1
|
Amly W, Chen CY, Isa T. Modeling saccade reaction time in marmosets: the contribution of earlier visual response and variable inhibition. Front Syst Neurosci 2024; 18:1478019. [PMID: 39507631 PMCID: PMC11537947 DOI: 10.3389/fnsys.2024.1478019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control. We refined a computational SRT model, adjusting parameters to better capture the marmoset SRT distribution in a gap saccade task. Our findings indicate that visual information processing is faster in marmosets, and that saccadic inhibition is more variable compared to other species.
Collapse
Affiliation(s)
- Wajd Amly
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Chih-Yang Chen
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Pattadkal JJ, Barr C, Priebe NJ. Interactions between Saccades and Smooth Pursuit Eye Movements in Marmosets. eNeuro 2024; 11:ENEURO.0027-24.2024. [PMID: 38821872 PMCID: PMC11185042 DOI: 10.1523/eneuro.0027-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/02/2024] Open
Abstract
Animals use a combination of eye movements to track moving objects. These different eye movements need to be coordinated for successful tracking, requiring interactions between the systems involved. Here, we study the interaction between the saccadic and smooth pursuit eye movement systems in marmosets. Using a single-target pursuit task, we show that saccades cause an enhancement in pursuit following a saccade. Using a two-target pursuit task, we show that this enhancement in pursuit is selective toward the motion of the target selected by the saccade, irrespective of any biases in pursuit prior to the saccade. These experiments highlight the similarities in the functioning of saccadic and smooth pursuit eye movement systems across primates.
Collapse
Affiliation(s)
- Jagruti J Pattadkal
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Carrie Barr
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Nicholas J Priebe
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
3
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Singh VP, Li J, Mitchell J, Miller C. Active vision in freely moving marmosets using head-mounted eye tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593707. [PMID: 38766147 PMCID: PMC11100783 DOI: 10.1101/2024.05.11.593707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Our understanding of how vision functions as primates actively navigate the real-world is remarkably sparse. As most data have been limited to chaired and typically head-restrained animals, the synergistic interactions of different motor actions/plans inherent to active sensing - e.g. eyes, head, posture, movement, etc. - on visual perception are largely unknown. To address this considerable gap in knowledge, we developed an innovative wireless head-mounted eye tracking system called CEREBRO for small mammals, such as marmoset monkeys. Our system performs Chair-free Eye-Recording using Backpack mounted micROcontrollers. Because eye illumination and environment lighting change continuously in natural contexts, we developed a segmentation artificial neural network to perform robust pupil tracking in these conditions. Leveraging this innovative system to investigate active vision, we demonstrate that although freely-moving marmosets exhibit frequent compensatory eye movements equivalent to other primates, including humans, the predictability of the visual system is enhanced when animals are freely-moving relative to when they are head-fixed. Moreover, despite increases in eye/head-motion during locomotion, gaze stabilization actually improved over periods when the monkeys were stationary. Rather than impair vision, the dynamics of gaze stabilization in freely-moving primates has been optimized over evolution to enable active sensing during natural exploration.
Collapse
Affiliation(s)
- Vikram Pal Singh
- Cortical Systems & Behavior Lab, University of California San Diego
| | - Jingwen Li
- Cortical Systems & Behavior Lab, University of California San Diego
| | - Jude Mitchell
- Department of Brain and Cognitive Science, University of Rochester
| | - Cory Miller
- Cortical Systems & Behavior Lab, University of California San Diego
- Neurosciences Graduate Program, University of California San Diego
| |
Collapse
|
5
|
Dotson NM, Davis ZW, Jendritza P, Reynolds JH. Acute Neuropixels Recordings in the Marmoset Monkey. eNeuro 2024; 11:ENEURO.0544-23.2024. [PMID: 38658139 PMCID: PMC11129777 DOI: 10.1523/eneuro.0544-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
High-density linear probes, such as Neuropixels, provide an unprecedented opportunity to understand how neural populations within specific laminar compartments contribute to behavior. Marmoset monkeys, unlike macaque monkeys, have a lissencephalic (smooth) cortex that enables recording perpendicular to the cortical surface, thus making them an ideal animal model for studying laminar computations. Here we present a method for acute Neuropixels recordings in the common marmoset (Callithrix jacchus). The approach replaces the native dura with an artificial silicon-based dura that grants visual access to the cortical surface, which is helpful in avoiding blood vessels, ensures perpendicular penetrations, and could be used in conjunction with optical imaging or optogenetic techniques. The chamber housing the artificial dura is simple to maintain with minimal risk of infection and could be combined with semichronic microdrives and wireless recording hardware. This technique enables repeated acute penetrations over a period of several months. With occasional removal of tissue growth on the pial surface, recordings can be performed for a year or more. The approach is fully compatible with Neuropixels probes, enabling the recording of hundreds of single neurons distributed throughout the cortical column.
Collapse
Affiliation(s)
- Nicholas M Dotson
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | - Patrick Jendritza
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
6
|
Xing F, Sheffield AG, Jadi MP, Chang SWC, Nandy AS. Automated 3D analysis of social head-gaze behaviors in freely moving marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580693. [PMID: 38405818 PMCID: PMC10888878 DOI: 10.1101/2024.02.16.580693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Social communication relies on the ability to perceive and interpret the direction of others' attention, which is commonly conveyed through head orientation and gaze direction in both humans and non-human primates. However, traditional social gaze experiments in non-human primates require restraining head movements, which significantly limit their natural behavioral repertoire. Here, we developed a novel framework for accurately tracking facial features and three-dimensional head gaze orientations of multiple freely moving common marmosets (Callithrix jacchus). To accurately track the facial features of marmoset dyads in an arena, we adapted computer vision tools using deep learning networks combined with triangulation algorithms applied to the detected facial features to generate dynamic geometric facial frames in 3D space, overcoming common occlusion challenges. Furthermore, we constructed a virtual cone, oriented perpendicular to the facial frame, to model the head gaze directions. Using this framework, we were able to detect different types of interactive social gaze events, including partner-directed gaze and jointly-directed gaze to a shared spatial location. We observed clear effects of sex and familiarity on both interpersonal distance and gaze dynamics in marmoset dyads. Unfamiliar pairs exhibited more stereotyped patterns of arena occupancy, more sustained levels of social gaze across inter-animal distance, and increased gaze monitoring. On the other hand, familiar pairs exhibited higher levels of joint gazes. Moreover, males displayed significantly elevated levels of gazes toward females' faces and the surrounding regions irrespective of familiarity. Our study lays the groundwork for a rigorous quantification of primate behaviors in naturalistic settings.
