warren Bakay
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Cameron Elde
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, Vancouver, Washington
| |
Collapse
|
3
|
Wong AB, Borst JGG. Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging. eLife 2019; 8:49091. [PMID: 31612853 PMCID: PMC6834370 DOI: 10.7554/elife.49091] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
The dorsal (DCIC) and lateral cortices (LCIC) of the inferior colliculus are major targets of the auditory and non-auditory cortical areas, suggesting a role in complex multimodal information processing. However, relatively little is known about their functional organization. We utilized in vivo two-photon Ca2+ imaging in awake mice expressing GCaMP6s in GABAergic or non-GABAergic neurons in the IC to investigate their spatial organization. We found different classes of temporal responses, which we confirmed with simultaneous juxtacellular electrophysiology. Both GABAergic and non-GABAergic neurons showed spatial microheterogeneity in their temporal responses. In contrast, a robust, double rostromedial-caudolateral gradient of frequency tuning was conserved between the two groups, and even among the subclasses. This, together with the existence of a subset of neurons sensitive to spontaneous movements, provides functional evidence for redefining the border between DCIC and LCIC.
Collapse
Affiliation(s)
- Aaron Benson Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Hörpel SG, Firzlaff U. Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features. J Neurophysiol 2019; 121:1501-1512. [PMID: 30785811 DOI: 10.1152/jn.00748.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bats use a large repertoire of calls for social communication. In the bat Phyllostomus discolor, social communication calls are often characterized by sinusoidal amplitude and frequency modulations with modulation frequencies in the range of 100-130 Hz. However, peaks in mammalian auditory cortical modulation transfer functions are typically limited to modulation frequencies below 100 Hz. We investigated the coding of sinusoidally amplitude modulated sounds in auditory cortical neurons in P. discolor by constructing rate and temporal modulation transfer functions. Neuronal responses to playbacks of various communication calls were additionally recorded and compared with the neurons' responses to sinusoidally amplitude-modulated sounds. Cortical neurons in the posterior dorsal field of the auditory cortex were tuned to unusually high modulation frequencies: rate modulation transfer functions often peaked around 130 Hz (median: 87 Hz), and the median of the highest modulation frequency that evoked significant phase-locking was also 130 Hz. Both values are much higher than reported from the auditory cortex of other mammals, with more than 51% of the units preferring modulation frequencies exceeding 100 Hz. Conspicuously, the fast modulations preferred by the neurons match the fast amplitude and frequency modulations of prosocial, and mostly of aggressive, communication calls in P. discolor. We suggest that the preference for fast amplitude modulations in the P. discolor dorsal auditory cortex serves to reliably encode the fast modulations seen in their communication calls. NEW & NOTEWORTHY Neural processing of temporal sound features is crucial for the analysis of communication calls. In bats, these calls are often characterized by fast temporal envelope modulations. Because auditory cortex neurons typically encode only low modulation frequencies, it is unclear how species-specific vocalizations are cortically processed. We show that auditory cortex neurons in the bat Phyllostomus discolor encode fast temporal envelope modulations. This property improves response specificity to communication calls and thus might support species-specific communication.
Collapse
Affiliation(s)
- Stephen Gareth Hörpel
- Chair of Zoology, Department of Animal Sciences, Technical University of Munich , Freising , Germany
| | - Uwe Firzlaff
- Chair of Zoology, Department of Animal Sciences, Technical University of Munich , Freising , Germany
| |
Collapse
|
5
|
Butman JA, Suga N. Inhibitory mechanisms shaping delay-tuned combination-sensitivity in the auditory cortex and thalamus of the mustached bat. Hear Res 2019; 373:71-84. [PMID: 30612026 DOI: 10.1016/j.heares.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Delay-tuned auditory neurons of the mustached bat show facilitative responses to a combination of signal elements of a biosonar pulse-echo pair with a specific echo delay. The subcollicular nuclei produce latency-constant phasic on-responding neurons, and the inferior colliculus produces delay-tuned combination-sensitive neurons, designated "FM-FM" neurons. The combination-sensitivity is a facilitated response to the coincidence of the excitatory rebound following glycinergic inhibition to the pulse (1st harmonic) and the short-latency response to the echo (2nd-4th harmonics). The facilitative response of thalamic FM-FM neurons is mediated by glutamate receptors (NMDA and non-NMDA receptors). Different from collicular FM-FM neurons, thalamic ones respond more selectively to pulse-echo pairs than individual signal elements. A number of differences in response properties between collicular and thalamic or cortical FM-FM neurons have been reported. However, differences between thalamic and cortical FM-FM neurons have remained to be studied. Here, we report that GABAergic inhibition controls the duration of burst of spikes of facilitative responses of thalamic FM-FM neurons and sharpens the delay tuning of cortical ones. That is, intra-cortical inhibition sharpens the delay tuning of cortical FM-FM neurons that is potentially broad because of divergent/convergent thalamo-cortical projections. Compared with thalamic neurons, cortical ones tend to show sharper delay tuning, longer response duration, and larger facilitation index. However, those differences are statistically insignificant.
Collapse
Affiliation(s)
- John A Butman
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Kopp-Scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends Neurosci 2018; 41:712-728. [DOI: 10.1016/j.tins.2018.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/17/2022]
|
7
|
Suzuki M, Suga N. Acuity in ranging based on delay-tuned combination-sensitive neurons in the auditory cortex of mustached bats. Hear Res 2017; 350:189-204. [PMID: 28505528 DOI: 10.1016/j.heares.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
A 1.0-ms echo delay from an emitted bio-sonar pulse at 25 °C corresponds to a 17.3-cm target distance. In the auditory cortex of the mustached bat, Pteronotus parnellii, neurons tuned to a specific delay (best delay) of an echo from an emitted pulse are clustered in the FF, dorsal fringe and ventral fringe areas. ("FF" stands for the frequency-modulated components of a pulse and its echo.) Those delay-tuned neurons are systematically arranged in the FF area according to their best delays and form a 18-ms-long delay axis. Using the neurophysiological data, the theoretical acuity at a 75% correct level was computed as just-noticeable changes in (a) the location of maximally responding delay-tuned neurons, (b) the location of the center of all responses in the FF area, and (c) the weighted sum of responses of all delay-tuned neurons. The acuity is range-dependent: the shorter the target range, the higher the acuity is. The just-noticeable changes in target range are 7.57-46.2, 0.50-2.32 and 0.22-2.53 mm at the target ranges of up to 140 cm for (a), (b) and (c), respectively. When the dorsal and ventral fringe areas are included in the computation, the just-noticeable changes become smaller than those in the FF area alone. Those acuities computed are comparable to certain behavioral acuities.
