1
|
Brito V, Montalban E, Sancho-Balsells A, Pupak A, Flotta F, Masana M, Ginés S, Alberch J, Martin C, Girault JA, Giralt A. Hippocampal Egr1-Dependent Neuronal Ensembles Negatively Regulate Motor Learning. J Neurosci 2022; 42:5346-5360. [PMID: 35610044 PMCID: PMC9270920 DOI: 10.1523/jneurosci.2258-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 01/09/2023] Open
Abstract
Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
Collapse
Affiliation(s)
- Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Enrica Montalban
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Francesca Flotta
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Mercè Masana
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| | - Claire Martin
- Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Université de Paris, Paris F-75014, France
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche -S 1270, Paris 75005, France
- Science and Engineering Faculty, Sorbonne Université, Paris 75005, France
- Institut du Fer a Moulin, Paris 75005, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain, 28029 Madrid
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
2
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
3
|
The branching code: A model of actin-driven dendrite arborization. Cell Rep 2022; 39:110746. [PMID: 35476974 DOI: 10.1016/j.celrep.2022.110746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
The cytoskeleton is crucial for defining neuronal-type-specific dendrite morphologies. To explore how the complex interplay of actin-modulatory proteins (AMPs) can define neuronal types in vivo, we focused on the class III dendritic arborization (c3da) neuron of Drosophila larvae. Using computational modeling, we reveal that the main branches (MBs) of c3da neurons follow general models based on optimal wiring principles, while the actin-enriched short terminal branches (STBs) require an additional growth program. To clarify the cellular mechanisms that define this second step, we thus concentrated on STBs for an in-depth quantitative description of dendrite morphology and dynamics. Applying these methods systematically to mutants of six known and novel AMPs, we revealed the complementary roles of these individual AMPs in defining STB properties. Our data suggest that diverse dendrite arbors result from a combination of optimal-wiring-related growth and individualized growth programs that are neuron-type specific.
Collapse
|
4
|
Pairing of neonatal phencyclidine exposure and acute adolescent stress in male rats as a novel developmental model of schizophrenia. Behav Brain Res 2021; 409:113308. [PMID: 33872663 DOI: 10.1016/j.bbr.2021.113308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023]
Abstract
Improved understanding of the neurophysiological and neurochemical mechanisms underlying schizophrenia is essential for the identification of biological markers and developing new therapeutic targets. The development of behaviorally faithful, predictive animal models is crucial to this endeavor. We have developed a novel two-hit paradigm designed to recapitulate in rodents the developmental process leading to appearance of human schizophrenia symptomatology. The model pairs neonatal administration of the NMDA receptor (NMDAR) open-channel blocker phencyclidine (PCP 10 mg/kg) to male rats at 7, 9 and 11 days of age, with later adolescent exposure (34 days of age) to a single prolonged stress paradigm consisting of 2 h restraint, followed by 20 min of forced swimming. Four experimental groups were examined: vehicle and no stress (VEH-NS), vehicle plus stress (VEH-S), PCP and no stress (PCP-NS), and PCP plus stress (PCP-S). Only pairing of neonatal PCP with single prolonged adolescent stress caused deficits in novel object recognition memory and increased anxiety-like behavior in the elevated plus maze task, without altering locomotor activity. In a separate cohort of animals, the PCP-S group showed significant reduction in magnitude of hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses following a single pair of theta-burst stimuli (TBS), while LTP was diminished in both PCP treated groups when elicited by a second pair of TBS. These results suggest that the combination of neonatal PCP and acute adolescent stress are necessary for lasting cognitive impairment and anxiety-like phenotype, and that these behavioral impairments may be due to deficits in LTP in hippocampus, and perhaps elsewhere in the brain.