Collapse
Affiliation(s)
- Feng Xing
- Inderdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Neuroscience, Yale University, New Haven, CT
| | - Alec G Sheffield
- Inderdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychiatry, Yale University, New Haven, CT
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychiatry, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
| | - Steve W C Chang
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychology, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
- Kavli Institute for Neuroscience, Yale University, New Haven, CT
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT
- Department of Psychology, Yale University, New Haven, CT
- Wu Tsai Institute, Yale University, New Haven, CT
- Kavli Institute for Neuroscience, Yale University, New Haven, CT
| |
Collapse
|
7
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals Achieve Common Neural Coverage of Visual Scenes Using Distinct Sampling Behaviors. eNeuro 2024; 11:ENEURO.0287-23.2023. [PMID: 38164577 PMCID: PMC10860624 DOI: 10.1523/eneuro.0287-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of mice, cats, marmosets, macaques, and humans. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
Affiliation(s)
- Jason M Samonds
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Martin Szinte
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Carrie Barr
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Anna Montagnini
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Nicholas J Priebe
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| |
Collapse
|
8
|
Coop SH, Yates JL, Mitchell JF. Pre-saccadic Neural Enhancements in Marmoset Area MT. J Neurosci 2024; 44:e2034222023. [PMID: 38050176 PMCID: PMC10860570 DOI: 10.1523/jneurosci.2034-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.
Collapse
Affiliation(s)
- Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| | - Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
- Department of Biology, University of Maryland College Park, College Park, Maryland, 20742-5025
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester 14627-0268, New York
- Center for Visual Science, University of Rochester, Rochester 14627-0268, New York
| |
Collapse
|
9
|
Dotson NM, Davis ZW, Jendritza P, Reynolds JH. Acute Neuropixels recordings in the marmoset monkey. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571771. [PMID: 38168386 PMCID: PMC10760116 DOI: 10.1101/2023.12.14.571771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
High-density linear probes, like Neuropixels, provide an unprecedented opportunity to understand how neural populations within specific laminar compartments contribute to behavior. Marmoset monkeys, unlike macaque monkeys, have a lissencephalic (smooth) cortex that enables recording perpendicular to the cortical surface, thus making them an ideal animal model for studying laminar computations. Here we present a method for acute Neuropixels recordings in the common marmoset (Callithrix jacchus). The approach replaces the native dura with an artificial silicon-based dura that grants visual access to the cortical surface, which is helpful in avoiding blood vessels, ensures perpendicular penetrations, and could be used in conjunction with optical imaging or optogenetic techniques. The chamber housing the artificial dura is simple to maintain with minimal risk of infection and could be combined with semi-chronic microdrives and wireless recording hardware. This technique enables repeated acute penetrations over a period of several months. With occasional removal of tissue growth on the pial surface, recordings can be performed for a year or more. The approach is fully compatible with Neuropixels probes, enabling the recording of hundreds of single neurons distributed throughout the cortical column.
Collapse
Affiliation(s)
| | - Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, California
- Department of Ophthalmology and Vision Science, University of Utah, Salt Lake City, Utah
| | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
10
|
Parker PRL, Martins DM, Leonard ESP, Casey NM, Sharp SL, Abe ETT, Smear MC, Yates JL, Mitchell JF, Niell CM. A dynamic sequence of visual processing initiated by gaze shifts. Nat Neurosci 2023; 26:2192-2202. [PMID: 37996524 PMCID: PMC11270614 DOI: 10.1038/s41593-023-01481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, New Brunswick, NJ, USA
| | - Dylan M Martins
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Emmalyn S P Leonard
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Nathan M Casey
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Shelby L Sharp
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Elliott T T Abe
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Matthew C Smear
- Institute of Neuroscience and Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Jacob L Yates
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences and Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| | - Cristopher M Niell
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
11
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
12
|
Tyree TJ, Metke M, Miller CT. Cross-modal representation of identity in the primate hippocampus. Science 2023; 382:417-423. [PMID: 37883535 PMCID: PMC11086670 DOI: 10.1126/science.adf0460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.
Collapse
Affiliation(s)
- Timothy J Tyree
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Department of Physics, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Michael Metke
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| |
Collapse
|
13
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Dotson NM, Davis ZW, Salisbury JM, Palmer SE, Cavanagh P, Reynolds JH. The double-drift illusion biases the marmoset oculomotor system. J Vis 2023; 23:4. [PMID: 37676672 PMCID: PMC10494983 DOI: 10.1167/jov.23.10.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/17/2023] [Indexed: 09/08/2023] Open
Abstract
The double-drift illusion has two unique characteristics: The error between the perceived and physical position of the stimulus grows over time, and saccades to the moving target land much closer to the physical than the perceived location. These results suggest that the perceptual and saccade targeting systems integrate visual information over different time scales. Functional imaging studies in humans have revealed several potential cortical areas of interest, including the prefrontal cortex. However, we currently lack an animal model to study the neural mechanisms of location perception that underlie the double-drift illusion. To fill this gap, we trained two marmoset monkeys to fixate and then saccade to the double-drift stimulus. In line with human observers for radial double-drift trajectories with fast internal motion, we find that saccade endpoints show a significant bias that is, nevertheless, smaller than the bias seen in human perceptual reports. This bias is modulated by changes in the external and internal speeds of the stimulus. These results demonstrate that the saccade targeting system of the marmoset monkey is influenced by the double-drift illusion.
Collapse
Affiliation(s)
| | - Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared M Salisbury
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Stephanie E Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | - John H Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
15
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals achieve common neural coverage of visual scenes using distinct sampling behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533210. [PMID: 36993477 PMCID: PMC10055212 DOI: 10.1101/2023.03.20.533210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across several fixations to construct a more complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact, and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of different species. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
|
16
|
Yates JL, Coop SH, Sarch GH, Wu RJ, Butts DA, Rucci M, Mitchell JF. Detailed characterization of neural selectivity in free viewing primates. Nat Commun 2023; 14:3656. [PMID: 37339973 PMCID: PMC10282080 DOI: 10.1038/s41467-023-38564-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects. We measured visual receptive fields and tuning properties from multiple cortical areas of marmoset monkeys who freely viewed full-field noise stimuli. The resulting receptive fields and tuning curves from primary visual cortex (V1) and area MT match reported selectivity from the literature which was measured using conventional approaches. We then combined free viewing with high-resolution eye tracking to make the first detailed 2D spatiotemporal measurements of foveal receptive fields in V1. These findings demonstrate the power of free viewing to characterize neural responses in untrained animals while simultaneously studying the dynamics of natural behavior.
Collapse
Affiliation(s)
- Jacob L Yates
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, USA.