Collapse
Affiliation(s)
- Masakiyo Suzuki
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds. Proc Natl Acad Sci U S A 2016; 113:E1927-35. [PMID: 26976602 DOI: 10.1073/pnas.1520971113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sound duration is important in acoustic communication, including speech recognition in humans. Although duration-selective auditory neurons have been found, the underlying mechanisms are unclear. To investigate these mechanisms we combined in vivo whole-cell patch recordings from midbrain neurons, extraction of excitatory and inhibitory conductances, and focal pharmacological manipulations. We show that selectivity for short-duration stimuli results from integration of short-latency, sustained inhibition with delayed, phasic excitation; active membrane properties appeared to amplify responses to effective stimuli. Blocking GABAA receptors attenuated stimulus-related inhibition, revealed suprathreshold excitation at all stimulus durations, and decreased short-pass selectivity without changing resting potentials. Blocking AMPA and NMDA receptors to attenuate excitation confirmed that inhibition tracks stimulus duration and revealed no evidence of postinhibitory rebound depolarization inherent to coincidence models of duration selectivity. These results strongly support an anticoincidence mechanism of short-pass selectivity, wherein inhibition and suprathreshold excitation show greatest temporal overlap for long duration stimuli.
Collapse
|
9
|
Synaptic mechanisms shaping delay-tuned combination-sensitivity in the auditory thalamus of mustached bats. Hear Res 2016; 331:69-82. [DOI: 10.1016/j.heares.2015.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
|
10
|
Kössl M, Hechavarria J, Voss C, Schaefer M, Vater M. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception? Eur J Neurosci 2015; 41:518-32. [PMID: 25728173 DOI: 10.1111/ejn.12801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/28/2023]
Abstract
Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.
Collapse
Affiliation(s)
- Manfred Kössl
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Max-von-Laue-Str.13, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
11
|
Suga N. Neural processing of auditory signals in the time domain: Delay-tuned coincidence detectors in the mustached bat. Hear Res 2015; 324:19-36. [DOI: 10.1016/j.heares.2015.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022]
|
12
|
Sanchez J, Ghelani S, Otto-Meyer S. From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience 2015; 285:248-59. [DOI: 10.1016/j.neuroscience.2014.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/07/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
13
|
Abstract
Frequency modulated (FM) sweeps are common in species-specific vocalizations, including human speech. Auditory neurons selective for the direction and rate of frequency change in FM sweeps are present across species, but the synaptic mechanisms underlying such selectivity are only beginning to be understood. Even less is known about mechanisms of experience-dependent changes in FM sweep selectivity. We present three network models of synaptic mechanisms of FM sweep direction and rate selectivity that explains experimental data: (1) The 'facilitation' model contains frequency selective cells operating as coincidence detectors, summing up multiple excitatory inputs with different time delays. (2) The 'duration tuned' model depends on interactions between delayed excitation and early inhibition. The strength of delayed excitation determines the preferred duration. Inhibitory rebound can reinforce the delayed excitation. (3) The 'inhibitory sideband' model uses frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections results in neurons responsive to sweeps in a single direction of sufficient sweep rate. Variations of these properties, can explain the diversity of rate-dependent direction selectivity seen across species. We show that the inhibitory sideband model can be trained using spike timing dependent plasticity (STDP) to develop direction selectivity from a non-selective network. These models provide a means to compare the proposed synaptic and spectrotemporal mechanisms of FM sweep processing and can be utilized to explore cellular mechanisms underlying experience- or training-dependent changes in spectrotemporal processing across animal models. Given the analogy between FM sweeps and visual motion, these models can serve a broader function in studying stimulus movement across sensory epithelia.
Collapse
|
14
|
Razak KA, Fuzessery ZM. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat. Dev Neurobiol 2014; 75:1125-39. [PMID: 25142131 DOI: 10.1002/dneu.22226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/27/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022]
Abstract
Studies of birdsongs and neural selectivity for songs have provided important insights into principles of concurrent behavioral and auditory system development. Relatively little is known about mammalian auditory system development in terms of vocalizations or other behaviorally relevant sounds. This review suggests echolocating bats are suitable mammalian model systems to understand development of auditory behaviors. The simplicity of echolocation calls with known behavioral relevance and strong neural selectivity provides a platform to address how natural experience shapes cortical receptive field (RF) mechanisms. We summarize recent studies in the pallid bat that followed development of echolocation calls and cortical processing of such calls. We also discuss similar studies in the mustached bat for comparison. These studies suggest: (1) there are different developmental sensitive periods for different acoustic features of the same vocalization. The underlying basis is the capacity for some components of the RF to be modified independent of others. Some RF computations and maps involved in call processing are present even before the cochlea is mature and well before use of echolocation in flight. Others develop over a much longer time course. (2) Normal experience is required not just for refinement, but also for maintenance, of response properties that develop in an experience independent manner. (3) Experience utilizes millisecond range changes in timing of inhibitory and excitatory RF components as substrates to shape vocalization selectivity. We suggest that bat species and call diversity provide a unique opportunity to address developmental constraints in the evolution of neural mechanisms of vocalization processing.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, California
| | - Zoltan M Fuzessery
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
15
|
Ono M, Oliver DL. Asymmetric temporal interactions of sound-evoked excitatory and inhibitory inputs in the mouse auditory midbrain. J Physiol 2014; 592:3647-69. [PMID: 24951623 DOI: 10.1113/jphysiol.2014.275446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the auditory midbrain, synaptic mechanisms responsible for the precise temporal coding of inputs in the brainstem are absent. Instead, in the inferior colliculus (IC), the diverse temporal firing patterns must be coded by other synaptic mechanisms, about which little is known. Here, we demonstrate the temporal characteristics of sound-evoked excitatory and inhibitory postsynaptic currents (seEPSCs and seIPSCs, respectively) in vivo in response to long-duration tones. The seEPSCs and seIPSCs differ in the variability of their temporal properties. The seEPSCs have either early or late current peaks, and the early-peaked currents may be either transient or sustained varieties. The seIPSCs have only early-peaked sustained responses but often have offset responses. When measured in a single neuron, the seIPSC peaks usually follow early, transient seEPSCs, but the seIPSCs precede latest-peaking seEPSCs. A model of the firing produced by the integration of asymmetric seEPSCs and seIPSCs showed that the temporal pattern of the early-peaked sustained neurons was easily modified by changing the parameters of the seIPSC. These results suggest that the considerable variability in the peak time and duration of the seEPSCs shapes the overall time course of firing and often precedes or follows the less variable seIPSC. Despite this, the inhibitory currents are potent in modifying the firing patterns, and the inhibitory response to sound offset appears to be one area where the integration of excitatory and inhibitory synaptic currents is lacking. Thus, the integration of sound-evoked activity in the IC often employs the asymmetric temporal interaction of excitatory and inhibitory synaptic currents to shape the firing pattern of the neuron.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|