Collapse
|
5
|
Lucena PH, Armani-Franceschi G, Bispo-Torres AC, Bandeira ID, Lucena MFG, Maldonado I, Veiga MF, Miguel D, Lucena R. KPTN gene homozygous variant-related syndrome in the northeast of Brazil: A case report. Am J Med Genet A 2020; 182:762-767. [PMID: 31999056 DOI: 10.1002/ajmg.a.61492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 11/11/2022]
Abstract
Alteration of the KPTN gene, responsible for the coding of kaptin (a protein involved in actin cytoskeletal dynamics), causes a syndrome characterized by macrocephaly, neurodevelopmental delay and epileptic seizures. We report the first Brazilian case of KPTN gene variation, previously described in nine subjects from four interlinked families from an Amish community in Ohio, two Estonian siblings and a 9-year-old boy from Kansas City. We report a case of KPTN-related syndrome in a 5-year-old child which presented macrocephaly, muscular hypotonia, and global development delay. The neurological examination revealed below-expected performance in coordination and balance tests, dyspraxia, and hand-mouth synkinesia. Expressive language was characterized by phono-articulatory imprecision, abundance of phonological processes and morphosyntactic immaturity. Neuropsychological assessment revealed intellectual disability with impairment of verbal and executive functions. Exome sequencing was performed. Analysis revealed a homozygous 2-nucleotide duplication c.597_598dup p.(Ser200Ilefs*55) in the KPTN gene, which is predicted to lead to a translational frameshift and formation of a premature stop codon. The phenotypic profile is similar to the cases described in the other families. Presence of macrocephaly and delayed development indicate the possibility of KPTN gene variation. Genetic testing should be carried out at an early stage in order to reach a timely diagnosis.
Collapse
Affiliation(s)
- Pedro H Lucena
- Departamento de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Giulia Armani-Franceschi
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ana Cecília Bispo-Torres
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Igor D Bandeira
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Mariana F G Lucena
- Departamento de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Igor Maldonado
- Le Studium Loire Valley Institute for Advanced Studies, Orleans, France.,UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU de Tours, Tours, France
| | - Marielza F Veiga
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Diego Miguel
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Rita Lucena
- Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
6
|
van Bommel B, Konietzny A, Kobler O, Bär J, Mikhaylova M. F-actin patches associated with glutamatergic synapses control positioning of dendritic lysosomes. EMBO J 2019; 38:e101183. [PMID: 31267565 PMCID: PMC6669925 DOI: 10.15252/embj.2018101183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Organelle positioning within neurites is required for proper neuronal function. In dendrites, with their complex cytoskeletal organization, transport of organelles is guided by local specializations of the microtubule and actin cytoskeleton, and by coordinated activity of different motor proteins. Here, we focus on the actin cytoskeleton in the dendritic shaft and describe dense structures consisting of longitudinal and branched actin filaments. These actin patches are devoid of microtubules and are frequently located at the base of spines, or form an actin mesh around excitatory shaft synapses. Using lysosomes as an example, we demonstrate that the presence of actin patches has a strong impact on dendritic organelle transport, as lysosomes frequently stall at these locations. We provide mechanistic insights on this pausing behavior, demonstrating that actin patches form a physical barrier for kinesin-driven cargo. In addition, we identify myosin Va as an active tether which mediates long-term stalling. This correlation between the presence of actin meshes and halting of organelles could be a generalized principle by which synapses control organelle trafficking.
Collapse
Affiliation(s)
- Bas van Bommel
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Konietzny
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Gong C, Xiang G, Liu K, Zhang H. [Research progress on the role of thrombospondin in synapse formation]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:124-128. [PMID: 30644272 DOI: 10.7507/1002-1892.201809006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the recent progress in the role of thrombospondins (TSPs) in synapse formation in the central nervous system (CNS). Methods A wide range of domestic and foreign literature on the role of TSPs in the synapse formation of the CNS was reviewed. The role of TSPs in structural features, molecules, and related diseases was reviewed. Results As an oligosaccharide protein, TSPs play important roles in angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. In the nervous system, they bind to voltage-dependent calcium channels, neuronectin, and other extracellular matrix proteins and cell surface receptors, and participate in and regulate multiple processes such as synapse formation, maturation, and function in the CNS. Conclusion TSPs as an oligomeric extracellular matrix protein play an important role in the formation of synapses and the repair of synapses after CNS injury.
Collapse
Affiliation(s)
- Chaoyang Gong
- Department of Orthopedics, Gansu Key Laboratory of Osteoarthropathy Research, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Gao Xiang
- Department of Orthopedics, Gansu Key Laboratory of Osteoarthropathy Research, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Kaixin Liu
- Department of Orthopedics, Gansu Key Laboratory of Osteoarthropathy Research, Lanzhou University Second Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Haihong Zhang
- Department of Orthopedics, Gansu Key Laboratory of Osteoarthropathy Research, Lanzhou University Second Hospital, Lanzhou Gansu, 730000,
| |
Collapse
|
8
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
9
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Ferrera P, Zepeda A, Arias C. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation. Cell Mol Neurobiol 2017; 37:1311-1318. [PMID: 28124209 DOI: 10.1007/s10571-017-0467-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.