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
- Herbert Wertheim School of Optometry and Vision Science, UC Berkeley, Berkeley, CA, USA.
| | - Shanna H Coop
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Neurobiology, Stanford University, Stanford, CA, USA
| | - Gabriel H Sarch
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ruei-Jr Wu
- Center for Visual Science, University of Rochester, Rochester, NY, USA
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Michele Rucci
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
Chen C, Remington ED, Wang X. Sound localization acuity of the common marmoset (Callithrix jacchus). Hear Res 2023; 430:108722. [PMID: 36863289 DOI: 10.1016/j.heares.2023.108722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The common marmoset (Callithrix jacchus) is a small arboreal New World primate which has emerged as a promising model in auditory neuroscience. One potentially useful application of this model system is in the study of the neural mechanism underlying spatial hearing in primate species, as the marmosets need to localize sounds to orient their head to events of interest and identify their vocalizing conspecifics that are not visible. However, interpretation of neurophysiological data on sound localization requires an understanding of perceptual abilities, and the sound localization behavior of marmosets has not been well studied. The present experiment measured sound localization acuity using an operant conditioning procedure in which marmosets were trained to discriminate changes in sound location in the horizontal (azimuth) or vertical (elevation) dimension. Our results showed that the minimum audible angle (MAA) for horizontal and vertical discrimination was 13.17° and 12.53°, respectively, for 2 to 32 kHz Gaussian noise. Removing the monaural spectral cues tended to increase the horizontal localization acuity (11.31°). Marmosets have larger horizontal MAA (15.54°) in the rear than the front. Removing the high-frequency (> 26 kHz) region of the head-related transfer function (HRTF) affected vertical acuity mildly (15.76°), but removing the first notch (12-26 kHz) region of HRTF substantially reduced the vertical acuity (89.01°). In summary, our findings indicate that marmosets' spatial acuity is on par with other species of similar head size and field of best vision, and they do not appear to use monaural spectral cues for horizontal discrimination but rely heavily on first notch region of HRTF for vertical discrimination.
Collapse
Affiliation(s)
- Chenggang Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Evan D Remington
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Traylor 410, Baltimore, MD 21025, United States.
| |
Collapse
|
18
|
Jendritza P, Klein FJ, Fries P. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nat Commun 2023; 14:577. [PMID: 36732525 PMCID: PMC9895452 DOI: 10.1038/s41467-023-36217-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The common marmoset has emerged as a key model in neuroscience. Marmosets are small in size, show great potential for genetic modification and exhibit complex behaviors. Thus, it is necessary to develop technology that enables monitoring and manipulation of the underlying neural circuits. Here, we describe a novel approach to record and optogenetically manipulate neural activity in awake, behaving marmosets. Our design utilizes a light-weight, 3D printed titanium chamber that can house several high-density silicon probes for semi-chronic recordings, while enabling simultaneous optogenetic stimulation. We demonstrate the application of our method in male marmosets by recording multi- and single-unit data from areas V1 and V6 with 192 channels simultaneously, and show that optogenetic activation of excitatory neurons in area V6 can influence behavior in a detection task. This method may enable future studies to investigate the neural basis of perception and behavior in the marmoset.
Collapse
Affiliation(s)
- Patrick Jendritza
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany.
| | - Frederike J Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Saghravanian SJ, Asadollahi A. Acclimatizing and training freely viewing marmosets for behavioral and electrophysiological experiments in oculomotor tasks. Physiol Rep 2023; 11:e15594. [PMID: 36754454 PMCID: PMC9908434 DOI: 10.14814/phy2.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023] Open
Abstract
The marmoset is a small-bodied primate with behavioral capacities and brain structures comparable to macaque monkeys and humans. Its amenability to modern biotechnological techniques like optogenetics, chemogenetics, and generation of transgenic primates have attracted neuroscientists' attention to use it as a model in neuroscience. In the past decade, several laboratories have been developing and refining tools and techniques for performing behavioral and electrophysiological experiments in this new model. In this regard, we developed a protocol to acclimate the marmoset to sit calmly in a primate chair; a method to calibrate the eye-tracking system while marmosets were freely viewing the screen; and a procedure to map motor field of neurons in the SC in freely viewing marmosets. Using a squeeze-walled transfer box, the animals were acclimatized, and chair trained in less than 4 weeks, much shorter than what other studies reported. Using salient stimuli allowed quick and accurate calibration of the eye-tracking system in untrained freely viewing marmosets. Applying reverse correlation to spiking activity and saccadic eye movements, we were able to map motor field of SC neurons in freely viewing marmosets. These refinements shortened the acclimation period, most likely reduced stress to the subjects, and allowed more efficient eye calibration and motor field mapping in freely viewing marmosets. With a penetration angle of 38 degrees, all 16 channels of the electrode array, that is, all recorded neurons across SC layers, had overlapping visual receptive and motor fields, indicating perpendicular penetration to the SC.
Collapse
Affiliation(s)
| | - Ali Asadollahi
- Visuo‐Motor Systems Laboratory, Department of BiologyFerdowsi University of MashhadMashhadIran
- Present address:
Washington National Primate Research Center, and Department of Biological StructuresUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
20
|
Kell AJ, Bokor SL, Jeon YN, Toosi T, Issa EB. Marmoset core visual object recognition behavior is comparable to that of macaques and humans. iScience 2023; 26:105788. [PMID: 36594035 PMCID: PMC9804140 DOI: 10.1016/j.isci.2022.105788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Among the smallest simian primates, the common marmoset offers promise as an experimentally tractable primate model for neuroscience with translational potential to humans. However, given its exceedingly small brain and body, the gap in perceptual and cognitive abilities between marmosets and humans requires study. Here, we performed a comparison of marmoset behavior to that of three other species in the domain of high-level vision. We first found that marmosets outperformed rats - a marmoset-sized rodent - on a simple recognition task, with marmosets robustly recognizing objects across views. On a more challenging invariant object recognition task used previously in humans, marmosets also achieved high performance. Notably, across hundreds of images, marmosets' image-by-image behavior was highly similar to that of humans - nearly as human-like as macaque behavior. Thus, core aspects of visual perception are conserved across monkeys and humans, and marmosets present salient behavioral advantages over other small model organisms for visual neuroscience.