16
|
Dimitrov AG, Cummins GI, Mayko ZM, Portfors CV. Inhibition does not affect the timing code for vocalizations in the mouse auditory midbrain. Front Physiol 2014; 5:140. [PMID: 24795640 PMCID: PMC3997027 DOI: 10.3389/fphys.2014.00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Many animals use a diverse repertoire of complex acoustic signals to convey different types of information to other animals. The information in each vocalization therefore must be coded by neurons in the auditory system. One way in which the auditory system may discriminate among different vocalizations is by having highly selective neurons, where only one or two different vocalizations evoke a strong response from a single neuron. Another strategy is to have specific spike timing patterns for particular vocalizations such that each neural response can be matched to a specific vocalization. Both of these strategies seem to occur in the auditory midbrain of mice. The neural mechanisms underlying rate and time coding are unclear, however, it is likely that inhibition plays a role. Here, we examined whether inhibition is involved in shaping neural selectivity to vocalizations via rate and/or time coding in the mouse inferior colliculus (IC). We examined extracellular single unit responses to vocalizations before and after iontophoretically blocking GABAA and glycine receptors in the IC of awake mice. We then applied a number of neurometrics to examine the rate and timing information of individual neurons. We initially evaluated the neuronal responses using inspection of the raster plots, spike-counting measures of response rate and stimulus preference, and a measure of maximum available stimulus-response mutual information. Subsequently, we used two different event sequence distance measures, one based on vector space embedding, and one derived from the Victor/Purpura D q metric, to direct hierarchical clustering of responses. In general, we found that the most salient feature of pharmacologically blocking inhibitory receptors in the IC was the lack of major effects on the functional properties of IC neurons. Blocking inhibition did increase response rate to vocalizations, as expected. However, it did not significantly affect spike timing, or stimulus selectivity of the studied neurons. We observed two main effects when inhibition was locally blocked: (1) Highly selective neurons maintained their selectivity and the information about the stimuli did not change, but response rate increased slightly. (2) Neurons that responded to multiple vocalizations in the control condition, also responded to the same stimuli in the test condition, with similar timing and pattern, but with a greater number of spikes. For some neurons the information rate generally increased, but the information per spike decreased. In many of these neurons, vocalizations that generated no responses in the control condition generated some response in the test condition. Overall, we found that inhibition in the IC does not play a substantial role in creating the distinguishable and reliable neuronal temporal spike patterns in response to different vocalizations.
Collapse
Affiliation(s)
- Alexander G Dimitrov
- Department of Mathematics, Washington State University Vancouver Vancouver, WA, USA
| | - Graham I Cummins
- Department of Mathematics, Washington State University Vancouver Vancouver, WA, USA
| | - Zachary M Mayko
- School of Biological Sciences, Washington State University Vancouver Vancouver, WA, USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University Vancouver Vancouver, WA, USA
| |
Collapse
|
17
|
Hechavarría JC, Kössl M. Footprints of inhibition in the response of cortical delay-tuned neurons of bats. J Neurophysiol 2014; 111:1703-16. [PMID: 24478161 DOI: 10.1152/jn.00777.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of echo-delay-tuned neurons that encode target distance were investigated in the dorsal auditory cortex of anesthetized short-tailed fruit bats (Carollia perspicillata). This species echolocates using short downward frequency-modulated (FM) biosonar signals. In response to FM sweeps of increasing level, 60 out of 131 studied neurons (47%) displayed a "paradoxical latency shift," i.e., longer response latency to loud sounds and shorter latency to faint sounds. In addition, a disproportionately large number of neurons (80%) displayed nonmonotonic responses, i.e., weaker responses to loud sounds and stronger responses to faint sounds. We speculate that the observed paradoxical latency shift and nonmonotonic responses are extracellular footprints of inhibitory processes evoked by loud sounds and that they could represent a specialization for the processing of the emitted loud biosonar pulse. Supporting this idea is the fact that all studied neurons displayed strong response suppression when an artificial loud pulse and a faint echo were presented together at a nonoptimal delay. In 24 neurons, iontophoresis of bicuculline (an antagonist of A-type γ-aminobutyric acid receptors) did not remove inhibitory footprints but did increase the overall spike output, and in some cases it also modified the response bandwidth and shifted the neuron's "best delay." We suggest that inhibition could play a dual role in shaping delay tuning in different auditory stations. Below the cortex it participates in delay-tuning implementation and leaves a footprint that is measurable in cortical responses, while in the cortex it provides a substrate for an in situ control of neuronal selectivity.
Collapse
Affiliation(s)
- Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| | | |
Collapse
|
18
|
Kössl M, Hechavarria JC, Voss C, Macias S, Mora EC, Vater M. Neural maps for target range in the auditory cortex of echolocating bats. Curr Opin Neurobiol 2013; 24:68-75. [PMID: 24492081 DOI: 10.1016/j.conb.2013.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 11/25/2022]
Abstract
Computational brain maps as opposed to maps of receptor surfaces strongly reflect functional neuronal design principles. In echolocating bats, computational maps are established that topographically represent the distance of objects. These target range maps are derived from the temporal delay between emitted call and returning echo and constitute a regular representation of time (chronotopy). Basic features of these maps are innate, and in different bat species the map size and precision varies. An inherent advantage of target range maps is the implementation of mechanisms for lateral inhibition and excitatory feedback. Both can help to focus target ranging depending on the actual echolocation situation. However, these maps are not absolutely necessary for bat echolocation since there are bat species without cortical target-distance maps, which use alternative ensemble computation mechanisms.
