1
|
Jiang YL, Xia L, Zhao JJ, Zhou HM, Mi D, Wang X, Wang YY, Song CG, Jiang W. Mice harboring the T316N variant in the GABA AR γ 2 subunit exhibit sleep-related hypermotor epilepsy phenotypes and hypersynchronization in the thalamocortical pathway. Exp Neurol 2024; 376:114775. [PMID: 38604438 DOI: 10.1016/j.expneurol.2024.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Xia
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Jing Zhao
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Min Zhou
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Dan Mi
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuan Wang
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Yuan Wang
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chang-Geng Song
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen Jiang
- Comprehensive Epilepsy Center, Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A novel role for phospholamban in the thalamic reticular nucleus. Sci Rep 2024; 14:6376. [PMID: 38493225 PMCID: PMC10944534 DOI: 10.1038/s41598-024-56447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Aikaterini Britzolaki
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Hayden Ott
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kylie Krone
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kiara Bahamonde
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, "Attikon" Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evangelia G Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
3
|
Zhao X, Hou T, Zhou H, Liu Z, Liu Y, Wang C, Guo Z, Yu D, Xu Q, Wang J, Liang X. Multi-effective components and their target mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. Fitoterapia 2023; 171:105712. [PMID: 37884227 DOI: 10.1016/j.fitote.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Insomnia is a common and refractory disease. Since more than 2000 years ago, people have been using Ziziphi Spinosae Semen (ZSS). However, there are lack of molecular mechanisms of sleep promotion effects of ZSS. The purpose of this study is to clarify the active ingredients in ZSS that are used to treat insomnia. Using a method called cellular label-free integrative pharmacology (CLIP), we established five insomnia-related target models, including serotonin (5HT2A and 5HT1A), melatonin (MT1), dopamine (D2) and epinephrine (β2) receptors. The one-dimensional (1D) fractions of ZSS extract were prepared on a RZC18 column and assayed on five models. Subsequently, the active fraction was further analyzed, fractionated and quantified using a two-dimensional (2D) liquid phase method coupled with a charged aerosol detector (CAD), This CAD-coupled 2D-LC method requires micro-fractions from the 1D separation and thus it greatly saves sample amounts and corresponding preparation time, and quickly conduct activity screening. The composition of the active 2D fractions was then determined using three-dimensional (3D) HPLC-MS, and molecular docking was separately carried out for the described compounds on the targets for activity prediction. Seven compounds were predicted to be active on 5HT2A, and two compounds on D2. We experimentally verified the prediction and found that vitexin exhibited D2 agonistic activity, and nuciferine exhibited 5HT2A antagonistic activity. This study revealed the effective components and their targets of ZSS in the treatment of insomnia, also highlighted the potential of the CLIP technique and bioactivity guided multi-dimensional HPLC-MS in molecular mechanism elucidation for traditional Chinese medicines.
Collapse
Affiliation(s)
- Xinwei Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziling Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongping Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
4
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
5
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
6
|
Lüthi A, Franken P, Fulda S, Siclari F, Van Someren EJW. Do all norepinephrine surges disrupt sleep? Nat Neurosci 2023:10.1038/s41593-023-01313-8. [PMID: 37081297 DOI: 10.1038/s41593-023-01313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stephany Fulda
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, EOC, Lugano, Switzerland
| | - Francesca Siclari
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Center for Investigation and Research on Sleep, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
| | - Eus J W Van Someren
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wu M, Liu CZ, Barrall EA, Rissman RA, Joiner WJ. Unbalanced Regulation of α7 nAChRs by Ly6h and NACHO Contributes to Neurotoxicity in Alzheimer's Disease. J Neurosci 2021; 41:8461-8474. [PMID: 34446574 PMCID: PMC8513707 DOI: 10.1523/jneurosci.0494-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer's disease (AD) because of amyloid β (Aβ)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aβ and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer's disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid β (Aβ) and phosphorylated tau in Alzheimer's pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aβ shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.
Collapse
Affiliation(s)
- Meilin Wu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Clifford Z Liu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Erika A Barrall
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
- Alzheimer's Disease Research Center, University of California San Diego, La Jolla, California 92093
| | - William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Center for Circadian Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
9
|
Subramaniyan M, Manivannan S, Chelur V, Tsetsenis T, Jiang E, Dani JA. Fear conditioning potentiates the hippocampal CA1 commissural pathway in vivo and increases awake phase sleep. Hippocampus 2021; 31:1154-1175. [PMID: 34418215 PMCID: PMC9290090 DOI: 10.1002/hipo.23381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
The hippocampus is essential for spatial learning and memory. To assess learning we used contextual fear conditioning (cFC), where animals learn to associate a place with aversive events like foot‐shocks. Candidate memory mechanisms for cFC are long‐term potentiation (LTP) and long‐term depression (LTD), but there is little direct evidence of them operating in the hippocampus in vivo following cFC. Also, little is known about the behavioral state changes induced by cFC. To address these issues, we recorded local field potentials in freely behaving mice by stimulating in the left dorsal CA1 region and recording in the right dorsal CA1 region. Synaptic strength in the commissural pathway was monitored by measuring field excitatory postsynaptic potentials (fEPSPs) before and after cFC. After cFC, the commissural pathway's synaptic strength was potentiated. Although recordings occurred during the wake phase of the light/dark cycle, the mice slept more in the post‐conditioning period than in the pre‐conditioning period. Relative to awake periods, in non‐rapid eye movement (NREM) sleep the fEPSPs were larger in both pre‐ and post‐conditioning periods. We also found a significant negative correlation between the animal's speed and fEPSP size. Therefore, to avoid confounds in the fEFSP potentiation estimates, we controlled for speed‐related and sleep‐related fEPSP changes and still found that cFC induced long‐term potentiation, but no significant long‐term depression. Synaptic strength changes were not found in the control group that simply explored the fear‐conditioning chamber, indicating that exploration of the novel place did not produce the measurable effects caused by cFC. These results show that following cFC, the CA1 commissural pathway is potentiated, likely contributing to the functional integration of the left and right hippocampi in fear memory consolidation. In addition, the cFC paradigm produces significant changes in an animal's behavioral state, which are observable as proximal changes in sleep patterns.