Collapse
Affiliation(s)
- Alexander J.E. Kell
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sophie L. Bokor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - You-Nah Jeon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tahereh Toosi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Elias B. Issa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Gilbert KM, Dureux A, Jafari A, Zanini A, Zeman P, Menon RS, Everling S. A radiofrequency coil to facilitate task-based fMRI of awake marmosets. J Neurosci Methods 2023; 383:109737. [PMID: 36341968 DOI: 10.1016/j.jneumeth.2022.109737] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The small common marmoset (Callithrix jacchus) is an ideal nonhuman primate for awake fMRI in ultra-high field small animal MRI scanners. However, it can often be challenging in task-based fMRI experiments to provide a robust stimulus within the MRI environment while using hardware (an RF coil and restraint system) that is compatible with awake imaging. NEW METHOD Here we present an RF coil and restraint system that permits unimpeded access to an awake marmoset's head subsequent to immobilization, thereby permitting the setup of peripheral devices and stimuli proximal to the head. RESULTS As an example application, an fMRI experiment probing whole-brain activation in response to marmoset vocalizations was conducted-this paradigm showed significant bilateral activation in the inferior colliculus, medial lateral geniculate nucleus, and auditory cortex. COMPARISON WITH EXISTING METHOD(S) The coil performance was evaluated and compared to a previously published restraint system with integrated RF coil. The image and temporal SNR were improved by up to 58 % and 27 %, respectively, in the peripheral cortex and by 30 % and 3 % in the centre of the brain. The restraint-system topology limited head motion to less than 100 µm of translation and 0.30° of rotation when measured over a 15-minute acquisition. CONCLUSIONS The proposed hardware solution provides a versatile approach to awake-marmoset imaging and, as demonstrated, can facilitate task-based fMRI.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Azadeh Jafari
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Polyakova Z, Iwase M, Hashimoto R, Yoshida M. The effect of ketamine on eye movement characteristics during free-viewing of natural images in common marmosets. Front Neurosci 2022; 16:1012300. [PMID: 36203813 PMCID: PMC9530575 DOI: 10.3389/fnins.2022.1012300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Various eye movement abnormalities and impairments in visual information processing have been reported in patients with schizophrenia. Therefore, dysfunction of saccadic eye movements is a potential biological marker for schizophrenia. In the present study, we used a pharmacological model of schizophrenia symptoms in marmosets and compared the eye movement characteristics of marmosets during free-viewing, using an image set identical to those used for human studies. It contains natural and complex images that were randomly presented for 8 s. As a pharmacological model of schizophrenia symptoms, a subanesthetic dose of ketamine was injected intramuscularly for transient and reversible manipulation. Eye movements were recorded and compared under a ketamine condition and a saline condition as a control. The results showed that ketamine affected eye movement characteristics during free-viewing. Saccades amplitude and scanpath length were significantly reduced in the ketamine condition. In addition, the duration of saccades was longer under the ketamine condition than under the saline condition. A similar tendency was observed for the duration of fixations. The number of saccades and fixations tended to decrease in the ketamine condition. The peak saccades velocity also decreased after ketamine injection whereas there was no difference in the main sequence relationship between saccades amplitude and peak velocity. These results suggest that ketamine affected visual exploration but did not affect the oculomotor aspect of saccades in marmosets, consistent with studies in patients with schizophrenia. Therefore, we conclude that the subanesthetic dose of ketamine is a promising pharmacological model of schizophrenia symptoms in common marmosets and can be used in combination with free-viewing paradigms to establish “translatable markers” for schizophrenia in primates.
Collapse
Affiliation(s)
- Zlata Polyakova
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
- *Correspondence: Masatoshi Yoshida,
| |
Collapse
|
23
|
Ngo V, Gorman JC, De la Fuente MF, Souto A, Schiel N, Miller CT. Active vision during prey capture in wild marmoset monkeys. Curr Biol 2022; 32:3423-3428.e3. [PMID: 35750054 PMCID: PMC10203885 DOI: 10.1016/j.cub.2022.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
A foundational pressure in the evolution of all animals is the ability to travel through the world, inherently coupling the sensory and motor systems. While this relationship has been explored in several species,1-4 it has been largely overlooked in primates, which have typically relied on paradigms in which head-restrained subjects view stimuli on screens.5 Natural visual behaviors, by contrast, are typified by locomotion through the environment guided by active sensing as animals explore and interact with the world,4,6 a relationship well illustrated by prey capture.7-12 Here, we characterized prey capture in wild marmoset monkeys as they negotiated their dynamic, arboreal habitat to illustrate the inherent role of vision as an active process in natural nonhuman primate behavior. Not only do marmosets share the core properties of vision that typify the primate Order,13-18 but they are prolific hunters that prey on a diverse set of prey animals.19-22 Marmosets pursued prey using vision in several different contexts, but executed precise visually guided motor control that predominantly involved grasping with hands for successful capture of prey. Applying markerless tracking for the first time in wild primates yielded novel findings that precisely quantified how marmosets track insects prior to initiating an attack and the rapid visually guided corrections of the hands during capture. These findings offer the first detailed insight into the active nature of vision to guide multiple facets of a natural goal-directed behavior in wild primates and can inform future laboratory studies of natural primate visual behaviors and the supporting neural processes.
Collapse
Affiliation(s)
- Victoria Ngo
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA
| | - María Fernanda De la Fuente
- Programa de Pós-graduação em Etnobiologia e Conservação da Natureza, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil; Laboratório de Etologia Teórica e Aplicada, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil
| | - Antonio Souto
- Laboratório de Etologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|
24
|
Ryan AM, Bauman MD. Primate Models as a Translational Tool for Understanding Prenatal Origins of Neurodevelopmental Disorders Associated With Maternal Infection. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:510-523. [PMID: 35276404 PMCID: PMC8902899 DOI: 10.1016/j.bpsc.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
Pregnant women represent a uniquely vulnerable population during an infectious disease outbreak, such as the COVID-19 pandemic. Although we are at the early stages of understanding the specific impact of SARS-CoV-2 exposure during pregnancy, mounting epidemiological evidence strongly supports a link between exposure to a variety of maternal infections and an increased risk for offspring neurodevelopmental disorders. Inflammatory biomarkers identified from archived or prospectively collected maternal biospecimens suggest that the maternal immune response is the critical link between infection during pregnancy and altered offspring neurodevelopment. This maternal immune activation (MIA) hypothesis has been tested in animal models by artificially activating the immune system during pregnancy and evaluating the neurodevelopmental consequences in MIA-exposed offspring. Although the vast majority of MIA model research is carried out in rodents, the nonhuman primate model has emerged in recent years as an important translational tool. In this review, we briefly summarize human epidemiological studies that have prompted the development of translationally relevant MIA models. We then highlight notable similarities between humans and nonhuman primates, including placental structure, pregnancy physiology, gestational timelines, and offspring neurodevelopmental stages, that provide an opportunity to explore the MIA hypothesis in species more closely related to humans. Finally, we provide a comprehensive review of neurodevelopmental alterations reported in current nonhuman primate models of maternal infection and discuss future directions for this promising area of research.
Collapse
Affiliation(s)
- Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Davis, California; California National Primate Research Center, University of California Davis, Davis, California.
| |
Collapse
|
25
|
Song X, Guo Y, Li H, Chen C, Lee JH, Zhang Y, Schmidt Z, Wang X. Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys. Nat Commun 2022; 13:2238. [PMID: 35474064 PMCID: PMC9042927 DOI: 10.1038/s41467-022-29864-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The primate cerebral cortex is organized into specialized areas representing different modalities and functions along a continuous surface. The functional maps across the cortex, however, are often investigated a single modality at a time (e.g., audition or vision). To advance our understanding of the complex landscape of primate cortical functions, here we develop a polarization-gated wide-field optical imaging method for measuring cortical functions through the un-thinned intact skull in awake marmoset monkeys (Callithrix jacchus), a primate species featuring a smooth cortex. Using this method, adjacent auditory, visual, and somatosensory cortices are noninvasively parcellated in individual subjects with detailed tonotopy, retinotopy, and somatotopy. An additional pure-tone-responsive tonotopic gradient is discovered in auditory cortex and a face-patch sensitive to motion in the lower-center visual field is localized near an auditory region representing frequencies of conspecific vocalizations. This through-skull landscape-mapping approach provides new opportunities for understanding how the primate cortex is organized and coordinated to enable real-world behaviors.