Collapse
Affiliation(s)
- M Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany.
| | - J C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany
| | - C Voss
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany
| | - S Macias
- Department of Animal and Human Biology, Faculty of Biology, Havana University, calle 25 No. 455 entre J e I, Vedado, CP 10400, Ciudad de La Habana, Cuba
| | - E C Mora
- Department of Animal and Human Biology, Faculty of Biology, Havana University, calle 25 No. 455 entre J e I, Vedado, CP 10400, Ciudad de La Habana, Cuba
| | - M Vater
- Institute for Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 26, 14476 Golm, Germany
| |
Collapse
|
19
|
Hoffmann S, Warmbold A, Wiegrebe L, Firzlaff U. Spatiotemporal contrast enhancement and feature extraction in the bat auditory midbrain and cortex. J Neurophysiol 2013; 110:1257-68. [PMID: 23785132 DOI: 10.1152/jn.00226.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Navigating on the wing in complete darkness is a challenging task for echolocating bats. It requires the detailed analysis of spatial and temporal information gained through echolocation. Thus neural encoding of spatiotemporal echo information is a major function in the bat auditory system. In this study we presented echoes in virtual acoustic space and used a reverse-correlation technique to investigate the spatiotemporal response characteristics of units in the inferior colliculus (IC) and the auditory cortex (AC) of the bat Phyllostomus discolor. Spatiotemporal response maps (STRMs) of IC units revealed an organization of suppressive and excitatory regions that provided pronounced contrast enhancement along both the time and azimuth axes. Most IC units showed either spatially centralized short-latency excitation spatiotemporally imbedded in strong suppression, or the opposite, i.e., central short-latency suppression imbedded in excitation. This complementary arrangement of excitation and suppression was very rarely seen in AC units. In contrast, STRMs in the AC revealed much less suppression, sharper spatiotemporal tuning, and often a special spatiotemporal arrangement of two excitatory regions. Temporal separation of excitatory regions ranged up to 25 ms and was thus in the range of temporal delays occurring in target ranging in bats in a natural situation. Our data indicate that spatiotemporal processing of echo information in the bat auditory midbrain and cortex serves very different purposes: Whereas the spatiotemporal contrast enhancement provided by the IC contributes to echo-feature extraction, the AC reflects the result of this processing in terms of a high selectivity and task-oriented recombination of the extracted features.
Collapse
Affiliation(s)
- Susanne Hoffmann
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany; and
| | | | | | | |
Collapse
|
20
|
Neurons in the inferior colliculus of the mustached bat are tuned both to echo-delay and sound duration. Neuroreport 2013; 24:404-9. [DOI: 10.1097/wnr.0b013e3283603f6d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Mayko ZM, Roberts PD, Portfors CV. Inhibition shapes selectivity to vocalizations in the inferior colliculus of awake mice. Front Neural Circuits 2012; 6:73. [PMID: 23087616 PMCID: PMC3468920 DOI: 10.3389/fncir.2012.00073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/25/2012] [Indexed: 12/04/2022] Open
Abstract
The inferior colliculus (IC) is a major center for integration of auditory information as it receives ascending projections from a variety of brainstem nuclei as well as descending projections from the thalamus and auditory cortex. The ascending projections are both excitatory and inhibitory and their convergence at the IC results in a microcircuitry that is important for shaping responses to simple, binaural, and modulated sounds in the IC. Here, we examined the role inhibition plays in shaping selectivity to vocalizations in the IC of awake, normal-hearing adult mice (CBA/CaJ strain). Neurons in the IC of mice show selectivity in their responses to vocalizations, and we hypothesized that this selectivity is created by inhibitory microcircuitry in the IC. We compared single unit responses in the IC to pure tones and a variety of ultrasonic mouse vocalizations before and after iontophoretic application of GABA(A) receptor (GABA(A)R) and glycine receptor (GlyR) antagonists. The most pronounced effects of blocking GABA(A)R and GlyR on IC neurons were to increase spike rates and broaden excitatory frequency tuning curves in response to pure tone stimuli, and to decrease selectivity to vocalizations. Thus, inhibition plays an important role in creating selectivity to vocalizations in the IC.
Collapse
Affiliation(s)
- Zachary M. Mayko
- School of Biological Sciences, Washington State UniversityVancouver, WA, USA
| | - Patrick D. Roberts
- Department of Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA
| | | |
Collapse
|
22
|
Macías S, Mora EC, Hechavarría JC, Kössl M. Properties of echo delay-tuning receptive fields in the inferior colliculus of the mustached bat. Hear Res 2012; 286:1-8. [DOI: 10.1016/j.heares.2012.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
23
|
Abstract
Combination sensitivity in central auditory neurons is a form of spectrotemporal integration in which excitatory responses to sounds at one frequency are facilitated by sounds within a distinctly different frequency band. Combination-sensitive neurons respond selectively to acoustic elements of sonar echoes or social vocalizations. In mustached bats, this response property originates in high-frequency representations of the inferior colliculus (IC) and depends on low and high frequency-tuned glycinergic inputs. To identify the source of these inputs, we combined glycine immunohistochemistry with retrograde tract tracing. Tracers were deposited at high-frequency (>56 kHz), combination-sensitive recording sites in IC. Most glycine-immunopositive, retrogradely labeled cells were in ipsilateral ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL), with some double labeling in ipsilateral lateral and medial superior olivary nuclei (LSO and MSO). Generally, double-labeled cells were in expected high-frequency tonotopic areas, but some VNLL and INLL labeling appeared to be in low-frequency representations. To test whether these nuclei provide low frequency-tuned input to the high-frequency IC, we combined retrograde tracing from IC combination-sensitive sites with anterograde tracing from low frequency-tuned sites in the anteroventral cochlear nucleus (AVCN). Only VNLL and INLL contained retrogradely labeled cells near (≤50 μm) anterogradely labeled boutons. These cells likely receive excitatory low-frequency input from AVCN. Results suggest that combination-sensitive facilitation arises through convergence of high-frequency glycinergic inputs from VNLL, INLL, or MSO and low-frequency glycinergic inputs from VNLL or INLL. This work establishes an anatomical basis for spectrotemporal integration in the auditory midbrain and a functional role for monaural nuclei of the lateral lemniscus.
Collapse
|
24
|
Williams AJ, Fuzessery ZM. Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat. J Neurophysiol 2011; 106:2523-35. [PMID: 21775712 DOI: 10.1152/jn.00569.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple mechanisms have been shown to shape frequency-modulated (FM) selectivity within the central nucleus of the inferior colliculus (IC) in the pallid bat. In this study we focus on the mechanisms associated with sideband inhibition. The relative arrival time of inhibition compared with excitation can be used to predict FM responses as measured with a two-tone inhibition paradigm. An early-arriving low-frequency inhibition (LFI) prevents responses to upward sweeps and thus shapes direction selectivity. A late-arriving high-frequency inhibition (HFI) suppresses slow FM sweeps and thus shapes rate selectivity for downward sweeps. Iontophoretic application of gabazine (GBZ) to block GABA(A) receptors or strychnine (Strych) to block glycine receptors was used to assess the effects of removal of inhibition on each form of FM selectivity. GBZ and Strych had a similar effect on FM direction selectivity, reducing selectivity in up to 86% of neurons when both drugs were coapplied. FM rate selectivity was more resistant to drug application with less than 38% of neurons affected. In addition, only Strych could eliminate FM rate selectivity, whereas GBZ alone was ineffective. The loss of FM selectivity was directly correlated to a loss of the respective inhibitory sideband that shapes that form of selectivity. The elimination of LFI correlated to a loss of FM direction selectivity, whereas elimination of HFI correlated to a loss of FM rate selectivity. Results indicate that 1) although the majority of FM direction selectivity is created within the IC, the majority of rate selectivity is inherited from lower levels of the auditory system, 2) a loss of LFI corresponds to a loss of FM direction selectivity and is created through either GABAergic or glycinergic input, and 3) a loss of HFI corresponds to a loss of FM rate selectivity and is created mainly through glycinergic input.