Collapse
Affiliation(s)
- Manivannan Subramaniyan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sumithrra Manivannan
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vikas Chelur
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evan Jiang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Alymov AA, Kapitsa IG, Voronina TA. Neurochemical Mechanisms of Pathogenesis and Pharmacological Correction of Autism Spectrum Disorders: Current Concepts and Prospects. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Cardis R, Lecci S, Fernandez LM, Osorio-Forero A, Chu Sin Chung P, Fulda S, Decosterd I, Lüthi A. Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain. eLife 2021; 10:65835. [PMID: 34227936 PMCID: PMC8291975 DOI: 10.7554/elife.65835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Frequent nightly arousals typical for sleep disorders cause daytime fatigue and present health risks. As such arousals are often short, partial, or occur locally within the brain, reliable characterization in rodent models of sleep disorders and in human patients is challenging. We found that the EEG spectral composition of non-rapid eye movement sleep (NREMS) in healthy mice shows an infraslow (~50 s) interval over which microarousals appear preferentially. NREMS could hence be vulnerable to abnormal arousals on this time scale. Chronic pain is well-known to disrupt sleep. In the spared nerve injury (SNI) mouse model of chronic neuropathic pain, we found more numerous local cortical arousals accompanied by heart rate increases in hindlimb primary somatosensory, but not in prelimbic, cortices, although sleep macroarchitecture appeared unaltered. Closed-loop mechanovibrational stimulation further revealed higher sensory arousability. Chronic pain thus preserved conventional sleep measures but resulted in elevated spontaneous and evoked arousability. We develop a novel moment-to-moment probing of NREMS vulnerability and propose that chronic pain-induced sleep complaints arise from perturbed arousability.
Collapse
Affiliation(s)
- Romain Cardis
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sandro Lecci
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laura Mj Fernandez
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Stephany Fulda
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Luijerink LLM, Vivekanandarajah A, Waters KA, Machaalani R. The α7 and β2 nicotinic acetylcholine receptor subunits regulate apoptosis in the infant hippocampus, and in sudden infant death syndrome (SIDS). Apoptosis 2021; 25:574-589. [PMID: 32577853 DOI: 10.1007/s10495-020-01618-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is increased in the hippocampus of infants who died of sudden infant death syndrome (SIDS), yet it is not known via which mechanism this has occurred. Following existing support for a role of the α7 and β2 nicotinic acetylcholine receptor (nAChR) subunits in apoptotic regulation, we aimed to determine whether these subunits are altered in the SIDS hippocampus and if they are correlated with cell death markers of active caspase-3 (Casp-3) and TUNEL. Further analyses were run according to the presence of major SIDS risk factors related to hypoxia (bed-sharing and prone sleeping), infection (presence of an upper respiratory tract infection (URTI)), cigarette smoke exposure and gender. Immunohistochemical expression of the markers was studied in 4 regions of the hippocampus (Cornu Ammonis (CA)1, CA2, CA3, CA4) and subiculum amongst 52 infants (aged 1-7 months) who died suddenly and unexpectedly (SUDI) and for whom the cause of death was explained (eSUDI; n = 9), or not and characterised as SIDS I (n = 8) and SIDS II (n = 35) according to the San Diego diagnostic criteria. Results showed that SIDS II infants had widespread increases in TUNEL compared with eSUDI and SIDS I infants, as well as increased α7 and Casp-3 in CA2 compared to eSUDI infants, although these changes were predominant amongst infants who did not bed-share. Cigarette smoke exposure had minimal effects on the markers, while an URTI was associated with changes in all markers (after accounting for bed-sharing). Our findings support the role of nAChRs in regulating apoptosis in the SIDS hippocampus, and highlight the need for separate analysis according to risk factors.
Collapse
Affiliation(s)
- L L M Luijerink
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Medical Foundation Building K25, Sydney, NSW, 2006, Australia
| | - A Vivekanandarajah
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Medical Foundation Building K25, Sydney, NSW, 2006, Australia
| | - K A Waters
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Medical Foundation Building K25, Sydney, NSW, 2006, Australia.,The Children's Hospital at Westmead, Westmead, NSW, 2146, Australia
| | - R Machaalani
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Medical Foundation Building K25, Sydney, NSW, 2006, Australia. .,The Children's Hospital at Westmead, Westmead, NSW, 2146, Australia.
| |
Collapse
|
13
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
14
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
15
|
Zupcic SG, Zupcic M, Duzel V, Simurina T, Sakic L, Grubjesic I, Tonković D, Udovic IS, Ferreri VM. The potential role of micro-RNA-211 in the pathogenesis of sleep-related hypermotor epilepsy. Med Hypotheses 2020; 143:110115. [DOI: https:/doi.org/10.1016/j.mehy.2020.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
16
|
Do Nicotinic Receptors Modulate High-Order Cognitive Processing? Trends Neurosci 2020; 43:550-564. [DOI: 10.1016/j.tins.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
|
17
|
Zupcic SG, Zupcic M, Duzel V, Simurina T, Sakic L, Grubjesic I, Tonković D, Udovic IS, Ferreri VM. The potential role of micro-RNA-211 in the pathogenesis of sleep-related hypermotor epilepsy. Med Hypotheses 2020; 143:110115. [PMID: 32763656 DOI: 10.1016/j.mehy.2020.110115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Sleep-related hypermotor epilepsy (SHE) is a rare epileptic syndrome characterized by epileptic seizures which occur during the non-rapid eye movement (NREM) stage of sleep. It manifests with hypermotor semiology resembling violent limb movements and an asymmetric tonic-dystonic posture. The genes which are responsible for the autosomal dominant form of SHE (ADSHE) and whose function is to code the sub-unit of the neuronal acetylcholine receptor are well known. Considering that ADSHE is a prototype of SHE, it is thought that the dysfunction of the cortico-subcortical cholinergic network, which regulates the cycle of sleep, has a key role in the epileptogenesis of this syndrome. Namely, studies to date, have shown that the hypercholinergic activity is sufficient for the development of epileptic seizures, even though the exact mechanism remains to be elucidated. NREM parasomnias are sleep disorders that are the most difficult to differentiate from SHE due to a similar clinical presentation. Considering the clinical similarities, NREM occurrence and probable genetic connection, it is considered that fundamentally, both of these conditions share a common pathophysiological mechanism i.e. cholinergic dysfunction. The main difference between SHE and NREM parasomnias are the genuine epileptic seizures that are responsible for the semiology in SHE. These genuine seizures are not present in NREM parasomnias. Why this is so, remains to be elucidated. Considering that animal studies have shown that dynamic changes and the decreased levels of microRNA-211 contribute to epileptic seizures and to changes in cholinergic pathways, our hypothesis is that epileptic seizures and the development of epileptogenesis in SHE are a consequence of cholinergic dysfunction and decreased levels of microRNA-211 as opposed to NREM parasomnias where there is a stable level of microRNA-211, preventing epileptogenesis despite the cholinergic system dysfunction.
