1
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
2
|
Hamdani EH, Popek M, Frontczak-Baniewicz M, Utheim TP, Albrecht J, Zielińska M, Chaudhry FA. Perturbation of astroglial Slc38 glutamine transporters by NH 4 + contributes to neurophysiologic manifestations in acute liver failure. FASEB J 2021; 35:e21588. [PMID: 34169573 DOI: 10.1096/fj.202001712rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.
Collapse
Affiliation(s)
- El Hassan Hamdani
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Institute of Behavioural Science, Oslo Metropolitan University, Oslo, Norway
| | - Mariusz Popek
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jan Albrecht
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Magdalena Zielińska
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Qureshi T, Sørensen C, Berghuis P, Jensen V, Dobszay MB, Farkas T, Dalen KT, Guo C, Hassel B, Utheim TP, Hvalby Ø, Hafting T, Harkany T, Fyhn M, Chaudhry FA. The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity. Cereb Cortex 2020; 29:5166-5179. [PMID: 31050701 PMCID: PMC6918930 DOI: 10.1093/cercor/bhz055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
GABA signaling sustains fundamental brain functions, from nervous system development to the synchronization of population activity and synaptic plasticity. Despite these pivotal features, molecular determinants underscoring the rapid and cell-autonomous replenishment of the vesicular neurotransmitter GABA and its impact on synaptic plasticity remain elusive. Here, we show that genetic disruption of the glutamine transporter Slc38a1 in mice hampers GABA synthesis, modifies synaptic vesicle morphology in GABAergic presynapses and impairs critical period plasticity. We demonstrate that Slc38a1-mediated glutamine transport regulates vesicular GABA content, induces high-frequency membrane oscillations and shapes cortical processing and plasticity. Taken together, this work shows that Slc38a1 is not merely a transporter accumulating glutamine for metabolic purposes, but a key component regulating several neuronal functions.
Collapse
Affiliation(s)
- Tayyaba Qureshi
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Christina Sørensen
- Department of Biosciences, UiO, Oslo, Norway.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Paul Berghuis
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vidar Jensen
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Marton B Dobszay
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamás Farkas
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Caiying Guo
- Janelia Research Campus, Ashburn, Virginia, USA
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital (OUH) and UiO, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, OUH, Norway.,Department of Plastic and Reconstructive Surgery, OUS and UiO, Norway
| | - Øivind Hvalby
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Torkel Hafting
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway
| | - Tibor Harkany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Austria
| | | | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, OUS and UiO, Norway
| |
Collapse
|
4
|
Wallbank BA, Dominicus CS, Broncel M, Legrave N, Kelly G, MacRae JI, Staines HM, Treeck M. Characterisation of the Toxoplasma gondii tyrosine transporter and its phosphorylation by the calcium-dependent protein kinase 3. Mol Microbiol 2019; 111:1167-1181. [PMID: 30402958 PMCID: PMC6488386 DOI: 10.1111/mmi.14156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii parasites rapidly exit their host cell when exposed to calcium ionophores. Calcium-dependent protein kinase 3 (TgCDPK3) was previously identified as a key mediator in this process, as TgCDPK3 knockout (∆cdpk3) parasites fail to egress in a timely manner. Phosphoproteomic analysis comparing WT with ∆cdpk3 parasites revealed changes in the TgCDPK3-dependent phosphoproteome that included proteins important for regulating motility, but also metabolic enzymes, indicating that TgCDPK3 controls processes beyond egress. Here we have investigated a predicted direct target of TgCDPK3, ApiAT5-3, a putative transporter of the major facilitator superfamily, and show that it is rapidly phosphorylated at serine 56 after induction of calcium signalling. Conditional knockout of apiAT5-3 results in transcriptional upregulation of most ribosomal subunits, but no alternative transporters, and subsequent parasite death. Mutating the S56 to a non-phosphorylatable alanine leads to a fitness cost, suggesting that phosphorylation of this residue is beneficial, albeit not essential, for tyrosine import. Using a combination of metabolomics and heterologous expression, we confirmed a primary role in tyrosine import for ApiAT5-3. However, no significant differences in tyrosine import could be detected in phosphorylation site mutants showing that if tyrosine transport is affected by S56 phosphorylation, its regulatory role is subtle.