Collapse
Affiliation(s)
- Patricia Ferrera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico.
| |
Collapse
|
11
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
12
|
Zhang D, Wang X, Lu XY. Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice. Endocrinology 2016; 157:2853-69. [PMID: 27187175 PMCID: PMC4929553 DOI: 10.1210/en.2015-2078] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hippocampus, a brain region critical for learning, memory and emotional processing, maintains its capacity to undergo structural plasticity throughout life. Hippocampal structural plasticity can be modulated by a number of intrinsic and extrinsic factors. This study investigated the effects of adiponectin, an adipocyte-derived hormone, on dendritic growth, arborization, and spinogenesis in mature granule neurons of the hippocampal dentate gyrus generated during embryonic (early-born) or early postnatal (late-born) stages. We found that adiponectin deficiency reduced dendritic length, branching and spine density of granule neurons. The reduction was more evident in early-born granule neurons than in late-born granule neurons. Intracerebroventricular infusion of adiponectin for 1 week increased of dendritic spines and arbor complexity in late-born granule neurons. Moreover, adiponectin deficiency decreased the production of adult-born new granule neurons through suppressing neural progenitor cell proliferation and differentiation, whereas intracerebroventricular adiponectin infusion increased the proliferation of neural progenitor cells in adult dentate gyrus. These results suggest that adiponectin plays an important role in dendritic spine remodeling and neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Xuezhen Wang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| |
Collapse
|
13
|
Hotulainen P, Saarikangas J. The initiation of post-synaptic protrusions. Commun Integr Biol 2016; 9:e1125053. [PMID: 27489575 PMCID: PMC4951170 DOI: 10.1080/19420889.2015.1125053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 02/02/2023] Open
Abstract
The post-synaptic spines of neuronal dendrites are highly elaborate membrane protrusions. Their anatomy, stability and density are intimately linked to cognitive performance. The morphological transitions of spines are powered by coordinated polymerization of actin filaments against the plasma membrane, but how the membrane-associated polymerization is spatially and temporally regulated has remained ill defined. Here, we discuss our recent findings showing that dendritic spines can be initiated by direct membrane bending by the I-BAR protein MIM/Mtss1. This lipid phosphatidylinositol (PI(4,5)P2) signaling-activated membrane bending coordinated spatial actin assembly and promoted spine formation. From recent advances, we formulate a general model to discuss how spatially concentrated protein-lipid microdomains formed by multivalent interactions between lipids and actin/membrane regulatory proteins might launch cell protrusions.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
14
|
Tian Y, Tang FL, Sun X, Wen L, Mei L, Tang BS, Xiong WC. VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation. Mol Brain 2015; 8:70. [PMID: 26521016 PMCID: PMC4628247 DOI: 10.1186/s13041-015-0156-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Vacuolar protein sorting 35 (VPS35), a key component of retromer, plays an important role in endosome-to-Golgi retrieval of membrane proteins. Dysfunction of VPS35/retromer is a risk factor for neurodegenerative disorders, including AD (Alzheimer’s disease) and PD (Parkinson’s disease). However, exactly how VPS35-deficiency contributes to AD or PD pathogenesis remains poorly understood. Results We found that VPS35-deficiency impaired dendritic spine maturation and decreased glutamatergic transmission. AMPA receptors, GluA1 and GluA2, are significantly reduced in purified synaptosomal and PSD fractions from VPS35-deficient brain. The surface levels of AMPA receptors are also decreased in VPS35-deficient neurons. Additionally, VPS35 interacted with AMPA-type receptors, GluA1 and GluA2. Overexpression of GluA2, but not GluA1, could partially restore the spine maturation deficit in VPS35-deficient neurons. Conclusions These results provide evidence for VPS35’s function in promoting spine maturation, which is likely through increasing AMPA receptor targeting to the postsynaptic membrane. Perturbation of such a VPS35/retromer function may contribute to the impaired glutamatergic transmission and pathogenesis of neurodegenerative disorders, such as AD and PD. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0156-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Tian
- Department of Geriatrics and Department of Neurology, Xiangya Hospital, Central South University, ChangSha, 410008, China.,Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Fu-Lei Tang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - XiangDong Sun
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Lei Wen
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA.,Department of Traditional Chinese Medicine, Xia-Men University, Xia-Men, China
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Bei-Sha Tang
- Department of Geriatrics and Department of Neurology, Xiangya Hospital, Central South University, ChangSha, 410008, China.