Collapse
Affiliation(s)
- Sandra Graf Zupcic
- Clinical Hospital Centre Rijeka, Clinic of Neurology, Rijeka, Croatia; University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia.
| | - Miroslav Zupcic
- University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia; Clinical Hospital Centre Rijeka, Clinic of Anesthesiology and Intensive Care Medicine, Rijeka, Croatia; J. J. Strossmayer University, Faculty of Medicine, Osijek, Croatia
| | - Viktor Duzel
- Barking, Havering and Redbridge University Hospitals NHS Trust, Department of Anaesthesia, London, United Kingdom
| | - Tatjana Simurina
- J. J. Strossmayer University, Faculty of Medicine, Osijek, Croatia; Department of Health Studies, University of Zadar, General Hospital Zadar, Department of Anesthesiology and Intensive Care Medicine, Zadar, Croatia
| | - Livija Sakic
- J. J. Strossmayer University, Faculty of Dental Medicine and Health, Osijek, Croatia; University Hospital "Sveti Duh", Clinic of Anesthesiology, Reanimatology and Intensive Care Medicine, Zagreb, Croatia
| | - Igor Grubjesic
- Clinical Hospital Centre Rijeka, Clinic of Anesthesiology and Intensive Care Medicine, Rijeka, Croatia
| | - Dinko Tonković
- School of Medicine, University of Zagreb, Croatia; Clinical Hospital Centre Zagreb, Clinic of Anesthesiology, Reanimatology and Intensive Care Medicine, Zagreb, Croatia
| | - Ingrid Sutic Udovic
- University of Rijeka, Faculty of Medicine, Department of Physiology and Immunology, Rijeka, Croatia
| | | |
Collapse
|
18
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
19
|
Mathews HL, Stitzel JA. The effects of oral nicotine administration and abstinence on sleep in male C57BL/6J mice. Psychopharmacology (Berl) 2019; 236:1335-1347. [PMID: 30564868 PMCID: PMC7372999 DOI: 10.1007/s00213-018-5139-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 11/29/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sleep disturbances are common in smoking cessation attempts and are predictive of relapse. Despite this knowledge, there is no established animal model to study the effect of nicotine abstinence on sleep and EEG parameters. OBJECTIVES The present study was conducted to characterize sleep and wakefulness in male C57BL/6J mice during periods of oral nicotine administration and abstinence. METHODS Male C57BL/6J mice were implanted with EEG/EMG recording devices. EEG/EMG data were recorded continuously for a period of 4 weeks. At the beginning of week 2, 200 μg/ml of nicotine was added to the 0.2% saccharin vehicle drinking solution. Following a 2-week period of oral nicotine administration, abstinence was initiated by excluding the nicotine from the 0.2% saccharin vehicle drinking solution. EEG/EMG were analyzed at pre-nicotine baseline, during nicotine administration, and on days 1, 2, and 5 of abstinence from nicotine. RESULTS Oral nicotine administration decreased total sleep time during the active phase, consistent with the stimulant actions of nicotine. In contrast, NREM sleep quantity was increased during the active phase on nicotine abstinence day 1 and REM sleep was decreased during days 2 and 5 of abstinence. Further, sleep fragmentation was increased during the inactive phase on all days of abstinence. Oral nicotine administration and abstinence from nicotine also altered EEG relative power frequencies during the inactive and active phase. CONCLUSIONS Both oral nicotine administration and abstinence lead to sleep disturbances in mice. Similarities between this model and human reports on the effect of nicotine/nicotine withdrawal on sleep support its utility in examining the molecular mechanisms that modulate the relationship between sleep, nicotine, and nicotine abstinence/withdrawal.
Collapse
Affiliation(s)
- Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, 1480 30th Street, Boulder, CO, 80309, USA.