Collapse
Affiliation(s)
- Bethan A. Wallbank
- Signalling in Apicomplexan Parasites LaboratoryThe Francis Crick InstituteLondonUK
| | - Caia S. Dominicus
- Signalling in Apicomplexan Parasites LaboratoryThe Francis Crick InstituteLondonUK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites LaboratoryThe Francis Crick InstituteLondonUK
| | - Nathalie Legrave
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Gavin Kelly
- Bioinformatics and Biostatistics STPFrancis Crick Institute1 Midland RoadLondon NW1 1ATUK
| | - James I. MacRae
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Henry M. Staines
- Institute of Infection and ImmunitySt George’s, University of LondonLondonUK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
5
|
Dąbrowska K, Albrecht J, Zielińska M. Protein kinase C-mediated impairment of glutamine outward transport and SN1 transporter distribution by ammonia in mouse cortical astrocytes. Neurochem Int 2018; 118:225-232. [DOI: 10.1016/j.neuint.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023]
|
6
|
Jensen VF, Mølck AM, Lykkesfeldt J, Bøgh IB. Effect of maternal hypoglycaemia during gestation on materno-foetal nutrient transfer and embryo-foetal development: Evidence from experimental studies focused primarily on the rat. Reprod Toxicol 2018; 77:1-24. [DOI: 10.1016/j.reprotox.2018.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
|
7
|
Dong W, Todd AC, Bröer A, Hulme SR, Bröer S, Billups B. PKC-Mediated Modulation of Astrocyte SNAT3 Glutamine Transporter Function at Synapses in Situ. Int J Mol Sci 2018; 19:ijms19040924. [PMID: 29561757 PMCID: PMC5979592 DOI: 10.3390/ijms19040924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023] Open
Abstract
Astrocytes are glial cells that have an intimate physical and functional association with synapses in the brain. One of their main roles is to recycle the neurotransmitters glutamate and gamma-aminobutyric acid (GABA), as a component of the glutamate/GABA-glutamine cycle. They perform this function by sequestering neurotransmitters and releasing glutamine via the neutral amino acid transporter SNAT3. In this way, astrocytes regulate the availability of neurotransmitters and subsequently influence synaptic function. Since many plasma membrane transporters are regulated by protein kinase C (PKC), the aim of this study was to understand how PKC influences SNAT3 glutamine transport in astrocytes located immediately adjacent to synapses. We studied SNAT3 transport by whole-cell patch-clamping and fluorescence pH imaging of single astrocytes in acutely isolated brainstem slices, adjacent to the calyx of the Held synapse. Activation of SNAT3-mediated glutamine transport in these astrocytes was reduced to 77 ± 6% when PKC was activated with phorbol 12-myristate 13-acetate (PMA). This effect was very rapid (within ~20 min) and eliminated by application of bisindolylmaleimide I (Bis I) or 7-hydroxystaurosporine (UCN-01), suggesting that activation of conventional isoforms of PKC reduces SNAT3 function. In addition, cell surface biotinylation experiments in these brain slices show that the amount of SNAT3 in the plasma membrane is reduced by a comparable amount (to 68 ± 5%) upon activation of PKC. This indicates a role for PKC in dynamically controlling the trafficking of SNAT3 transporters in astrocytes in situ. These data demonstrate that PKC rapidly regulates the astrocytic glutamine release mechanism, which would influence the glutamine availability for adjacent synapses and control levels of neurotransmission.
Collapse
Affiliation(s)
- Wuxing Dong
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra ACT 2601, Australia.
| | - Alison C Todd
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra ACT 2601, Australia.