Collapse
Affiliation(s)
- Anthony J Williams
- Dept. of Zoology and Physiology, Univ. of Wyoming, 1000 E. Univ. Ave., Laramie, WY 82071, USA
| | | |
Collapse
|
25
|
Holtzman T, Sivam V, Zhao T, Frey O, van der Wal PD, de Rooij NF, Dalley JW, Edgley SA. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J Physiol 2011; 589:3837-54. [PMID: 21669981 DOI: 10.1113/jphysiol.2011.207167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite a wealth of in vitro and modelling studies it remains unclear how neuronal populations in the cerebellum interact in vivo. We address the issue of how the cerebellar input layer processes sensory information, with particular focus on the granule cells (input relays) and their counterpart inhibitory interneurones, Golgi cells. Based on the textbook view, granule cells excite Golgi cells via glutamate forming a negative feedback loop. However, Golgi cells express inhibitory mGluR2 receptors suggesting an inhibitory role for glutamate. We set out to test this glutamatergic paradox in Golgi cells. Here we show that granule cells and Golgi cells interact through extra-synaptic signalling mechanisms during sensory information processing, as well as synaptic mechanisms. We demonstrate that such interactions depend on granule cell-derived glutamate acting via inhibitory mGluR2 receptors leading causally to the suppression of Golgi cell activity for several hundreds of milliseconds. We further show that granule cell-derived inhibition of Golgi cell activity is regulated by GABA-dependent extra-synaptic Golgi cell inhibition of granule cells, identifying a regulatory loop in which glutamate and GABA may be critical regulators of Golgi cell–granule cell functional activity. Thus, granule cells may promote their own prolonged activity via paradoxical feed-forward inhibition of Golgi cells, thereby enabling information processing over long timescales.
Collapse
Affiliation(s)
- Tahl Holtzman
- Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge CB2 3DY,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Recovery cycles of single-on and double-on neurons in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 2011; 1385:114-26. [DOI: 10.1016/j.brainres.2011.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|
27
|
Wenstrup JJ, Portfors CV. Neural processing of target distance by echolocating bats: functional roles of the auditory midbrain. Neurosci Biobehav Rev 2011; 35:2073-83. [PMID: 21238485 DOI: 10.1016/j.neubiorev.2010.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/29/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these "delay-tuned", "FM-FM" response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target.
Collapse
Affiliation(s)
- Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, United States.
| | | |
Collapse
|
28
|
Pollak GD. Discriminating among complex signals: the roles of inhibition for creating response selectivities. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:625-40. [DOI: 10.1007/s00359-010-0602-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 10/11/2010] [Accepted: 10/17/2010] [Indexed: 12/18/2022]
|
29
|
Recovery Cycle of Inferior Collicular Neurons Determine Pulse Following Rate in CF-FM Bat*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Yavuzoglu A, Schofield BR, Wenstrup JJ. Substrates of auditory frequency integration in a nucleus of the lateral lemniscus. Neuroscience 2010; 169:906-19. [PMID: 20451586 PMCID: PMC2904423 DOI: 10.1016/j.neuroscience.2010.04.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/18/2010] [Accepted: 04/20/2010] [Indexed: 11/27/2022]
Abstract
In the intermediate nucleus of the lateral lemniscus (INLL), some neurons display a form of spectral integration in which excitatory responses to sounds at their best frequency are inhibited by sounds within a frequency band at least one octave lower. Previous work showed that this response property depends on low-frequency-tuned glycinergic input. To identify all sources of inputs to these INLL neurons, and in particular the low-frequency glycinergic input, we combined retrograde tracing with immunohistochemistry for the neurotransmitter glycine. We deposited a retrograde tracer at recording sites displaying either high best frequencies (>75 kHz) in conjunction with combination-sensitive inhibition, or at sites displaying low best frequencies (23-30 kHz). Most retrogradely labeled cells were located in the ipsilateral medial nucleus of the trapezoid body (MNTB) and contralateral anteroventral cochlear nucleus. Consistent labeling, but in fewer numbers, was observed in the ipsilateral lateral nucleus of the trapezoid body (LNTB), contralateral posteroventral cochlear nucleus, and a few other brainstem nuclei. When tracer deposits were combined with glycine immunohistochemistry, most double-labeled cells were observed in the ipsilateral MNTB (84%), with fewer in LNTB (13%). After tracer deposits at combination-sensitive recording sites, a striking result was that MNTB labeling occurred in both medial and lateral regions. This labeling appeared to overlap the MNTB labeling that resulted from tracer deposits in low-frequency recording sites of INLL. These findings suggest that MNTB is the most likely source of low-frequency glycinergic input to INLL neurons with high best frequencies and combination-sensitive inhibition. This work establishes an anatomical basis for frequency integration in the auditory brainstem.
Collapse
Affiliation(s)
- A Yavuzoglu
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, USA
| | | | | |
Collapse
|
31
|
Brimijoin WO, O'Neill WE. Patterned tone sequences reveal non-linear interactions in auditory spectrotemporal receptive fields in the inferior colliculus. Hear Res 2010; 267:96-110. [PMID: 20430078 PMCID: PMC3978381 DOI: 10.1016/j.heares.2010.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
Linear measures of auditory receptive fields do not always fully account for a neuron's response to spectrotemporally-complex signals such as frequency-modulated sweeps (FM) and communication sounds. A possible source of this discrepancy is cross-frequency interactions, common response properties which may be missed by linear receptive fields but captured using two-tone masking. Using a patterned tonal sequence that included a balanced set of all possible tone-to-tone transitions, we have here combined the spectrotemporal receptive field with two-tone masking to measure spectrotemporal response maps (STRM). Recording from single units in the mustached bat inferior colliculus, we found significant non-linear interactions between sequential tones in all sampled units. In particular, tone-pair STRMs revealed three common features not visible in linear single-tone STRMs: 1) two-tone facilitative interactions, 2) frequency-specific suppression, and 3) post-stimulatory suppression in the absence of spiking. We also found a correlative relationship between these nonlinear receptive field features and sensitivity for different rates and directions of FM sweeps, dynamic features found in many vocalizations, including speech. The overwhelming prevalence of cross-frequency interactions revealed by this technique provides further evidence of the central auditory system's role as a pattern-detector, and underscores the need to include nonlinearity in measures of the receptive field.