| | - Jerry A Stitzel
- Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, 1480 30th Street, Boulder, CO, 80309, USA
| |
Collapse
|
20
|
Bastianini S, Alvente S, Berteotti C, Bosi M, Lo Martire V, Silvani A, Valli A, Zoccoli G. Post-sigh sleep apneas in mice: Systematic review and data-driven definition. J Sleep Res 2019; 28:e12845. [PMID: 30920081 DOI: 10.1111/jsr.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Bosi
- ASL of Romagna, Department Thoracic Diseases, Pulmonary Operative Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Indurthi DC, Qudah T, Liao VW, Ahring PK, Lewis TM, Balle T, Chebib M, Absalom NL. Revisiting autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutations in the nicotinic acetylcholine receptor reveal an increase in efficacy regardless of stochiometry. Pharmacol Res 2019; 139:215-227. [DOI: 10.1016/j.phrs.2018.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
|
22
|
Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018; 362:429-434. [PMID: 30361367 DOI: 10.1126/science.aat2512] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical observations indicate that the paramedian region of the thalamus is a critical node for controlling wakefulness. However, the specific nucleus and neural circuitry for this function remain unknown. Using in vivo fiber photometry or multichannel electrophysiological recordings in mice, we found that glutamatergic neurons of the paraventricular thalamus (PVT) exhibited high activities during wakefulness. Suppression of PVT neuronal activity caused a reduction in wakefulness, whereas activation of PVT neurons induced a transition from sleep to wakefulness and an acceleration of emergence from general anesthesia. Moreover, our findings indicate that the PVT–nucleus accumbens projections and hypocretin neurons in the lateral hypothalamus to PVT glutamatergic neurons’ projections are the effector pathways for wakefulness control. These results demonstrate that the PVT is a key wakefulness-controlling nucleus in the thalamus.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Faguo Yue
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofang Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Ruozhi Dang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qicheng Qiao
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xueqi Sun
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xin Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qian Jiang
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jiwei Yao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Han Qin
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Guanzhong Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Jun Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Junan Yan
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangdong Tang
- Sleep Medicine Center, Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
23
|
Vivekanandarajah A, Waters KA, Machaalani R. Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol 2018; 259:1-15. [PMID: 30031221 DOI: 10.1016/j.resp.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Cigarette smoking during pregnancy is the largest modifiable risk factor for adverse outcomes in the infant. Investigations have focused on the psychoactive component of cigarettes, nicotine. One proposed mechanism leading to adverse effects is the interaction between nicotine and its nicotinic acetylcholine receptors (nAChRs). Much data has been generated over the past three decades on the effects of cigarette smoke exposure (CSE) on the expression of the nAChRs in the brainstem and physiological parameters related to cardiac, respiration and sleep, in the offspring of smoking mothers and animal models of nicotine exposure. This review summarises this data and discusses the main findings, highlighting that findings in animal models closely correlate with those from human studies, and that the major brainstem sites where the expression level for the nAChRs are consistently affected include those that play vital roles in cardiorespiration (hypoglossal nucleus, dorsal motor nucleus of the vagus, nucleus of the solitary tract), chemosensation (nucleus of the solitary tract, arcuate nucleus) and arousal (rostral mesopontine sites such as the locus coeruleus and nucleus pontis oralis). These findings provide evidence for the adverse effects of CSE during and after pregnancy to the infant and the need to continue with the health campaign advising against CSE.
Collapse
Affiliation(s)
- Arunnjah Vivekanandarajah
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia.
| | - Karen A Waters
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Medical Foundation Building K25, University of Sydney, NSW 2006, Australia; Discipline of Paediatrics and Child Health, Children's Hospital Westmead, NSW, Australia
| |
Collapse
|
24
|
Muhammad N, Sharif M, Amin J, Mehboob R, Gilani SA, Bibi N, Javed H, Ahmed N. Neurochemical Alterations in Sudden Unexplained Perinatal Deaths-A Review. Front Pediatr 2018; 6:6. [PMID: 29423392 PMCID: PMC5788892 DOI: 10.3389/fped.2018.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023] Open
Abstract
Sudden unexpected perinatal collapse is a major trauma for the parents of victims. Sudden infant death syndrome (SIDS) is unexpected and mysterious death of an apparently healthy neonate from birth till 1 year of age without any known causes, even after thorough postmortem investigations. However, the incidence of sudden intrauterine unexplained death syndrome (SIUDS) is seven times higher as compared with SIDS. This observation is approximated 40-80%. Stillbirth is defined as death of a fetus after 20th week of gestation or just before delivery at full term without a known reason. Pakistan has the highest burden of stillbirth in the world. This basis of SIDS, SIUDS, and stillbirths eludes specialists. The purpose of this study is to investigate factors behind failure in control of these unexplained deaths and how research may go ahead with improved prospects. Animal models and physiological data demonstrate that sleep, arousal, and cardiorespiratory malfunctioning are abnormal mechanisms in SIUDS risk factors or in newborn children who subsequently die from SIDS. This review focuses on insights in neuropathology and mechanisms of SIDS and SIUDS in terms of different receptors involved in this major perinatal demise. Several studies conducted in the past decade have confirmed neuropathological and neurochemical anomalies related to serotonin transporter, substance P, acetylcholine α7 nicotine receptors, etc., in sudden unexplained fetal and infant deaths. There is need to focus more on research in this area to unveil the major curtain to neuroprotection by underlying mechanisms leading to such deaths.