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Linnaeus Way 134, Canberra ACT 2601, Australia.
| | - Sarah R Hulme
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra ACT 2601, Australia.
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Linnaeus Way 134, Canberra ACT 2601, Australia.
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra ACT 2601, Australia.
| |
Collapse
|
8
|
Stäubli A, Capatina N, Fuhrer Y, Munier FL, Labs S, Schorderet DF, Tiwari A, Verrey F, Heon E, Cheng CY, Wong TY, Berger W, Camargo SMR, Kloeckener-Gruissem B. Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147. Hum Mol Genet 2017; 26:4203-4214. [DOI: 10.1093/hmg/ddx310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
|
9
|
Kanamori K. Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One 2017; 12:e0174845. [PMID: 28403176 PMCID: PMC5389799 DOI: 10.1371/journal.pone.0174845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
The objective is to examine how the flux of neurotransmitter glutamate from neurons to the extracellular fluid, as measured by the rate of 13C enrichment of extracellular glutamate (GLUECF), changes in response to seizures in the kainate-induced rat model of temporal-lobe epilepsy. Following unilateral intrahippocampal injection of kainate, GLUECF was collected by microdialysis from the CA1/CA3 region of awake rats, in combination with EEG recording of chronic-phase recurrent seizures and intravenous infusion of [2,5-13C]glucose. The 13C enrichment of GLUECF C5 at ~ 10 picomol level was measured by gas-chromatography mass-spectrometry. The rate of 13C enrichment, expressed as the increase of the fractional enrichment/min, was 0.0029 ± 0.0001/min in frequently seizing rats (n = 4); this was significantly higher (p < 0.01) than in the control (0.00167 ± 0.0001/min; n = 6) or in rats with infrequent seizures (0.00172 ± 0.0001/min; n = 6). This result strongly suggests that the flux of the excitatory neurotransmitter from neurons to the extracellular fluid is significantly increased by frequent seizures. The extracellular [12C + 13C]glutamate concentration increased progressively in frequently seizing rats. Taken together, these results strongly suggest that the observed seizure-induced high flux of glutamate overstimulated glutamate receptors, which triggered a chain reaction of excitation in the CA3 recurrent glutamatergic networks. The rate of 13C enrichment of extracellular glutamine (GLNECF) at C5 was 0.00299 ± 0.00027/min in frequently seizing rats, which was higher (p < 0.05) than in controls (0.00227 ± 0.00008/min). For the first time in vivo, this study examined the effects of epileptic seizures on fluxes of the neurotransmitter glutamate and its precursor glutamine in the extracellular fluid of the hippocampus. The advantages, limitations and the potential for improvement of this approach for pre-clinical and clinical studies of temporal-lobe epilepsy are discussed.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Epilepsy, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol Dis 2017; 107:15-31. [PMID: 28237316 DOI: 10.1016/j.nbd.2017.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.