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Burette AC, Phend KD, Burette S, Lin Q, Liang M, Foltz G, Taylor N, Wang Q, Brandon NJ, Bates B, Ehlers MD, Weinberg RJ. Organization of TNIK in dendritic spines. J Comp Neurol 2015; 523:1913-24. [PMID: 25753355 DOI: 10.1002/cne.23770] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kristen D Phend
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Susan Burette
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Qingcong Lin
- Shenogen Pharma Group, Beijing, People's Republic of China 102206
| | - Musen Liang
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Andover, Massachusetts 01810
| | - Gretchen Foltz
- Clinical Research Unit, Pfizer, New Haven, Connecticut 06511
| | - Noël Taylor
- Biomarker and Personalized Medicine Group, Eisai Product Creation Systems, Eisai, Andover, Massachusetts 01810
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | | | - Brian Bates
- Centers for Therapeutic Innovation, Pfizer, Boston, Massachusetts 02115
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139
| | - Richard J Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, 27599.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
16
|
Pilaz LJ, Silver DL. Post-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:501-15. [PMID: 26088328 DOI: 10.1002/wrna.1289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/17/2022]
Abstract
The cerebral cortex, the brain structure responsible for our higher cognitive functions, is built during embryonic development in a process called corticogenesis. During corticogenesis, neural stem cells generate distinct populations of progenitors and excitatory neurons. These new neurons migrate radially in the cortex, eventually forming neuronal layers and establishing synaptic connections with other neurons both within and outside the cortex. Perturbations to corticogenesis can result in severe neurodevelopmental disorders, thus emphasizing the need to better understand molecular regulation of brain development. Recent studies in both model organisms and humans have collectively highlighted roles for post-transcriptional regulation in virtually all steps of corticogenesis. Genomic approaches have revealed global RNA changes associated with spatial and temporal regulation of cortical development. Additionally, genetic studies have uncovered RNA-binding proteins (RBPs) critical for cell proliferation, differentiation, and migration within the developing neocortex. Many of these same RBPs play causal roles in neurodevelopmental pathologies. In the developing neocortex, RBPs influence diverse steps of mRNA metabolism, including splicing, stability, translation, and localization. With the advent of new technologies, researchers have begun to uncover key transcripts regulated by these RBPs. Given the complexity of the developing mammalian cortex, a major challenge for the future will be to understand how dynamic RNA regulation occurs within heterogeneous cell populations, across space and time. In sum, post-transcriptional regulation has emerged as a critical mechanism for driving corticogenesis and exciting direction of future research.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev Cell 2015; 33:644-59. [PMID: 26051541 DOI: 10.1016/j.devcel.2015.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/28/2015] [Accepted: 04/21/2015] [Indexed: 11/21/2022]
Abstract
Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.
Collapse
|
18
|
Fuchsova B, Alvarez Juliá A, Rizavi HS, Frasch AC, Pandey GN. Altered expression of neuroplasticity-related genes in the brain of depressed suicides. Neuroscience 2015; 299:1-17. [PMID: 25934039 DOI: 10.1016/j.neuroscience.2015.04.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Expression of the neuronal membrane glycoprotein M6a (GPM6A), the proteolipid protein (PLP/DM20) family member, is downregulated in the hippocampus of chronically stressed animals. Its neuroplastic function involves a role in neurite formation, filopodium outgrowth and synaptogenesis through an unknown mechanism. Disruptions in neuroplasticity mechanisms have been shown to play a significant part in the etiology of depression. Thus, the current investigation examined whether GPM6A expression is also altered in human depressed brain. METHODS Expression levels and coexpression patterns of GPM6A, GPM6B, and PLP1 (two other members of PLP/DM20 family) as well as of the neuroplasticity-related genes identified to associate with GPM6A were determined using quantitative polymerase chain reaction (qPCR) in postmortem samples from the hippocampus (n = 18) and the prefrontal cortex (PFC) (n = 25) of depressed suicide victims and compared with control subjects (hippocampus n = 18; PFC n = 25). Neuroplasticity-related proteins that form complexes with GPM6A were identified by coimmunoprecipitation technique followed by mass spectrometry. RESULTS Results indicated transcriptional downregulation of GPM6A and GPM6B in the hippocampus of depressed suicides. The expression level of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) and coronin1A (CORO1A) was also significantly decreased. Subsequent analysis of coexpression patterns demonstrated coordinated gene expression in the hippocampus and in the PFC indicating that the function of these genes might be coregulated in the human brain. However, in the brain of depressed suicides this coordinated response was disrupted. CONCLUSIONS Disruption of coordinated gene expression as well as abnormalities in GPM6A and GPM6B expression and expression of the components of GPM6A complexes were detected in the brain of depressed suicides.