Collapse
Affiliation(s)
- Nazeer Muhammad
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Muhammad Sharif
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Javeria Amin
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Nargis Bibi
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan.,Department of Computer Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Naseer Ahmed
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,Medical School, University of Verona, Verona, Italy.,Faculty of Health Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
25
|
Puligheddu M, Melis M, Pillolla G, Milioli G, Parrino L, Terzano GM, Aroni S, Sagheddu C, Marrosu F, Pistis M, Muntoni AL. Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia 2017; 58:1762-1770. [DOI: 10.1111/epi.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Monica Puligheddu
- Sleep Disorder Research Center; Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
| | - Miriam Melis
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Giuliano Pillolla
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Giulia Milioli
- Department of Neurosciences; Sleep Disorder Center; University of Parma; Parma Italy
| | - Liborio Parrino
- Department of Neurosciences; Sleep Disorder Center; University of Parma; Parma Italy
| | | | - Sonia Aroni
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Francesco Marrosu
- Sleep Disorder Research Center; Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
- Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
| | - Marco Pistis
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
- Neuroscience Institute; National Research Council of Italy; Cagliari Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute; National Research Council of Italy; Cagliari Italy
| |
Collapse
|
26
|
Borniger JC, Don RF, Zhang N, Boyd RT, Nelson RJ. Enduring effects of perinatal nicotine exposure on murine sleep in adulthood. Am J Physiol Regul Integr Comp Physiol 2017. [PMID: 28637659 DOI: 10.1152/ajpregu.00156.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long-term consequences of early life nicotine exposure are poorly defined. Approximately 8-10% of women report smoking during pregnancy, and this may promote aberrant development in the offspring. To this end, we investigated potential enduring effects of perinatal nicotine exposure on murine sleep and affective behaviors in adulthood (~13-15 wk of age) in C57Bl6j mice. Mothers received a water bottle containing 200 µg/ml nicotine bitartrate dihydrate in 2% wt/vol saccharin or pH-matched 2% saccharin with 0.2% (vol/vol) tartaric acid throughout pregnancy and before weaning. Upon reaching adulthood, offspring were tested in the open field and elevated plus maze, as well as the forced swim and sucrose anhedonia tests. Nicotine-exposed male (but not female) mice had reduced mobility in the open field, but no differences were observed in anxiety-like or depressive-like responses. Upon observing this male-specific phenotype, we further assessed sleep-wake states via wireless EEG/EMG telemetry. Following baseline recording, we assessed whether mice exposed to nicotine altered their homeostatic response to 5 h of total sleep deprivation and whether nicotine influenced responses to a powerful somnogen [i.e., lipopolysaccharides (LPS)]. Males exposed to perinatal nicotine decreased the percent time spent awake and increased time in non-rapid eye movement (NREM) sleep, without changes to REM sleep. Nicotine-exposed males also displayed exaggerated responses (increased time asleep and NREM spectral power) to sleep deprivation. Nicotine-exposed animals additionally had blunted EEG slow-wave responses to LPS administration. Together, our data suggest that perinatal nicotine exposure has long-lasting effects on normal sleep and homeostatic sleep processes into adulthood.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Reuben F Don
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ning Zhang
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - R Thomas Boyd
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Randy J Nelson
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
27
|
Tinuper P, Bisulli F. From nocturnal frontal lobe epilepsy to Sleep-Related Hypermotor Epilepsy: A 35-year diagnostic challenge. Seizure 2017; 44:87-92. [DOI: 10.1016/j.seizure.2016.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
|
28
|
Abstract
UNLABELLED Nicotinic acetylcholine receptors (nAChRs) play an important role in the modulation of many cognitive functions but their role in integrated network activity remains unclear. This is at least partly because of the complexity of the cholinergic circuitry and the difficulty in comparing results from in vivo studies obtained under diverse experimental conditions and types of anesthetics. Hence the role of nAChRs in the synchronization of cortical activity during slow-wave sleep is still controversial, with some studies showing they are involved in ACh-dependent EEG desynchronization, and others suggesting that this effect is mediated exclusively by muscarinic receptors. Here we use an in vitro model of endogenous network activity, in the form of recurring self-maintained depolarized states (Up states), which allows us to examine the role of high-affinity nAChRs on network dynamics in a simpler form of the cortical microcircuit. We find that mice lacking nAChRs containing the β2-subunit (β2-nAChRs) have longer and more frequent Up states, and that this difference is eliminated when β2-nAChRs in wild-type mice are blocked. We further show that endogenously released ACh can modulate Up/Down states through the activation of both β2- and α7-containing nAChRs, but through distinct mechanisms: α7-nAChRs affect only the termination of spontaneous Up states, while β2-nAChRs also regulate their generation. Finally we provide evidence that the effects of β2-subunit-containing, but not α7-subunit-containing nAChRs, are mediated through GABAB receptors. To our knowledge this is the first study documenting direct nicotinic modulation of Up/Down state activity. SIGNIFICANCE STATEMENT Through our experiments we were able to uncover a clear and previously disputed effect of nicotinic signaling in synchronized activity of neuronal networks of the cortex. We show that both high-affinity receptors (containing the β2-subunit, β2-nAChRs) and low-affinity receptors (containing the α7-subunit, α7-nAChRs) can regulate cortical network function exhibited in the form of Up/Down states. We further show that the effects of β2-nAChRs, but not α7-nAChRs, are mediated through the activation of GABAB receptors. These results suggest a possible synthesis of seemingly contradictory results in the literature and could be valuable for informing computational models of cortical function and for guiding the search for therapeutic interventions.
Collapse
|
29
|
Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype. Neuropsychopharmacology 2015; 40:2764-73. [PMID: 25936642 PMCID: PMC4864652 DOI: 10.1038/npp.2015.126] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/25/2015] [Indexed: 11/09/2022]
Abstract
Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B(-/-)) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B(-/-) mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B(-/-) mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.
Collapse
|
30
|
Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling. J Neurosci 2015; 35:3420-30. [PMID: 25716842 DOI: 10.1523/jneurosci.3630-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction.
Collapse
|
31
|
Are Absence Epilepsy and Nocturnal Frontal Lobe Epilepsy System Epilepsies of the Sleep/Wake System? Behav Neurol 2015; 2015:231676. [PMID: 26175547 PMCID: PMC4484558 DOI: 10.1155/2015/231676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/05/2022] Open
Abstract
System epilepsy is an emerging concept interpreting major nonlesional epilepsies as epileptic dysfunctions of physiological systems. I extend here the concept of reflex epilepsy to epilepsies linked to input dependent physiological systems. Experimental and clinical reseach data were collected to create a coherent explanation of underlying pathomechanism in AE and NFLE. We propose that AE should be interpreted as epilepsy linked to the corticothalamic burst-firing mode of NREM sleep, released by evoked vigilance level oscillations characterized by reactive slow wave response. In the genetic variation of NFLE the ascending cholinergic arousal system plays an essential role being in strong relationship with a gain mutation of the nicotinic acethylcholin receptors, rendering the arousal system hyperexcitable. I try to provide a more unitary interpretation for the variable seizure manifestation integrating them as different degree of pathological arosuals and alarm reactions. As a supporting hypothesis the similarity between arousal parasomnias and FNLE is shown, underpinned by overlaping pathomechanism and shared familiarity, but without epileptic features. Lastly we propose that both AE and NFLE are system epilepsies of the sleep-wake system representing epileptic disorders of the antagonistic sleep/arousal network. This interpretation may throw new light on the pathomechanism of AE and NFLE.