Collapse
Affiliation(s)
- W Owen Brimijoin
- Department of Brain and Cognitive Sciences, College of Arts, Science, and Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
32
|
Williams AJ, Fuzessery ZM. Facilitatory mechanisms shape selectivity for the rate and direction of FM sweeps in the inferior colliculus of the pallid bat. J Neurophysiol 2010; 104:1456-71. [PMID: 20631213 DOI: 10.1152/jn.00598.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inferior colliculus (IC) of the pallid bat has a large percentage of neurons that respond selectively to the rate and direction of the bat's echolocation pulse, a downward FM sweep. Three underlying mechanisms have been previously described. Here we describe a fourth mechanism, facilitation, that shapes selectivity for both sweep rate and direction. The neurons studied are termed FM specialists, because they do not respond to tones. Most were selective for the downward sweep direction, and this preference was expressed even when presented with narrowband, 1 kHz sweeps that crossed only a fraction of their excitatory receptive fields. This selectivity was also expressed in response to two tones delayed in time, termed two-tone facilitation (TTF). Direction-selective neurons showed a greatly facilitated response when a higher-frequency tone preceded a lower-frequency tone, simulating conditions in a downward sweep. The degree of temporal asymmetry in facilitation accurately predicted direction selectivity. When the spectral difference between the two tones was increased, the best delay also increased and could be used to predict a neuron's preferred sweep rate. To determine whether TTF alone created rate and direction selectivity, low- and high-frequency inhibitory sidebands, which can also shape selectivity, were eliminated from sweeps. In most cases, selectivity persisted. These results support the idea of spectral delay lines that produce an overlap and summation of excitatory inputs only when a dynamic stimulus traverses a receptive field in one direction at a specific velocity.
Collapse
Affiliation(s)
- Anthony J Williams
- Dept. of Zoology and Physiology, Univ. of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
33
|
Fuzessery ZM, Razak KA, Williams AJ. Multiple mechanisms shape selectivity for FM sweep rate and direction in the pallid bat inferior colliculus and auditory cortex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:615-23. [PMID: 20596868 DOI: 10.1007/s00359-010-0554-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 12/21/2022]
Abstract
The inferior colliculus and auditory cortex of the pallid bat contain a large percentage of neurons that are highly selective for the direction and rate of the downward frequency modulated (FM) sweep of the bat's echolocation pulse. Approximately 25% of neurons tuned to the echolocation pulse respond exclusively to downward FM sweeps. This review focuses on the finding that this selectivity is generated by multiple mechanisms that may act alone or in concert. In the inferior colliculus, selectivity for sweep rate is shaped by at least three mechanisms: shortpass or bandpass tuning for signal duration, delayed high-frequency inhibition that prevents responses to slow sweep rates, and asymmetrical facilitation that occurs only when two tones are presented at appropriate delays. When acting alone, the three mechanisms can produce essentially identical rate selectivity. Direction selectivity can be produced by two mechanisms: an early low-frequency inhibition that prevents responses to upward sweeps, and the same asymmetrical two-tone inhibition that shapes rate tuning. All mechanisms except duration tuning are also present in the auditory cortex. Discussion centers on whether these mechanisms are redundant or complementary.
Collapse
Affiliation(s)
- Zoltan M Fuzessery
- Department 3166, Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
34
|
Pollak GD, Xie R, Gittelman JX, Andoni S, Li N. The dominance of inhibition in the inferior colliculus. Hear Res 2010; 274:27-39. [PMID: 20685288 DOI: 10.1016/j.heares.2010.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 11/16/2022]
Abstract
Almost all of the processing that occurs in the various lower auditory nuclei converges upon a common target in the central nucleus of the inferior colliculus (ICc) thus making the ICc the nexus of the auditory system. A variety of new response properties are formed in the ICc through the interactions among the excitatory and inhibitory inputs that converge upon it. Here we review studies that illustrate the dominant role inhibition plays in the ICc. We begin by reviewing studies of tuning curves and show how inhibition shapes the variety of tuning curves in the ICc through sideband inhibition. We then show how inhibition shapes selective response properties for complex signals, focusing on selectivity for the sweep direction of frequency modulations (FM). In the final section we consider results from in vivo whole-cell recordings that show how parameters of the incoming excitation and inhibition interact to shape directional selectivity. We show that post-synaptic potentials (PSPs) evoked by different signals can be similar but evoke markedly different spike-counts. In these cases, spike threshold acts as a non-linear amplifier that converts small differences in PSPs into large differences in spike output. Such differences between the inputs to a cell compared to the outputs from the same cell suggest that highly selective discharge properties can be created by only minor adjustments in the synaptic strengths evoked by one or both signals. These findings also suggest that plasticity of response features may be achieved with far less modifications in circuitry than previously supposed.
Collapse
Affiliation(s)
- George D Pollak
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
35
|
Hagemann C, Vater M, Kössl M. Comparison of properties of cortical echo delay-tuning in the short-tailed fruit bat and the mustached bat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:605-13. [PMID: 20446089 DOI: 10.1007/s00359-010-0530-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 11/26/2022]
Affiliation(s)
- Cornelia Hagemann
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Siesmayerstr. 70A, Frankfurt, Germany
| | | | | |
Collapse
|
36
|
Woolley SMN, Hauber ME, Theunissen FE. Developmental experience alters information coding in auditory midbrain and forebrain neurons. Dev Neurobiol 2010; 70:235-52. [PMID: 20039264 DOI: 10.1002/dneu.20783] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons.