Collapse
Affiliation(s)
- Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Helen Hertenstein
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
11
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Isabel Rubio-Aliaga
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| | - Carsten A Wagner
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| |
Collapse
|
12
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
14
|
Che X, Chi L, Park CY, Cho GH, Park N, Kim SG, Lee BH, Choi JY. A novel method to detect articular chondrocyte death during early stages of osteoarthritis using a non-invasive ApoPep-1 probe. Arthritis Res Ther 2015; 17:309. [PMID: 26530111 PMCID: PMC4632461 DOI: 10.1186/s13075-015-0832-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/21/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Current methods for early diagnosis of osteoarthritis (OA) are limited. We assessed whether in vivo detection of chondrocyte death by ApoPep-1 (CQRPPR), a peptide that binds to histone H1 of apoptotic and necrotic cells, could be used to detect the initiation of OA. Methods Apoptosis-induced ATDC5 cells were labeled with Annexin V and ApoPep-1. Surgical destabilization of the medial meniscus (DMM) was performed on both knees of 12-week-old male mice and severity of OA was determined by histological analysis according to the Osteoarthritis Research Society International (OARSI) guidelines. At 1, 2, 4, and 8 weeks post-surgery, mice were intravenously injected with fluorescence-labeled ApoPep-1 or control peptide and in vivo imaging was performed within 30 minutes of injection by near-infrared fluorescence (NIRF). Binding of ApoPep-1 to OA joints was demonstrated by ex vivo imaging and immunofluorescent staining using TUNEL and histone H1 and type II collagen antibodies. Results Strong signals of ApoPep-1 were observed on the apoptotic ATDC5 cells. Knees corresponded to grade II, III, and V OA at 2, 4, and 8 weeks after DMM, respectively. Between 2 and 8 weeks after surgery, the in vivo NIRF signal at OA-ApoPep1-injected joints was consistently stronger than sham-operated or OA-control peptide-injected joints. ApoPep-1, TUNEL, and histone H1 signals were stronger in grade II OA cartilage than sham-operated cartilage when detected by immunofluorescent staining. Type II collagen expression was similar between grade II OA and sham group. Conclusion ApoPep-1 can be used to detect OA in vivo by binding to apoptotic chondrocytes. This is a novel, sensitive, and rapid method which can detect apoptotic cells in OA rodent models soon after its onset.
Collapse
Affiliation(s)
- Xiangguo Che
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Lianhua Chi
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Clara Yongjoo Park
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Gyoung-Ho Cho
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Narae Park
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 210-702, Republic of Korea.
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 700-422, Republic of Korea.
| |
Collapse
|
15
|
Barrera SP, Castrejon-Tellez V, Trinidad M, Robles-Escajeda E, Vargas-Medrano J, Varela-Ramirez A, Miranda M. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination. PLoS One 2015; 10:e0138897. [PMID: 26418248 PMCID: PMC4587969 DOI: 10.1371/journal.pone.0138897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/06/2015] [Indexed: 01/08/2023] Open
Abstract
Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.
Collapse
Affiliation(s)
- Susana P. Barrera
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Vicente Castrejon-Tellez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Margarita Trinidad
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Elisa Robles-Escajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Javier Vargas-Medrano
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
| | - Manuel Miranda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, United States of America
- * E-mail:
| |
Collapse
|
16
|
Leke R, Escobar TDC, Rao KVR, Silveira TR, Norenberg MD, Schousboe A. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 2015; 88:32-7. [PMID: 25842041 DOI: 10.1016/j.neuint.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA.
| | - Thayssa D C Escobar
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Themis Reverbel Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
17
|
Arthur S, Sundaram U. Protein kinase C-mediated phosphorylation of RKIP regulates inhibition of Na-alanine cotransport by leukotriene D(4) in intestinal epithelial cells. Am J Physiol Cell Physiol 2014; 307:C1010-6. [PMID: 25231108 DOI: 10.1152/ajpcell.00284.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leukotriene D4 (LTD4) is an important immune inflammatory mediator that is known to be elevated in the mucosa of chronically inflamed intestine and alter nutrient absorption. LTD4 inhibits Na-alanine cotransport in intestinal epithelial cells by decreasing the affinity of the cotransporter ASCT1. LTD4 is known to increase intracellular Ca(++) and cAMP concentrations. However, the intracellular signaling mechanism of LTD4-mediated ASCT1 inhibition is unknown. In the present study, pretreatment with calcium chelator BAPTA-AM or inhibition of Ca(++)-dependent protein kinase C (PKC), specifically PKCα, resulted in the reversal of LTD4-mediated inhibition of ASCT1, revealing the involvement of the Ca(++)-activated PKC pathway. PKCα is known to phosphorylate Raf kinase inhibitor protein (RKIP), thus activating its downstream signaling pathway. Immunoblotting with anti-RKIP-Ser(153) antibody showed an increase in phosphorylation levels of RKIP in LTD4-treated cells. Downregulation of endogenous RKIP showed no decrease in ASCT1 activity by LTD4, thus confirming its involvement in ASCT1 regulation. Phosphorylation of RKIP by PKC is known to activate different signaling pathways, and in this study it was found to activate cAMP-activated protein kinase A (PKA) pathway. Although protein abundance of ASCT1 was not altered in any of the experimental conditions, there was an increase in the levels of phosphothreonine in ASCT1 protein, thus showing that phosphorylation changes were responsible for the altered affinity of ASCT1 by LTD4. In conclusion, LTD4 inhibits ASCT1 through PKC-mediated phosphorylation of RKIP, leading to the subsequent activation of PKA pathway, possibly through β2-andrenergic receptor activation.