Collapse
|
32
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
33
|
Le Dantec Y, Hache G, Guilloux JP, Guiard BP, David DJ, Adrien J, Escourrou P. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience 2014; 274:357-68. [PMID: 24909899 DOI: 10.1016/j.neuroscience.2014.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/01/2023]
Abstract
Sleep/wake disorders are frequently associated with anxiety and depression and to elevated levels of cortisol. Even though these alterations are increasingly sought in animal models, no study has investigated the specific effects of chronic corticosterone (CORT) administration on sleep. We characterized sleep/wake disorders in a neuroendocrine mouse model of anxiety/depression, based on chronic CORT administration in the drinking water (35 μg/ml for 4 weeks, "CORT model"). The CORT model was markedly affected during the dark phase by non-rapid eye movement sleep (NREM) increase without consistent alteration of rapid eye movement (REM) sleep. Total sleep duration (SD) and sleep efficiency (SE) increased concomitantly during both the 24h and the dark phase, due to the increase in the number of NREM sleep episodes without a change in their mean duration. Conversely, the total duration of wake decreased due to a decrease in the mean duration of wake episodes despite an increase in their number. These results reflect hypersomnia by intrusion of NREM sleep during the active period as well as a decrease in sleep/wake continuity. In addition, NREM sleep was lighter, with an increased electroencephalogram (EEG) theta activity. With regard to REM sleep, the number and the duration of episodes decreased, specifically during the first part of the light period. REM and NREM sleep changes correlated respectively with the anxiety and the anxiety/depressive-like phenotypes, supporting the notion that studying sleep could be of predictive value for altered emotional behavior. The chronic CORT model in mice that displays hallmark characteristics of anxiety and depression provides an insight into understanding the changes in overall sleep architecture that occur under pathological conditions.
Collapse
Affiliation(s)
- Y Le Dantec
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France.
| | - G Hache
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J P Guilloux
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - B P Guiard
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - D J David
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France
| | - J Adrien
- UMR975, CRicm - INSERM/CNRS/UPMC, Neurotransmetteurs et Sommeil, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie - Paris VI, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - P Escourrou
- Univ Paris-Sud, EA3544, Faculté de Pharmacie, 92296 Châtenay-Malabry cedex, France; Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Département de Physiologie, Centre de Médecine du Sommeil, 92141 Clamart cedex, France
| |
Collapse
|
34
|
|
35
|
Hoyer D, Dürst T, Fendt M, Jacobson LH, Betschart C, Hintermann S, Behnke D, Cotesta S, Laue G, Ofner S, Legangneux E, Gee CE. Distinct effects of IPSU and suvorexant on mouse sleep architecture. Front Neurosci 2013; 7:235. [PMID: 24368893 PMCID: PMC3857892 DOI: 10.3389/fnins.2013.00235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023] Open
Abstract
Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be seen.
Collapse
Affiliation(s)
- Daniel Hoyer
- Neuroscience, Novartis Institutes for BioMedical Research Basel, Switzerland ; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne Parkville, VIC, Australia
| | - Thomas Dürst
- Neuroscience, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Markus Fendt
- Neuroscience, Novartis Institutes for BioMedical Research Basel, Switzerland ; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne Parkville, VIC, Australia
| | - Laura H Jacobson
- Neuroscience, Novartis Institutes for BioMedical Research Basel, Switzerland ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Claudia Betschart
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Samuel Hintermann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Dirk Behnke
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Simona Cotesta
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Grit Laue
- Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Silvio Ofner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Eric Legangneux
- Translational Medicine, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Christine E Gee
- Neuroscience, Novartis Institutes for BioMedical Research Basel, Switzerland ; Center for Molecular Neuroscience Hamburg, Institute for Synaptic Physiology Hamburg, Germany
| |
Collapse
|
36
|
The role of NREM sleep micro-arousals in absence epilepsy and in nocturnal frontal lobe epilepsy. Epilepsy Res 2013; 107:9-19. [DOI: 10.1016/j.eplepsyres.2013.06.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/14/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
|
37
|
Queiroz CM, Tiba PA, Moreira KM, Guidine PAM, Rezende GHS, Moraes MFD, Prado MAM, Prado VF, Tufik S, Mello LE. Sleep pattern and learning in knockdown mice with reduced cholinergic neurotransmission. Braz J Med Biol Res 2013; 46:844-54. [PMID: 24141612 PMCID: PMC3854314 DOI: 10.1590/1414-431x20133102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022] Open
Abstract
Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- C M Queiroz
- Universidade Federal de São Paulo, Departamento de Fisiologia, São Paulo,SP, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manabe H, Mori K. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states. J Neurophysiol 2013; 110:1593-9. [PMID: 23864376 DOI: 10.1152/jn.00379.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses with later-onset lower-frequency burst discharges. Since odor inhalation induces prominent gamma-oscillations of local field potentials (LFPs) in the OB during the transition period from inhalation to exhalation that accompany synchronized spike discharges of tufted cells and mitral cells, we addressed the question of whether the odor-induced gamma-oscillations encompass two distinct gamma-oscillatory sources, tufted cell and mitral cell subsystems, by simultaneously recording the sniff rhythms and LFPs in the OB of freely behaving rats. We observed that individual sniffs induced nested gamma-oscillations with two distinct parts during the inhalation-exhalation transition period: early-onset fast gamma-oscillations followed by later-onset slow gamma-oscillations. These results suggest that tufted cells carry odor signals with early-onset fast gamma-synchronization at the early phase of sniff, whereas mitral cells send them with later-onset slow gamma-synchronization. We also observed that each sniff typically induced both fast and slow gamma-oscillations during awake, whereas respiration during slow-wave sleep and rapid-eye-movement sleep failed to induce these oscillations. These results suggest that behavioral states regulate the generation of sniff rhythm-paced fast and slow gamma-oscillations in the OB.