Collapse
Affiliation(s)
- Sarah M N Woolley
- Department of Psychology, Columbia University, New York, New York 10027, USA.
| | | | | |
Collapse
|
37
|
Hoffmann S, Schuller G, Firzlaff U. Dynamic stimulation evokes spatially focused receptive fields in bat auditory cortex. Eur J Neurosci 2010; 31:371-85. [DOI: 10.1111/j.1460-9568.2009.07051.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Hagemann C, Esser KH, Kössl M. Chronotopically organized target-distance map in the auditory cortex of the short-tailed fruit bat. J Neurophysiol 2009; 103:322-33. [PMID: 19906883 DOI: 10.1152/jn.00595.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Topographic cortical representation of echo delay, the cue for target range, is an organizational feature implemented in the auditory cortices of certain bats dedicated to catch flying insects. Such cortical echo-delay maps provide a calibrated neural representation of object spatial distance. To assess general requirements for echo-delay computations, cortical delay sensitivity was examined in the short-tailed fruit bat Carollia perspicillata that uses frequency-modulated (FM) echolocation signals. Delay-tuned neurons with temporal specificity comparable to those of insectivorous bats are located within the high-frequency (HF) field of the auditory cortex. All recorded neurons in the HF field respond well to single pure-tone and FM-FM stimulus pairs. The neurons respond to identical FM harmonic components in echolocation pulse and delayed echo (e.g., FM(2)-FM(2)). Their characteristic delays (CDs) for low echo amplitudes range between 1 and 24 ms, which is comparable to other bat species. Maps of the topography of FM-FM neurons show that they are distributed across the entire HF area and organized along a rostrocaudal echo-delay axis representing object distance. Rostrally located neurons tuned to delays of 2-8 ms are overrepresented (66% of CDs). Neurons with longer delays (>/=10 ms) are located throughout the caudal half of the HF field. The delay-sensitive chronotopic area covers approximately 3.3 mm in rostrocaudal and approximately 3.7 mm in dorsoventral direction, which is comparable or slightly larger than the size of cortical delay-tuned areas in insectivorous constant frequency bats, the only other bat species for which cortical chronotopy has been demonstrated. This indicates that chronotopic cortical organization is not only used exclusively for precise insect localization in constant frequency bats but could also be of advantage for general orientation tasks.
Collapse
Affiliation(s)
- Cornelia Hagemann
- Institut für Zellbiologie und Neurowissenschaft, Goethe-University, Siesmayerstrasse 70A, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
39
|
Hernandes MS, Troncone LRP. Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm (Vienna) 2009; 116:1551-60. [DOI: 10.1007/s00702-009-0326-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/20/2009] [Indexed: 11/30/2022]
|
40
|
Peterson DC, Nataraj K, Wenstrup J. Glycinergic inhibition creates a form of auditory spectral integration in nuclei of the lateral lemniscus. J Neurophysiol 2009; 102:1004-16. [PMID: 19515958 DOI: 10.1152/jn.00040.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For analyses of complex sounds, many neurons integrate information across different spectral elements via suppressive effects that are distant from the neurons' excitatory tuning. In the mustached bat, suppression evoked by sounds within the first sonar harmonic (23-30 kHz) or in the subsonar band (<23 kHz) alters responsiveness to the higher best frequencies of many neurons. This study examined features and mechanisms associated with low-frequency (LF) suppression among neurons of the lateral lemniscal nuclei (NLL). We obtained extracellular recordings from neurons in the intermediate and ventral nuclei of the lateral lemniscus, observing different forms of LF suppression related to the two above-cited frequency bands. To understand the mechanisms underlying this suppression in NLL neurons, we examined the roles of glycinergic and GABAergic input through local microiontophoretic application of strychnine, an antagonist to glycine receptors (GlyRs), or bicuculline, an antagonist to gamma-aminobutyric acid type A receptors (GABA(A)Rs). With blockade of GABA(A)Rs, neurons showed an increase in firing rate to best frequency (BF) and/or LF tones but retained LF suppression of BF sounds. For neurons that displayed LF suppression tuned to 23-30 kHz, the suppression was eliminated or nearly eliminated by GlyR blockade. In contrast, GABA(A)R blockade did not eliminate nor had any consistent effect on suppression tuned to these frequencies. We conclude that LF suppression tuned in the 23- to 30-kHz range results from neuronal inhibition within the NLL via glycinergic inputs. For neurons displaying suppression tuned <23 kHz, neither GlyR nor GABAR blockade altered LF suppression. We conclude that such suppression originates at a lower auditory level, perhaps a result of cochlear mechanisms. These findings demonstrate that neuronal interactions within NLL create a particular form of LF suppression that contributes to the analysis of complex acoustic signals.
Collapse
Affiliation(s)
- Diana Coomes Peterson
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | | | |
Collapse
|
41
|
Kutscher A, Covey E. Functional role of GABAergic and glycinergic inhibition in the intermediate nucleus of the lateral lemniscus of the big brown bat. J Neurophysiol 2009; 101:3135-46. [PMID: 19369365 PMCID: PMC2694106 DOI: 10.1152/jn.00766.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 03/22/2009] [Indexed: 11/22/2022] Open
Abstract
The intermediate nucleus of the lateral lemniscus (INLL) is a major input to the inferior colliculus (IC), the auditory midbrain center where multiple pathways converge to create neurons selective for specific temporal features of sound. However, little is known about how INLL processes auditory information or how it contributes to integrative processes at the IC. INLL receives excitatory projections from the cochlear nucleus and inhibitory projections from the medial nucleus of the trapezoid body (MNTB), so it must perform some form of integration. To address the question of what role inhibitory synaptic inputs play in the INLL of the big brown bat (Eptesicus fuscus), we recorded sound-evoked responses of single neurons and iontophoretically applied bicuculline to block GABA(A) receptors or strychnine to block glycine receptors. Neither bicuculline nor strychnine had a consistent effect on response latency or frequency response areas. Bicuculline increased spike counts and response durations in most units, suggesting that GABAergic input suppressed the late part of the response and provided some gain control. Strychnine reduced the responses of some units with sustained discharge patterns to one or a few spikes at stimulus onset, but increased others. INLL is the only part of the auditory system where reduced responsiveness has been seen in vivo while blocking glycine. However, in vitro studies in the MNTB suggest that glycine can be facilitatory, possibly through presynaptic action. These results show that GABA consistently reduces spike counts and response durations, whereas glycine is suppressive in some INLL neurons but facilitatory in others.