Collapse
Affiliation(s)
- B Fuchsova
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina.
| | - A Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina
| | - H S Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - A C Frasch
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina
| | - G N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Baker K, Scerif G, Astle DE, Fletcher PC, Raymond FL. Psychopathology and cognitive performance in individuals with membrane-associated guanylate kinase mutations: a functional network phenotyping study. J Neurodev Disord 2015; 7:8. [PMID: 25802558 PMCID: PMC4369839 DOI: 10.1186/s11689-015-9105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/07/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rare pathogenic variants in membrane-associated guanylate kinase (MAGUK) genes cause intellectual disability (ID) and have recently been associated with neuropsychiatric risk in the non-ID population. However, it is not known whether risk for psychiatric symptoms amongst individuals with ID due to MAGUK gene mutations is higher than expected for the degree of general intellectual impairment, nor whether specific cognitive differences are associated with disruption to this gene functional network. METHODS This study addresses these two questions via behavioural questionnaires and cognitive testing, applying quantitative methods previously validated in populations with ID. We compared males with X-linked ID caused by mutations in three MAGUK genes (PAK3, DLG3, OPHN1; n = 9) to males with ID caused by mutations in other X chromosome genes (n = 17). Non-parametric and parametric analyses were applied as appropriate to data. RESULTS Groups did not differ in age, global cognitive impairment, adaptive function or epilepsy prevalence. However, individuals with MAGUK gene mutations demonstrated significantly higher psychopathology risks, comprising elevated total problem behaviours, prominent hyperactivity and elevated scores on an autism screening checklist. Despite these overt difficulties, individuals in the MAGUK group performed more accurately than expected for age and intelligence quotient (IQ) on computerised tests of visual attention, convergent with mouse models of MAGUK loss-of-function. CONCLUSIONS Our findings support a role for MAGUK genes in influencing cognitive parameters relevant to psychiatric risk. In addition to establishing clear patterns of impairment for this group, our findings highlight the importance of careful phenotyping after genetic diagnosis, showing that gene functional network disruptions can be associated with specific psychopathological risks and cognitive differences within the context of ID.
Collapse
Affiliation(s)
- Kate Baker
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford, OX1 3UD UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, CB2 7EF UK
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain & Mind Sciences, Forvie Site, Robinson Way, Cambridge, CB2 0SZ UK
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
20
|
Colín-Barenque L, Pedraza-Chaverri J, Medina-Campos O, Jimenez-Martínez R, Bizarro-Nevares P, González-Villalva A, Rojas-Lemus M, Fortoul TI. Functional and morphological olfactory bulb modifications in mice after vanadium inhalation. Toxicol Pathol 2014; 43:282-91. [PMID: 25492423 DOI: 10.1177/0192623314548668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, have olfaction impairment. These pathologies have also been linked to environmental pollutants. Vanadium is a pollutant, and its toxic mechanisms are related to the production of oxidative stress. In this study, we evaluated the effects of inhaled vanadium on olfaction, the olfactory bulb antioxidant, through histological and ultrastructural changes in granule cells. Mice in control group were made to inhale saline; the experimental group inhaled 0.02-M vanadium pentoxide (V2O5) for 1 hr twice a week for 4 weeks. Animals were sacrificed at 1, 2, 3, and 4 weeks after inhalation. Olfactory function was evaluated by the odorant test. The activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was assayed in olfactory bulbs and processed for rapid Golgi method and ultrastructural analysis. Results show that olfactory function decreased at 4-week vanadium exposure; granule cells showed a decrease in dendritic spine density and increased lipofuscin, Golgi apparatus vacuolation, apoptosis, and necrosis. The activity of GPx and GR in the olfactory bulb was increased compared to that of the controls. Our results demonstrate that vanadium inhalation disturbs olfaction, histology, and the ultrastructure of the granule cells that might be associated with oxidative stress, a risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jose Pedraza-Chaverri
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Omar Medina-Campos
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Ruben Jimenez-Martínez
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | | | | | - Marcela Rojas-Lemus
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | - Teresa I Fortoul
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| |