Collapse
Affiliation(s)
- Xindong Song
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yueqi Guo
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hongbo Li
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Chenggang Chen
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jong Hoon Lee
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yang Zhang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Zachary Schmidt
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xiaoqin Wang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
26
|
Jovanovic V, Fishbein AR, de la Mothe L, Lee KF, Miller CT. Behavioral context affects social signal representations within single primate prefrontal cortex neurons. Neuron 2022; 110:1318-1326.e4. [PMID: 35108498 PMCID: PMC10064486 DOI: 10.1016/j.neuron.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 11/15/2022]
Abstract
We tested whether social signal processing in more traditional, head-restrained contexts is representative of the putative natural analog-social communication-by comparing responses to vocalizations within individual neurons in marmoset prefrontal cortex (PFC) across a series of behavioral contexts ranging from traditional to naturalistic. Although vocalization-responsive neurons were evident in all contexts, cross-context consistency was notably limited. A response to these social signals when subjects were head-restrained was not predictive of a comparable neural response to the identical vocalizations during natural communication. This pattern was evident both within individual neurons and at a population level, as PFC activity could be reliably decoded for the behavioral context in which vocalizations were heard. These results suggest that neural representations of social signals in primate PFC are not static but highly flexible and likely reflect how nuances of the dynamic behavioral contexts affect the perception of these signals and what they communicate.
Collapse
Affiliation(s)
- Vladimir Jovanovic
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Ryan Fishbein
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa de la Mothe
- Department of Psychology, Tennessee State University, Nashville, TN 37209, USA
| | - Kuo-Fen Lee
- Laboratory for Peptide Biology, Salk Institute, La Jolla, CA 92093, USA
| | - Cory Thomas Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Schaeffer DJ, Klassen LM, Hori Y, Tian X, Szczupak D, Yen CCC, Cléry JC, Gilbert KM, Gati JS, Menon RS, Liu C, Everling S, Silva AC. An open access resource for functional brain connectivity from fully awake marmosets. Neuroimage 2022; 252:119030. [PMID: 35217206 PMCID: PMC9048130 DOI: 10.1016/j.neuroimage.2022.119030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - CiRong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
28
|
Kaneko T, Komatsu M, Yamamori T, Ichinohe N, Okano H. Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets. Commun Biol 2022; 5:108. [PMID: 35115680 PMCID: PMC8814246 DOI: 10.1038/s42003-022-03052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.
Collapse
Affiliation(s)
- Takaaki Kaneko
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan.
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
29
|
Waller BM, Kavanagh E, Micheletta J, Clark PR, Whitehouse J. The face is central to primate multicomponent signals. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-021-00260-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractA wealth of experimental and observational evidence suggests that faces have become increasingly important in the communication system of primates over evolutionary time and that both the static and moveable aspects of faces convey considerable information. Therefore, whenever there is a visual component to any multicomponent signal the face is potentially relevant. However, the role of the face is not always considered in primate multicomponent communication research. We review the literature and make a case for greater focus on the face going forward. We propose that the face can be overlooked for two main reasons: first, due to methodological difficulty. Examination of multicomponent signals in primates is difficult, so scientists tend to examine a limited number of signals in combination. Detailed examination of the subtle and dynamic components of facial signals is particularly hard to achieve in studies of primates. Second, due to a common assumption that the face contains “emotional” content. A priori categorisation of facial behavior as “emotional” ignores the potentially communicative and predictive information present in the face that might contribute to signals. In short, we argue that the face is central to multicomponent signals (and also many multimodal signals) and suggest future directions for investigating this phenomenon.
Collapse
|
30
|
Nakagami A, Yasue M, Nakagaki K, Nakamura M, Kawai N, Ichinohe N. Reduced childhood social attention in autism model marmosets predicts impaired social skills and inflexible behavior in adulthood. Front Psychiatry 2022; 13:885433. [PMID: 35958665 PMCID: PMC9357878 DOI: 10.3389/fpsyt.2022.885433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social and communication impairments and restricted and repetitive behavior. Although there is currently no established cure for ASD, early interventions for deficits of attention to other individuals are expected to reduce the progression of ASD symptoms in later life. To confirm this hypothesis and improve early therapeutic interventions, it is desirable to develop an animal model of ASD in which social attention is impaired in childhood and ASD-like social behavior is observed in adulthood. However, rodent models of ASD have difficulty in recapitulating the deficit of gaze-based social attention. In this study, we examined the direction of gaze toward other conspecifics during childhood and puberty in a three-chamber test setting using an ASD marmoset model produced by maternal exposure to valproic acid (VPA). We also conducted a reversal learning test in adult VPA-exposed marmosets as an indicator of perseveration, a core symptom of ASD that has not previously been investigated in this model. The results showed that time spent gazing at other conspecifics was reduced in VPA-exposed marmosets in childhood, and that mature animals persisted with previous strategies that required long days for acquisition to pass the test. In a longitudinal study using the same animals, deficits in social attention in childhood correlated well with ASD-like social disturbance (inequity aversion and third-party reciprocity) and inflexible behavior in adulthood. Since VPA-exposed marmosets exhibit these diverse ASD-like behaviors that are consistent from childhood to adulthood, VPA-exposed marmosets will provide a valuable means of elucidating mechanisms for early intervention and contribute to the development of early therapies.
Collapse
Affiliation(s)
- Akiko Nakagami
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Psychology, Japan Women's University, Bunkyo-ku, Japan
| | - Miyuki Yasue
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiko Nakagaki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Madoka Nakamura
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Nobuyuki Kawai
- Graduate School of Information Science, Nagoya University, Nagoya, Japan.,Academy of Emerging Science, Chubu University, Kasugai, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
31
|
Gilbert KM, Cléry JC, Gati JS, Hori Y, Johnston KD, Mashkovtsev A, Selvanayagam J, Zeman P, Menon RS, Schaeffer DJ, Everling S. Simultaneous functional MRI of two awake marmosets. Nat Commun 2021; 12:6608. [PMID: 34785685 PMCID: PMC8595428 DOI: 10.1038/s41467-021-26976-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Social cognition is a dynamic process that requires the perception and integration of a complex set of idiosyncratic features between interacting conspecifics. Here we present a method for simultaneously measuring the whole-brain activation of two socially interacting marmoset monkeys using functional magnetic resonance imaging. MRI hardware (a radiofrequency coil and peripheral devices) and image-processing pipelines were developed to assess brain responses to socialization, both on an intra-brain and inter-brain level. Notably, the brain activation of a marmoset when viewing a second marmoset in-person versus when viewing a pre-recorded video of the same marmoset-i.e., when either capable or incapable of socially interacting with a visible conspecific-demonstrates increased activation in the face-patch network. This method enables a wide range of possibilities for potentially studying social function and dysfunction in a non-human primate model.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Kevin D Johnston
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - Alexander Mashkovtsev
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Janahan Selvanayagam
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
32
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
33
|
D'Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network. Brain Struct Funct 2021; 226:3007-3022. [PMID: 34518902 PMCID: PMC8541938 DOI: 10.1007/s00429-021-02367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.