Collapse
Affiliation(s)
- Andrew Kutscher
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525, USA
| | | |
Collapse
|
42
|
Gans D, Sheykholeslami K, Peterson DC, Wenstrup J. Temporal features of spectral integration in the inferior colliculus: effects of stimulus duration and rise time. J Neurophysiol 2009; 102:167-80. [PMID: 19403742 DOI: 10.1152/jn.91300.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This report examines temporal features of facilitation and suppression that underlie spectrally integrative responses to complex vocal signals. Auditory responses were recorded from 160 neurons in the inferior colliculus (IC) of awake mustached bats. Sixty-two neurons showed combination-sensitive facilitation: responses to best frequency (BF) signals were facilitated by well-timed signals at least an octave lower in frequency, in the range 16-31 kHz. Temporal features and strength of facilitation were generally unaffected by changes in duration of facilitating signals from 4 to 31 ms. Changes in stimulus rise time from 0.5 to 5.0 ms had little effect on facilitatory strength. These results suggest that low frequency facilitating inputs to high BF neurons have phasic-on temporal patterns and are responsive to stimulus rise times over the tested range. We also recorded from 98 neurons showing low-frequency (11-32 kHz) suppression of higher BF responses. Effects of changing duration were related to the frequency of suppressive signals. Signals<23 kHz usually evoked suppression sustained throughout signal duration. This and other features of such suppression are consistent with a cochlear origin that results in masking of responses to higher, near-BF signal frequencies. Signals in the 23- to 30-kHz range-frequencies in the first sonar harmonic-generally evoked phasic suppression of BF responses. This may result from neural inhibitory interactions within and below IC. In many neurons, we observed two or more forms of the spectral interactions described here. Thus IC neurons display temporally and spectrally complex responses to sound that result from multiple spectral interactions at different levels of the ascending auditory pathway.
Collapse
Affiliation(s)
- Donald Gans
- Department of Anatomy and Neurobiology, Northeastern Ohio University College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | | | | | | |
Collapse
|
43
|
Kopp-Scheinpflug C, Dehmel S, Tolnai S, Dietz B, Milenkovic I, Rübsamen R. Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience 2008; 157:432-45. [PMID: 18840508 DOI: 10.1016/j.neuroscience.2008.08.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/18/2022]
Abstract
Glycine is an inhibitory neurotransmitter activating a chloride conductance in the mammalian CNS. In vitro studies from brain slices revealed a novel presynaptic site of glycine action in the medial nucleus of the trapezoid body (MNTB) which increases the release of the excitatory transmitter glutamate from the calyx of Held. Here, we investigate the action of glycine on action potential firing of single MNTB neurons from the gerbil under acoustic stimulation in vivo. Iontophoretic application of the glycine receptor antagonist strychnine caused a significant decrease in spontaneous and sound-evoked firing rates throughout the neurons' excitatory response areas, with the largest changes at the respective characteristic frequency (CF). The decreased firing rate was accompanied by longer and more variable onset latencies of sound-evoked responses. Outside the neurons' excitatory response areas, firing rates increased during the application of strychnine due to a reduction of inhibitory sidebands, causing a broadening of frequency tuning. These results indicate that glycine enhances the efficacy for on-CF stimuli, while simultaneously suppressing synaptic transmission for off-CF stimuli. These in vivo results provide evidence of multiple excitatory and inhibitory glycine effects on the same neuronal population in the mature mammalian CNS.
Collapse
Affiliation(s)
- C Kopp-Scheinpflug
- Institute of Biology II, University of Leipzig, Talstrasse 33, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Hurley LM, Tracy JA, Bohorquez A. Serotonin 1B receptor modulates frequency response curves and spectral integration in the inferior colliculus by reducing GABAergic inhibition. J Neurophysiol 2008; 100:1656-67. [PMID: 18632894 DOI: 10.1152/jn.90536.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selectivity of sensory neurons for stimuli is often shaped by a balance between excitatory and inhibitory inputs, making this balance an effective target for regulation. In the inferior colliculus (IC), an auditory midbrain nucleus, the amplitude and selectivity of frequency response curves are altered by the neuromodulator serotonin, but the changes in excitatory-inhibitory balance that mediate this plasticity are not well understood. Previous findings suggest that the presynaptic 5-HT1B receptor may act to decrease the release of GABA onto IC neurons. Here, in vivo extracellular recording and iontophoresis of the selective 5-HT1B agonist CP93129 were used to characterize inhibition within and surrounding frequency response curves using two-tone protocols to indirectly measure inhibition as a decrease in spikes relative to an excitatory tone alone. The 5-HT1B agonist attenuated such two-tone spike reduction in a varied pattern among neurons, suggesting that the function of 5-HT1B modulation also varies. The hypothesis that the 5-HT1B receptor reduces inhibition was tested by comparing the effects of CP93129 and the GABAA antagonists bicuculline and gabazine in the same neurons. The effects of GABAA antagonists on spike count, tuning bandwidth, two-tone ratio, and temporal response characteristics mimicked those of CP93129 across the neuron population. GABAA antagonists also blocked or reduced the facilitation of evoked responses by CP93129. These results are all consistent with the reduction of GABAA-mediated inhibition by 5-HT1B receptors in the IC, resulting in an increase in the level of evoked responses in some neurons, and a decrease in spectral selectivity in others.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
45
|
Peterson DC, Voytenko S, Gans D, Galazyuk A, Wenstrup J. Intracellular recordings from combination-sensitive neurons in the inferior colliculus. J Neurophysiol 2008; 100:629-45. [PMID: 18497365 DOI: 10.1152/jn.90390.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate auditory systems, specialized combination-sensitive neurons analyze complex vocal signals by integrating information across multiple frequency bands. We studied combination-sensitive interactions in neurons of the inferior colliculus (IC) of awake mustached bats, using intracellular somatic recording with sharp electrodes. Facilitated combinatorial neurons are coincidence detectors, showing maximum facilitation when excitation from low- and high-frequency stimuli coincide. Previous work showed that facilitatory interactions originate in the IC, require both low and high frequency-tuned glycinergic inputs, and are independent of glutamatergic inputs. These results suggest that glycinergic inputs evoke facilitation through either postinhibitory rebound or direct depolarizing mechanisms. However, in 35 of 36 facilitated neurons, we observed no evidence of low frequency-evoked transient hyperpolarization or depolarization that was closely related to response facilitation. Furthermore, we observed no evidence of shunting inhibition that might conceal inhibitory inputs. Since these facilitatory interactions originate in IC neurons, the results suggest that inputs underlying facilitation are electrically segregated from the soma. We also recorded inhibitory combinatorial interactions, in which low frequency sounds suppress responses to higher frequency signals. In 43% of 118 neurons, we observed low frequency-evoked hyperpolarizations associated with combinatorial inhibition. For these neurons, we conclude that low frequency-tuned inhibitory inputs terminate on neurons primarily excited by high-frequency signals; these inhibitory inputs may create or enhance inhibitory combinatorial interactions. In the remainder of inhibited combinatorial neurons (57%), we observed no evidence of low frequency-evoked hyperpolarizations, consistent with observations that inhibitory combinatorial responses may originate in lateral lemniscal nuclei.
Collapse
Affiliation(s)
- Diana Coomes Peterson
- Department of Neurobiology, Northeastern Ohio Universities, College of Medicine, Rootstown, Ohio 44272, USA
| | | | | | | | | |
Collapse
|