Collapse
Affiliation(s)
- Hiroyuki Manabe
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | | |
Collapse
|
39
|
Polta SA, Fenzl T, Jakubcakova V, Kimura M, Yassouridis A, Wotjak CT. Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front Behav Neurosci 2013; 7:60. [PMID: 23750131 PMCID: PMC3668327 DOI: 10.3389/fnbeh.2013.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/19/2013] [Indexed: 01/08/2023] Open
Abstract
Not every individual develops Posttraumatic Stress Disorder (PTSD) after the exposure to a potentially traumatic event. Therefore, the identification of pre-existing risk factors and early diagnostic biomarkers is of high medical relevance. However, no objective biomarker has yet progressed into clinical practice. Sleep disturbances represent commonly reported complaints in PTSD patients. In particular, changes in rapid eye movement sleep (REMS) properties are frequently observed in PTSD patients. Here, we examined in a mouse model of PTSD whether (1) mice developed REMS alterations after trauma and (2) whether REMS architecture before and/or shortly after trauma predicted the development of PTSD-like symptoms. We monitored sleep-wake behavior via combined electroencephalogram/electromyogram recordings immediately before (24 h pre), immediately after (0-48 h post) and 2 months after exposure to an electric foot shock in male C57BL/6N mice (n = 15). PTSD-like symptoms, including hyperarousal, contextual, and generalized fear, were assessed 1 month post-trauma. Shocked mice showed early onset and sustained elevation of REMS compared to non-shocked controls. In addition, REMS architecture before trauma was correlated with the intensity of acoustic startle responses, but not contextual fear, 1 month after trauma. Our data suggest REMS as prognostic (pre-trauma) and symptomatic (post-trauma) marker of PTSD-like symptoms in mice. Translated to the situation in humans, REMS may constitute a viable, objective, and non-invasive biomarker in PTSD and other trauma-related psychiatric disorders, which could guide pharmacological interventions in humans at high risk.
Collapse
|
40
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
41
|
Kelly JM, Bianchi MT. Mammalian sleep genetics. Neurogenetics 2012; 13:287-326. [DOI: 10.1007/s10048-012-0341-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
42
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
43
|
Physiopathogenetic Interrelationship between Nocturnal Frontal Lobe Epilepsy and NREM Arousal Parasomnias. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:312693. [PMID: 22953061 PMCID: PMC3420579 DOI: 10.1155/2012/312693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/18/2012] [Indexed: 02/01/2023]
Abstract
Aims. To build up a coherent shared pathophysiology of NFLE and AP and discuss the underlying functional network. Methods. Reviewing relevant published data we point out common features in semiology of events, relations to macro- and microstructural dynamism of NREM sleep, to cholinergic arousal mechanism and genetic aspects. Results. We propose that pathological arousals accompanied by confused behavior with autonomic signs and/or hypermotor automatisms are expressions of the frontal cholinergic arousal function of different degree, during the condition of depressed cognition by frontodorsal functional loss in NREM sleep. This may happen either if the frontal cortical Ach receptors are mutated in ADNFLE (and probably also in genetically not proved nonlesional cases as well), or without epileptic disorder, in AP, assuming gain in receptor functions in both conditions. This hypothesis incorporates the previous “liberation theory” of Tassinari and the “state dissociation hypothesis” of Bassetti and Terzaghi). We propose that NFLE and IGE represent epileptic disorders of the two antagonistic twin systems in the frontal lobe. NFLE is the epileptic facilitation of the ergotropic frontal arousal system whereas absence epilepsy is the epileptic facilitation of burst-firing working mode of the spindle and delta producing frontal thalamocortical throphotropic sleep system. Significance. The proposed physiopathogenesis conceptualize epilepsies in physiologically meaningful networks.
Collapse
|
44
|
Parasomnias and nocturnal frontal lobe epilepsy (NFLE): lights and shadows--controversial points in the differential diagnosis. Sleep Med 2012; 12 Suppl 2:S27-32. [PMID: 22136895 DOI: 10.1016/j.sleep.2011.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022]
Abstract
Nocturnal frontal lobe epilepsy (NFLE) is characterized by seizures with complex, often bizarre, violent behaviour arising only or mainly during sleep. These unusual seizures and their occurrence during sleep are often accompanied by normal EEG tracings and neuroradiological findings, making it difficult to distinguish NFLE seizures from other non-epileptic nocturnal paroxysmal events, namely parasomnias. NFLE was described for the first time in 1981, but, as its epileptic origin was controversial, the condition was called nocturnal paroxysmal dystonia. Even though many aspects of parasomnias and NFLE have been clarified in the last two decades, the problem of differential diagnosis remains a challenge for clinicians. This paper discusses some controversial points still under debate. The difficulties in distinguishing nocturnal epileptic seizures from parasomnias reflect just one aspect of the intriguing issue of the pathophysiological relationships between all types of paroxysmal motor behaviours during sleep.
Collapse
|
45
|
Genetic association between helpless trait and depression-related phenotypes: evidence from crossbreeding studies with H/Rouen and NH/Rouen mice. Int J Neuropsychopharmacol 2012; 15:363-74. [PMID: 21557882 DOI: 10.1017/s1461145711000605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic factors are believed to be involved in the aetiology of unipolar depressive disorders. We have previously described a model built up by selective breeding of mice with different responses in the tail suspension test, a screening test for potential antidepressants. In this model, helpless H/Rouen mice are essentially immobile in this test, as well as in the Porsolt forced-swim test, whereas non-helpless NH/Rouen mice show the opposite behaviour, i.e. very low immobility. However, it is unclear whether or not the other phenotypic differences (forced swim test, locomotor activity, sucrose test, sleep patterns, effect of fluoxetine) observed between H/Rouen and the NH/Rouen mice may be attributed to a genetic drift phenomenon during the selection step, rather than being related to the trait of selection. In this study we used reciprocal crossbreeding between H/Rouen and NH/Rouen mice and obtained a segregating F2 population in order to determine whether phenotypic differences between the two lines co-segregate with the trait of selection. In the segregating F2 population, we found significant and strong genetic correlations between helplessness in the tail suspension test and some phenotypical features associated with depressive disorders such as 'alterations of sleep patterns', behavioural response to fluoxetine, immobility duration in the forced swim test, and anhedonia. Our results converge with clinical observations in depressed humans. These results strengthen the validity of the H/Rouen mouse as a model of depression, notably for preclinical studies with antidepressants. In addition, this model should open the way to identifying genes related to depression-like behaviours.