Collapse
Affiliation(s)
- Joanita F D'Souza
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia.
| |
Collapse
|
34
|
Cloherty SL, Yates JL, Graf D, DeAngelis GC, Mitchell JF. Motion Perception in the Common Marmoset. Cereb Cortex 2021; 30:2658-2672. [PMID: 31828299 DOI: 10.1093/cercor/bhz267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Visual motion processing is a well-established model system for studying neural population codes in primates. The common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset. Here, we introduce a paradigm for studying motion perception in the marmoset and compare their psychophysical performance with human observers. We trained two marmosets to perform a motion estimation task in which they provided an analog report of their perceived direction of motion with an eye movement to a ring that surrounded the motion stimulus. Marmosets and humans exhibited similar trade-offs in speed versus accuracy: errors were larger and reaction times were longer as the strength of the motion signal was reduced. Reverse correlation on the temporal fluctuations in motion direction revealed that both species exhibited short integration windows; however, marmosets had substantially less nondecision time than humans. Our results provide the first quantification of motion perception in the marmoset and demonstrate several advantages to using analog estimation tasks.
Collapse
Affiliation(s)
- Shaun L Cloherty
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA.,Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jacob L Yates
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Dina Graf
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| |
Collapse
|
35
|
Walker JD, Pirschel F, Sundiang M, Niekrasz M, MacLean JN, Hatsopoulos NG. Chronic wireless neural population recordings with common marmosets. Cell Rep 2021; 36:109379. [PMID: 34260919 PMCID: PMC8513487 DOI: 10.1016/j.celrep.2021.109379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Marmosets are an increasingly important model system for neuroscience in part due to genetic tractability and enhanced cortical accessibility, due to a lissencephalic neocortex. However, many of the techniques generally employed to record neural activity in primates inhibit the expression of natural behaviors in marmosets precluding neurophysiological insights. To address this challenge, we have developed methods for recording neural population activity in unrestrained marmosets across multiple ethological behaviors, multiple brain states, and over multiple years. Notably, our flexible methodological design allows for replacing electrode arrays and removal of implants providing alternative experimental endpoints. We validate the method by recording sensorimotor cortical population activity in freely moving marmosets across their natural behavioral repertoire and during sleep.
Collapse
Affiliation(s)
- Jeffrey D Walker
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60615, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60615, USA.
| | - Friederice Pirschel
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60615, USA
| | - Marina Sundiang
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Marek Niekrasz
- Department of Surgery, University of Chicago, Chicago, IL 60615, USA; The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Jason N MacLean
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60615, USA; Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA; The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Nicholas G Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60615, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60615, USA; The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
36
|
Selvanayagam J, Johnston KD, Wong RK, Schaeffer D, Everling S. Ketamine disrupts gaze patterns during face viewing in the common marmoset. J Neurophysiol 2021; 126:330-339. [PMID: 34133232 DOI: 10.1152/jn.00078.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face-processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ), and thus, it is important to recapitulate underlying circuitry dysfunction preclinically. The N-methyl-d-aspartate (NMDA) noncompetitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behavior in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. Effects on saccade control were limited to an increase in saccade peak velocity in all conditions and a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.NEW & NOTEWORTHY Face processing, an important social cognitive ability, is impaired in neuropsychiatric conditions such as schizophrenia. The highly social common marmoset model presents an opportunity to investigate these impairments. We administered subanesthetic doses of ketamine to marmosets to model the cognitive symptoms of schizophrenia. We observed a disruption of scan paths during viewing of conspecifics' faces. These findings support the use of ketamine in marmosets as a model for investigating social cognition in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kevin D Johnston
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Raymond K Wong
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - David Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
37
|
Visual Neuroscience Methods for Marmosets: Efficient Receptive Field Mapping and Head-Free Eye Tracking. eNeuro 2021; 8:ENEURO.0489-20.2021. [PMID: 33863782 PMCID: PMC8143020 DOI: 10.1523/eneuro.0489-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
The marmoset has emerged as a promising primate model system, in particular for visual neuroscience. Many common experimental paradigms rely on head fixation and an extended period of eye fixation during the presentation of salient visual stimuli. Both of these behavioral requirements can be challenging for marmosets. Here, we present two methodological developments, each addressing one of these difficulties. First, we show that it is possible to use a standard eye-tracking system without head fixation to assess visual behavior in the marmoset. Eye-tracking quality from head-free animals is sufficient to obtain precise psychometric functions from a visual acuity task. Second, we introduce a novel method for efficient receptive field (RF) mapping that does not rely on moving stimuli but uses fast flashing annuli and wedges. We present data recorded during head-fixation in areas V1 and V6 and show that RF locations are readily obtained within a short period of recording time. Thus, the methodological advancements presented in this work will contribute to establish the marmoset as a valuable model in neuroscience.
Collapse
|
38
|
Murai T, Sukoff Rizzo SJ. The Importance of Complementary Collaboration of Researchers, Veterinarians, and Husbandry Staff in the Successful Training of Marmoset Behavioral Assays. ILAR J 2021; 61:230-247. [PMID: 33501501 DOI: 10.1093/ilar/ilaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Interest in marmosets as research models has seen exponential growth over the last decade, especially given that the research community is eager to improve on gaps with historical animal models for behavioral and cognitive disorders. The spectrum of human disease traits that present naturally in marmosets, as well as the range of analogous human behaviors that can be assessed in marmosets, makes them ideally suited as translational models for behavioral and cognitive disorders. Regardless of the specific research aims of any project, without close collaboration between researchers, veterinarians, and animal care staff, it would be impossible to meet these goals. Behavior is inherently variable, as are marmosets that are genetically and phenotypically diverse. Thus, to ensure rigor, reliability, and reproducibility in results, it is important that in the research environment, the animal's daily husbandry and veterinary needs are being met and align with the research goals while keeping the welfare of the animal the most critical and highest priority. Much of the information described herein provides details on key components for successful behavioral testing, based on a compendium of methods from peer-reviewed publications and our own experiences. Specific areas highlighted include habituation procedures, selection of appropriate rewards, optimization of testing environments, and ways to integrate regular veterinary and husbandry procedures into the research program with minimal disruptions to the behavioral testing plan. This article aims to provide a broad foundation for researchers new to establishing behavioral and cognitive testing paradigms in marmosets and especially for the veterinary and husbandry colleagues who are indispensable collaborators of these research projects.