Collapse
Affiliation(s)
- Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
18
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
19
|
Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 2014; 81:888-900. [PMID: 24559677 DOI: 10.1016/j.neuron.2013.12.026] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 01/02/2023]
Abstract
Biochemical studies suggest that excitatory neurons are metabolically coupled with astrocytes to generate glutamate for release. However, the extent to which glutamatergic neurotransmission depends on this process remains controversial because direct electrophysiological evidence is lacking. The distance between cell bodies and axon terminals predicts that glutamine-glutamate cycle is synaptically localized. Hence, we investigated isolated nerve terminals in brain slices by transecting hippocampal Schaffer collaterals and cortical layer I axons. Stimulating with alternating periods of high frequency (20 Hz) and rest (0.2 Hz), we identified an activity-dependent reduction in synaptic efficacy that correlated with reduced glutamate release. This was enhanced by inhibition of astrocytic glutamine synthetase and reversed or prevented by exogenous glutamine. Importantly, this activity dependence was also revealed with an in-vivo-derived natural stimulus both at network and cellular levels. These data provide direct electrophysiological evidence that an astrocyte-dependent glutamate-glutamine cycle is required to maintain active neurotransmission at excitatory terminals.
Collapse
Affiliation(s)
- Hiroaki Tani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zoya Farzampour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amaro Taylor-Weiner
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
20
|
Jenstad M, Chaudhry FA. The Amino Acid Transporters of the Glutamate/GABA-Glutamine Cycle and Their Impact on Insulin and Glucagon Secretion. Front Endocrinol (Lausanne) 2013; 4:199. [PMID: 24427154 PMCID: PMC3876026 DOI: 10.3389/fendo.2013.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, CNS proteins involved in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA, and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32, and Slc38) and physiology of hormone secretion in islets of Langerhans.
Collapse
Affiliation(s)
- Monica Jenstad
- Institute for Medical Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
- *Correspondence: Monica Jenstad, Institute for Medical Informatics, Oslo University Hospital, Radiumhospitalet, PO Box 4953 Nydalen, Oslo NO-0424, Norway e-mail:
| | - Farrukh Abbas Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2013; 71:1839-54. [PMID: 24281762 DOI: 10.1007/s00018-013-1521-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c (-) and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.
Collapse
|
22
|
The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 2013; 466:155-72. [PMID: 24193407 DOI: 10.1007/s00424-013-1393-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
Collapse
|
23
|
Nissen-Meyer LSH, Chaudhry FA. Protein Kinase C Phosphorylates the System N Glutamine Transporter SN1 (Slc38a3) and Regulates Its Membrane Trafficking and Degradation. Front Endocrinol (Lausanne) 2013; 4:138. [PMID: 24106489 PMCID: PMC3788335 DOI: 10.3389/fendo.2013.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
The system N transporter SN1 (also known as SNAT3) is enriched on perisynaptic astroglial cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and regulates the intracellular as well as the extracellular concentrations of glutamine. We hypothesize that SN1 participates in the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle and regulates the amount of glutamine supplied to the neurons for replenishment of the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity on the plasma membrane is regulated by protein kinase C (PKC)-mediated phosphorylation and that SN1 activity has an impact on synaptic plasticity. This review discusses reports on the regulation of SN1 by PKC and presents a consolidated model for regulation and degradation of SN1 and the subsequent functional implications. As SN1 function is likely also regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms may, thus, have impact on e.g., pH regulation in the kidney, urea formation in the liver, and insulin secretion in the pancreas.