Collapse
|
46
|
Fulda S, Romanowski CPN, Becker A, Wetter TC, Kimura M, Fenzel T. Rapid eye movements during sleep in mice: high trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents. BMC Neurosci 2011; 12:110. [PMID: 22047102 PMCID: PMC3228710 DOI: 10.1186/1471-2202-12-110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023] Open
Abstract
Background In humans, rapid eye movements (REM) density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies. Methods We obtained standardized electroencephalographic (EEG), electromyographic (EMG) and electrooculographic (EOG) signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA) to detect REM as singularities of the EOG signal, based on wavelet methodology. Results The distribution of wakefulness, non-REM (NREM) sleep and rapid eye movement (REM) sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep. Conclusions Sleep-stage specific distributions of REM in mice correspond to human REM density during sleep. REM density, now also assessable in animal models through our approach, is increased in humans after acute stress, during PTSD and in depression. This relationship can now be exploited to match animal models more closely to clinical situations, especially in animal models of depression.
Collapse
Affiliation(s)
- Stephany Fulda
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Lin SC, Nicolelis MAL. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. J Neurophysiol 2011; 106:2749-63. [PMID: 21865435 PMCID: PMC3214118 DOI: 10.1152/jn.00267.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/23/2011] [Indexed: 01/08/2023] Open
Abstract
The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these "pro-arousal" neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation.
Collapse
Affiliation(s)
- Hao Zhang
- Dept. of Neurobiology, Duke Univ. Medical Center, Durham, NC 27705, USA.
| | | | | |
Collapse
|
48
|
Machaalani R, Say M, Waters KA. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem. Toxicol Appl Pharmacol 2011; 257:396-404. [PMID: 22000980 DOI: 10.1016/j.taap.2011.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/29/2022]
Abstract
It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n=46) and non-SIDS infants (n=14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
49
|
Xu J, Cohen BN, Zhu Y, Dziewczapolski G, Panda S, Lester HA, Heinemann SF, Contractor A. Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor. Mol Psychiatry 2011; 16:1048-61. [PMID: 20603624 PMCID: PMC2970689 DOI: 10.1038/mp.2010.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-affinity nicotinic receptors containing β2 subunits (β2*) are widely expressed in the brain, modulating many neuronal processes and contributing to neuropathologies such as Alzheimer's disease, Parkinson's disease and epilepsy. Mutations in both the α4 and β2 subunits are associated with a rare partial epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In this study, we introduced one such human missense mutation into the mouse genome to generate a knock-in strain carrying a valine-to-leucine mutation β2V287L. β2(V287L) mice were viable and born at an expected Mendelian ratio. Surprisingly, mice did not show an overt seizure phenotype; however, homozygous mice did show significant alterations in their activity-rest patterns. This was manifest as an increase in activity during the light cycle suggestive of disturbances in the normal sleep patterns of mice; a parallel phenotype to that found in human ADNFLE patients. Consistent with the role of nicotinic receptors in reward pathways, we found that β2(V287L) mice did not develop a normal proclivity to voluntary wheel running, a model for natural reward. Anxiety-related behaviors were also affected by the V287L mutation. Mutant mice spent more time in the open arms on the elevated plus maze suggesting that they had reduced levels of anxiety. Together, these findings emphasize several important roles of β2* nicotinic receptors in complex biological processes including the activity-rest cycle, natural reward and anxiety.
Collapse
Affiliation(s)
- Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, The Salk Institute for Biological Studies, Molecular Neurobiology Lab, La Jolla CA 92037
| | - Bruce N. Cohen
- California Institute of Technology, Division of Biology, Pasadena CA 92215
| | - Yongling Zhu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, The Salk Institute for Biological Studies, Molecular Neurobiology Lab, La Jolla CA 92037
| | - Gustavo Dziewczapolski
- The Salk Institute for Biological Studies, Molecular Neurobiology Lab, La Jolla CA 92037
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, Molecular Neurobiology Lab, La Jolla CA 92037
| | - Henry A. Lester
- California Institute of Technology, Division of Biology, Pasadena CA 92215
| | - Stephen F. Heinemann
- The Salk Institute for Biological Studies, Molecular Neurobiology Lab, La Jolla CA 92037
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
50
|
Changeux JP, Lou HC. Emergent pharmacology of conscious experience: new perspectives in substance addiction. FASEB J 2011; 25:2098-108. [PMID: 21719514 DOI: 10.1096/fj.11-0702ufm] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We here review experimental findings relevant for the pharmacology of conscious experience, an issue largely neglected in pharmacological research. First, we focus on self-awareness, a pivotal component of conscious experience and its integration within the global neuronal network (GNW), a theoretical concept that unifies convergent approaches on the neural bases of conscious processing. We report recent evidence to show that self-awareness mobilizes a paralimbic circuitry of γ synchrony, and that such synchrony is, in particular, regulated by GABA interneurons under the control of acetylcholine and dopamine. Recent data illustrate that these neurotransmitters establish a causal relationship with the control of self-awareness. The hypothesis is presented that not only is self-awareness chemically regulated, but the reverse may be true. Long-term deficit in self-control of drug intake would result in compulsive substance use, accompanied, in particular, with lesions of the paralimbic circuitry of self-awareness, leading to aggravation of substance abuse, resulting in addiction in a vicious circle. Finally, we propose that the emergent pharmacology of conscious experience may provide new perspectives, not only in substance addiction but also in the many other pathological conditions with deficient self-awareness.
Collapse
|