Collapse
Affiliation(s)
- Takeshi Murai
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
39
|
Colman RJ, Capuano S, Bakker J, Keeley J, Nakamura K, Ross C. Marmosets: Welfare, Ethical Use, and IACUC/Regulatory Considerations. ILAR J 2020; 61:167-178. [PMID: 33620069 PMCID: PMC9214643 DOI: 10.1093/ilar/ilab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022] Open
Abstract
Use of marmosets in biomedical research has increased dramatically in recent years due, in large part, to their suitability for transgenic applications and utility as models for neuroscience investigations. This increased use includes the establishment of new colonies and involvement of people new to marmoset research. To facilitate the use of the marmoset as a research model, we provide an overview of issues surrounding the ethics and regulations associated with captive marmoset research, including discussion of the history of marmosets in research, current uses of marmosets, ethical considerations related to marmoset use, issues related to importation of animals, and recommendations for regulatory oversight of gene-edited marmosets. To understand the main concerns that oversight bodies have regarding captive biomedical research with marmosets, we developed a brief, 15-question survey that was then sent electronically to academic and biomedical research institutions worldwide that were believed to house colonies of marmosets intended for biomedical research. The survey included general questions regarding the individual respondent's colony, status of research use of the colony and institutional oversight of both the colony itself and the research use of the colony. We received completed surveys from a total of 18 institutions from North America, Europe, and Asia. Overall, there appeared to be no clear difference in regulatory oversight body concerns between countries/regions. One difference that we were able to appreciate was that while biomedical research with marmosets was noted to be either stable or decreasing in Europe, use was clearly increasing elsewhere.
Collapse
Affiliation(s)
- Ricki J Colman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jo Keeley
- University of Cambridge, Cambridge, United Kingdom
| | | | - Corinna Ross
- Department of Life Sciences, Texas A&M University, San Antonio, Texas, USA; and Population Health, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
40
|
Chen CY, Matrov D, Veale R, Onoe H, Yoshida M, Miura K, Isa T. Properties of visually guided saccadic behavior and bottom-up attention in marmoset, macaque, and human. J Neurophysiol 2020; 125:437-457. [PMID: 33356912 DOI: 10.1152/jn.00312.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Saccades are stereotypic behaviors whose investigation improves our understanding of how primate brains implement precise motor control. Furthermore, saccades offer an important window into the cognitive and attentional state of the brain. Historically, saccade studies have largely relied on macaques. However, the cortical network giving rise to the saccadic command is difficult to study in macaques because relevant cortical areas lie in deep sulci and are difficult to access. Recently, a New World monkey. the marmoset, has garnered attention as an alternative to macaques because of advantages including its smooth cortical surface. However, adoption of the marmoset for oculomotor research has been limited due to a lack of in-depth descriptions of marmoset saccade kinematics and their ability to perform psychophysical tasks. Here, we directly compare free-viewing and visually guided behavior of marmoset, macaque, and human engaged in identical tasks under similar conditions. In the video free-viewing task, all species exhibited qualitatively similar saccade kinematics up to 25° in amplitude although with different parameters. Furthermore, the conventional bottom-up saliency model predicted gaze targets at similar rates for all species. We further verified their visually guided behavior by training them with step and gap saccade tasks. In the step paradigm, marmosets did not show shorter saccade reaction time for upward saccades whereas macaques and humans did. In the gap paradigm, all species showed similar gap effect and express saccades. Our results suggest that the marmoset can serve as a model for oculomotor, attentional, and cognitive research while we need to be aware of their difference from macaque or human.NEW & NOTEWORTHY We directly compared the results of a video free-viewing task and visually guided saccade tasks (step and gap) among three different species: marmoset, macaque, and human. We found that all species exhibit qualitatively similar saccadic kinematics and saliency-driven saccadic behavior albeit with different parameters. Our results suggest that the marmoset possesses similar neural mechanisms to macaque and human for saccadic control, and it is an appropriate model to study neural mechanisms for active vision and attention.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Denis Matrov
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Richard Veale
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Common marmoset as a model primate for study of the motor control system. Curr Opin Neurobiol 2020; 64:103-110. [DOI: 10.1016/j.conb.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
42
|
Abstract
In humans and macaque monkeys, socially relevant face processing is accomplished via a distributed functional network that includes specialized patches in frontal cortex. It is unclear whether a similar network exists in New World primates, who diverged ~35 million years from Old World primates. The common marmoset is a New World primate species ideally placed to address this question given their complex social repertoire. Here, we demonstrate the existence of a putative high-level face processing network in marmosets. Like Old World primates, marmosets show differential activation in anterior cingulate and lateral prefrontal cortices while they view socially relevant videos of marmoset faces. We corroborate the locations of these frontal regions by demonstrating functional and structural connectivity between these regions and temporal lobe face patches. Given the evolutionary separation between macaques and marmosets, our results suggest this frontal network specialized for social face processing predates the separation between Platyrrhini and Catarrhini. In Old World primates, socially relevant face processing is accomplished via a distributed functional network including specialized patches in the frontal cortex. Here, the authors demonstrate a similar network in frontal cortex of New World marmoset monkeys, suggesting inheritance from a common ancestor.
Collapse
|
43
|
Meyer AF, O'Keefe J, Poort J. Two Distinct Types of Eye-Head Coupling in Freely Moving Mice. Curr Biol 2020; 30:2116-2130.e6. [PMID: 32413309 PMCID: PMC7284311 DOI: 10.1016/j.cub.2020.04.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Animals actively interact with their environment to gather sensory information. There is conflicting evidence about how mice use vision to sample their environment. During head restraint, mice make rapid eye movements coupled between the eyes, similar to conjugate saccadic eye movements in humans. However, when mice are free to move their heads, eye movements are more complex and often non-conjugate, with the eyes moving in opposite directions. We combined head and eye tracking in freely moving mice and found both observations are explained by two eye-head coupling types, associated with vestibular mechanisms. The first type comprised non-conjugate eye movements, which compensate for head tilt changes to maintain a similar visual field relative to the horizontal ground plane. The second type of eye movements was conjugate and coupled to head yaw rotation to produce a "saccade and fixate" gaze pattern. During head-initiated saccades, the eyes moved together in the head direction but during subsequent fixation moved in the opposite direction to the head to compensate for head rotation. This saccade and fixate pattern is similar to humans who use eye movements (with or without head movement) to rapidly shift gaze but in mice relies on combined head and eye movements. Both couplings were maintained during social interactions and visually guided object tracking. Even in head-restrained mice, eye movements were invariably associated with attempted head motion. Our results reveal that mice combine head and eye movements to sample their environment and highlight similarities and differences between eye movements in mice and humans.
Collapse
Affiliation(s)
- Arne F Meyer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK.
| | - John O'Keefe
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK; Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Jasper Poort
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), London W1T 4JG, UK; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
44
|
Walker JD, Pirschel F, Gidmark N, MacLean JN, Hatsopoulos NG. A platform for semiautomated voluntary training of common marmosets for behavioral neuroscience. J Neurophysiol 2020; 123:1420-1426. [PMID: 32130092 PMCID: PMC7191516 DOI: 10.1152/jn.00300.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Generally behavioral neuroscience studies of the common marmoset employ adaptations of well-established training methods used with macaque monkeys. However, in many cases these approaches do not readily generalize to marmosets indicating a need for alternatives. Here we present the development of one such alternate: a platform for semiautomated, voluntary in-home cage behavioral training that allows for the study of naturalistic behaviors. We describe the design and production of a modular behavioral training apparatus using CAD software and digital fabrication. We demonstrate that this apparatus permits voluntary behavioral training and data collection throughout the marmoset's waking hours with little experimenter intervention. Furthermore, we demonstrate the use of this apparatus to reconstruct the kinematics of the marmoset's upper limb movement during natural foraging behavior.NEW & NOTEWORTHY The study of marmosets in neuroscience has grown rapidly and presents unique challenges. We address those challenges with an innovative platform for semiautomated, voluntary training that allows marmosets to train throughout their waking hours with minimal experimenter intervention. We describe the use of this platform to capture upper limb kinematics during foraging and to expand the opportunities for behavioral training beyond the limits of traditional training sessions. This flexible platform can easily incorporate other tasks.