Collapse
Affiliation(s)
- Lise Sofie H. Nissen-Meyer
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| | - Farrukh Abbas Chaudhry
- The Biotechnology Centre, University of Oslo, Oslo, Norway
- The Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Lise Sofie H. Nissen-Meyer and Farrukh Abbas Chaudhry, The Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 Oslo, Norway e-mail: ;
| |
Collapse
|
24
|
Sidoryk-Wegrzynowicz M, Aschner M. Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. J Intern Med 2013; 273:466-77. [PMID: 23360507 PMCID: PMC3633698 DOI: 10.1111/joim.12040] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) is an essential trace element that is required for maintaining proper function and regulation of numerous biochemical and cellular reactions. Despite its essentiality, at excessive levels Mn is toxic to the central nervous system (CNS). Increased accumulation of Mn in specific brain regions, such as the substantia nigra, globus pallidus and striatum, triggers neurotoxicity resulting in a neurological brain disorder, termed manganism. Mn has been also implicated in the pathophysiology of several other neurodegenerative diseases. Its toxicity is associated with disruption of the glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons, thus leading to changes in Glu-ergic and/or GABAergic transmission and Gln metabolism. Here we discuss the common mechanisms underlying Mn-induced neurotoxicity and their relationship to CNS pathology and GGC impairment.
Collapse
|
25
|
Sidoryk-Wegrzynowicz M, Aschner M. Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 2013; 14:23. [PMID: 23594835 PMCID: PMC3637816 DOI: 10.1186/2050-6511-14-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/10/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are responsible for numerous aspects of metabolic support, nutrition, control of the ion and neurotransmitter environment in central nervous system (CNS). Failure by astrocytes to support essential neuronal metabolic requirements plays a fundamental role in the pathogenesis of brain injury and the ensuing neuronal death. Astrocyte-neuron interactions play a central role in brain homeostasis, in particular via neurotransmitter recycling functions. Disruption of the glutamine (Gln)/glutamate (Glu) -γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons contributes to changes in Glu-ergic and/or GABA-ergic transmission, and is associated with several neuropathological conditions, including manganese (Mn) toxicity. In this review, we discuss recent advances in support of the important roles for astrocytes in normal as well as neuropathological conditions primarily those caused by exposure to Mn.
Collapse
|
26
|
Padmanabhan Iyer R, Gu S, Nicholson BJ, Jiang JX. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter. PLoS One 2013; 8:e56792. [PMID: 23451088 PMCID: PMC3579933 DOI: 10.1371/journal.pone.0056792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/14/2013] [Indexed: 11/23/2022] Open
Abstract
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sumin Gu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Bruce J. Nicholson
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Hamdani EH, Gudbrandsen M, Bjørkmo M, Chaudhry FA. The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Glia 2012; 60:1671-83. [PMID: 22821889 DOI: 10.1002/glia.22386] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/28/2022]
Abstract
Activation of NMDA receptor requires two co-agonists, glutamate and glycine. Despite its intrinsic role in brain functions molecular mechanisms involved in glutamate replenishment and identification of the origin of glycine have eluded characterization. We have performed direct measurements of glycine flux by SN2 (Slc38a5; also known as SNAT5), executed extensive electrophysiological characterization as well as implemented ratiometric analyses to show that SN2 transport resembles SN1 in mechanism but differ in functional implications. We report that rat SN2 mediates electroneutral and bidirectional transport of glutamine and glycine at perisynaptic astroglial membranes. Sophisticated coupled and uncoupled movements of H(+) differentially associate with glutamine and glycine transport by SN2 and regulate pH(i) and the release mode of the transporter. Consequently, SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors.