Collapse
Affiliation(s)
- Jeffrey D Walker
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Friederice Pirschel
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | | | - Jason N MacLean
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Department of Neurobiology, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois
| | - Nicholas G Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Ma L, Selvanayagam J, Ghahremani M, Hayrynen LK, Johnston KD, Everling S. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 2020; 123:896-911. [DOI: 10.1152/jn.00614.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Maryam Ghahremani
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Kwon S, Rolfs M, Mitchell JF. Presaccadic motion integration drives a predictive postsaccadic following response. J Vis 2020; 19:12. [PMID: 31557762 DOI: 10.1167/19.11.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccadic eye movements sample the visual world and ensure high acuity across the visual field. To compensate for delays in processing, saccades to moving targets require predictions: The eyes must intercept the target's future position to then pursue its direction of motion. Although prediction is crucial to voluntary pursuit, it is unclear whether it is an obligatory feature of saccade planning. Saccade planning involves an involuntary enhanced processing of the target, called presaccadic attention. Does this presaccadic attention recruit smooth eye movements automatically? To test this, we had human participants perform a saccade to one of four apertures, which were static, but each contained a random dot field with motion tangential to the required saccade. In this task, saccades were deviated along the direction of target motion, and the eyes exhibited a following response upon saccade landing. This postsaccadic following response (PFR) increased with spatial uncertainty of the target position and persisted even when we removed the motion stimulus in midflight of the saccade, confirming that it relied on presaccadic information. Motion from 50-100 ms prior to the saccade had the strongest influence on PFR, consistent with the time course of perceptual enhancements reported in presaccadic attention. Finally, the PFR magnitude related linearly to the logarithm of stimulus velocity and generally had low gain, similar to involuntary ocular following movements commonly observed after sudden motion onsets. These results suggest that presaccadic attention selects motion features of targets predictively, presumably to ensure successful immediate tracking of saccade targets in motion.
Collapse
Affiliation(s)
- Sunwoo Kwon
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.,Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jude F Mitchell
- Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.,Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
47
|
Pandey S, Simhadri S, Zhou Y. Rapid Head Movements in Common Marmoset Monkeys. iScience 2020; 23:100837. [PMID: 32058952 PMCID: PMC6997856 DOI: 10.1016/j.isci.2020.100837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 11/27/2022] Open
Abstract
Gaze shifts, the directing of the eyes to an approaching predator, preferred food source, or potential mate, have universal biological significance for the survival of a species. Our knowledge of gaze behavior is based primarily on visually triggered responses, whereas head orientation triggered by auditory stimuli remains poorly characterized. Common marmoset (Callithrix jacchus) is a diurnal, small-bodied (∼350 g), New World monkey species, known for its rich behavioral repertoires during social interactions. We used a lightweight head tracking system to measure marmosets' reflexive head orientations toward a natural stimulus presented from behind. We found that marmoset could rotate its head at angular velocities above 1,000°/s and maintained target accuracy for a wide range of rotation amplitudes (up to 250°). This unusual, saccadic head orienting behavior offers opportunities for understanding the many biological factors that have shaped the evolution of sensorimotor controls of gaze orientation by the primate brain. Marmosets can make rapid, reflexive head turns in response to natural stimuli The peak velocity of marmoset head turns can exceed that of primate eye saccades When the environment is lit, head movements are faster than when it is dark
Collapse
Affiliation(s)
- Swarnima Pandey
- College of Health Solutions, Arizona State University, 975 S. Myrtle Avenue, Coor Hall 3470, Tempe, AZ 85287, USA
| | - Sravanthi Simhadri
- College of Health Solutions, Arizona State University, 975 S. Myrtle Avenue, Coor Hall 3470, Tempe, AZ 85287, USA
| | - Yi Zhou
- College of Health Solutions, Arizona State University, 975 S. Myrtle Avenue, Coor Hall 3470, Tempe, AZ 85287, USA.
| |
Collapse
|
48
|
Schaeffer DJ, Gilbert KM, Hori Y, Hayrynen LK, Johnston KD, Gati JS, Menon RS, Everling S. Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. Neuroimage 2019; 202:116147. [DOI: 10.1016/j.neuroimage.2019.116147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
|
49
|
Functional Localization of the Frontal Eye Fields in the Common Marmoset Using Microstimulation. J Neurosci 2019; 39:9197-9206. [PMID: 31582528 DOI: 10.1523/jneurosci.1786-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The frontal eye field (FEF) is a critical region for the deployment of overt and covert spatial attention. Although investigations in the macaque continue to provide insight into the neural underpinnings of the FEF, due to its location within a sulcus, the macaque FEF is virtually inaccessible to electrophysiological techniques such as high-density and laminar recordings. With a largely lissencephalic cortex, the common marmoset (Callithrix jacchus) is a promising alternative primate model for studying FEF microcircuitry. Putative homologies have been established with the macaque FEF on the basis of cytoarchitecture and connectivity; however, physiological investigation in awake, behaving marmosets is necessary to physiologically locate this area. Here, we addressed this gap using intracortical microstimulation in a broad range of frontal cortical areas in three adult marmosets (two males, one female). We implanted marmosets with 96-channel Utah arrays and applied microstimulation trains while they freely viewed video clips. We evoked short-latency fixed vector saccades at low currents (<50 μA) in areas 45, 8aV, 8C, and 6DR. We observed a topography of saccade direction and amplitude consistent with findings in macaques and humans: small saccades in ventrolateral FEF and large saccades combined with contralateral neck and shoulder movements encoded in dorsomedial FEF. Our data provide compelling evidence supporting homology between marmoset and macaque FEF and suggest that the marmoset is a useful primate model for investigating FEF microcircuitry and its contributions to oculomotor and cognitive functions.SIGNIFICANCE STATEMENT The frontal eye field (FEF) is a critical cortical region for overt and covert spatial attention. The microcircuitry of this area remains poorly understood because in the macaque, the most commonly used model, it is embedded within a sulcus and is inaccessible to modern electrophysiological and imaging techniques. The common marmoset is a promising alternative primate model due to its lissencephalic cortex and potential for genetic manipulation. However, evidence for homologous cortical areas in this model remains limited and unclear. Here, we applied microstimulation in frontal cortical areas in marmosets to physiologically identify FEF. Our results provide compelling evidence for an FEF in the marmoset and suggest that the marmoset is a useful model for investigating FEF microcircuitry.
Collapse
|
50
|
Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S. Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol 2019; 122:1765-1776. [DOI: 10.1152/jn.00417.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Liya Ma
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|