Collapse
Affiliation(s)
- El Hassan Hamdani
- The Biotechnology Center and Center for Molecular Biology and Neuroscience, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
28
|
Uwechue NM, Marx MC, Chevy Q, Billups B. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J Physiol 2012; 590:2317-31. [PMID: 22411007 DOI: 10.1113/jphysiol.2011.226605] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stimulation of astrocytes by neuronal activity and the subsequent release of neuromodulators is thought to be an important regulator of synaptic communication. In this study we show that astrocytes juxtaposed to the glutamatergic calyx of Held synapse in the rat medial nucleus of the trapezoid body (MNTB) are stimulated by the activation of glutamate transporters and consequently release glutamine on a very rapid timescale. MNTB principal neurones express electrogenic system A glutamine transporters, and were exploited as glutamine sensors in this study. By simultaneous whole-cell voltage clamping astrocytes and neighbouring MNTB neurones in brainstem slices, we show that application of the excitatory amino acid transporter (EAAT) substrate d-aspartate stimulates astrocytes to rapidly release glutamine, which is detected by nearby MNTB neurones. This release is significantly reduced by the toxins L-methionine sulfoximine and fluoroacetate, which reduce glutamine concentrations specifically in glial cells. Similarly, glutamine release was also inhibited by localised inactivation of EAATs in individual astrocytes, using internal DL-threo-β-benzyloxyaspartic acid (TBOA) or dissipating the driving force by modifying the patch-pipette solution. These results demonstrate that astrocytes adjacent to glutamatergic synapses can release glutamine in a temporally precise, controlled manner in response to glial glutamate transporter activation. Since glutamine can be used by neurones as a precursor for glutamate and GABA synthesis, this represents a potential feedback mechanism by which astrocytes can respond to synaptic activation and react in a way that sustains or enhances further communication. This would therefore represent an additional manifestation of the tripartite relationship between synapses and astrocytes.
Collapse
Affiliation(s)
- Nneka M Uwechue
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | |
Collapse
|
29
|
Abstract
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.
Collapse
|
30
|
Sidoryk-Wegrzynowicz M, Lee E, Mingwei N, Aschner M. Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia 2011; 59:1732-43. [PMID: 21812036 DOI: 10.1002/glia.21219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/21/2011] [Indexed: 11/11/2022]
Abstract
Manganese (Mn) is a trace element essential for normal human development and is required for the proper functioning of a variety of physiological processes. Chronic exposure to Mn can cause manganism, a neurodegenerative disorder resembling idiopathic Parkinson's disease (PD). Mn(II) neurotoxicity is characterized by astrocytic impairment both in the expression and activity of glutamine (Gln) transporters. Because protein kinase C (PKC) activation leads to the downregulation of a number of neurotransmitter transporters and Mn(II) increases PKC activity, we hypothesized that the PKC signaling pathway contributes to the Mn(II)-mediated disruption of Gln turnover. Our results have shown that Mn exposure increases the phosphorylation of both the PKCα and PKCδ isoforms. PKC activity was also shown to be increased in response to Mn(II) treatment. Corroborating our earlier observations, Mn(II) also caused a decrease in Gln uptake. This effect was blocked by PKC inhibitors. Notably, PKC activation caused a decrease in Gln uptake mediated by systems ASC and N, but had no effect on the activities of systems A and L. Exposure to α-phorbol 12-myristate 13-acetate significantly decreased SNAT3 (system N) and ASCT2 (system ASC) protein levels. Additionally, a co-immunoprecipitation study demonstrated the association of SNAT3 and ASCT2 with the PKCδ isoform, and Western blotting revealed the Mn(II)-mediated activation of PKCδ by proteolytic cleavage. PKC activation was also found to increase SNAT3 and ubiquitin ligase Nedd4-2 binding and to induce hyperubiquitination. Taken together, these findings demonstrate that the Mn(II)-induced dysregulation of Gln homeostasis in astrocytes involves PKCδ signaling accompanied by an increase in ubiquitin-mediated proteolysis.
Collapse
|