Collapse
|
21
|
Lin SH, Chen WC, Lu KH, Chen PJ, Hsieh SC, Pan TM, Chen ST, Sheen LY. Down-regulation of Slit-Robo pathway mediating neuronal cytoskeletal remodeling processes facilitates the antidepressive-like activity of Gastrodia elata Blume. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10493-503. [PMID: 25197951 DOI: 10.1021/jf503132c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nowadays, depression is a serious psychological disorder that causes extreme economic loss and social problems. Previously, we discovered that the water extract of Gastrodia elata Blume (WGE) improved depressive-like behavior by influencing neurotransmitters in rats subjected to the forced swimming test. To elucidate possible mechanisms, in the present study, we performed a proteomics and bioinformatics analysis to identify the related pathways. Western blot-validated results indicated that the core protein network modulated by WGE administration was closely associated with down-regulation of the Slit-Robo pathway, which modulates neuronal cytoskeletal remodeling processes. Although Slit-Robo signaling has been well investigated in neuronal development, its relationship with depression is not fully understood. We provide a potential hint on the mechanism responsible for the antidepressive-like activity of WGE. In conclusion, we suggest that the Slit-Robo pathway and neuronal cytoskeleton remodeling are possibly one of the pathways associated with the antidepressive-like effects of WGE.
Collapse
Affiliation(s)
- Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J Neurosci 2014; 34:10022-33. [PMID: 25057204 DOI: 10.1523/jneurosci.2868-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and β-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, β-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation.
Collapse
|
23
|
The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus. J Neuroimmune Pharmacol 2014; 9:654-67. [DOI: 10.1007/s11481-014-9558-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
24
|
The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 2014; 34:717-25. [PMID: 24431430 DOI: 10.1523/jneurosci.2884-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
Collapse
|
25
|
The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid. J Neurosci 2014; 33:19470-9. [PMID: 24336713 DOI: 10.1523/jneurosci.2283-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.
Collapse
|
26
|
Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW, Sonntag KC, Woo TUW. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. J Neurogenet 2014; 28:53-69. [PMID: 24702465 PMCID: PMC4196521 DOI: 10.3109/01677063.2014.882918] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e., 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGF-β) and the bone morphogenetic proteins (BMPs) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis, and cytoskeletal and synaptic plasticity. In addition, we identified 10 microRNAs (miRNAs) that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.
Collapse
Affiliation(s)
- Charmaine Y. Pietersen
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A. Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Susie S. Kim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | - Maribel P. Lim
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Jill M. Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Tracey L. Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Larry J. Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martha E. Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, Massachusetts, USA
| | - Kai-C. Sonntag
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA
| | - Tsung-Ung W. Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures. Am J Hum Genet 2014; 94:87-94. [PMID: 24239382 PMCID: PMC3882725 DOI: 10.1016/j.ajhg.2013.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 01/31/2023] Open
Abstract
The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis.
Collapse
|
28
|
Varga J, Klausz B, Domokos Á, Kálmán S, Pákáski M, Szűcs S, Garab D, Zvara Á, Puskás L, Kálmán J, Tímár J, Bagdy G, Zelena D. Increase in Alzheimer's related markers preceeds memory disturbances: Studies in vasopressin-deficient Brattleboro rat. Brain Res Bull 2014; 100:6-13. [DOI: 10.1016/j.brainresbull.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022]
|
29
|
Stamatakou E, Salinas PC. Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 2013; 74:818-27. [PMID: 24105999 PMCID: PMC4237178 DOI: 10.1002/dneu.22138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023]
Abstract
Synapse formation requires the coordinated formation of the presynaptic terminal, containing the machinery for neurotransmitter release, and the postsynaptic side that possesses the machinery for neurotransmitter reception. For coordinated pre- and postsynaptic assembly signals across the synapse are required. Wnt secreted proteins are well-known synaptogenic factors that promote the recruitment of presynaptic components in diverse organisms. However, recent studies demonstrate that Wnts act directly onto the postsynaptic side at both central and peripheral synapses to promote postsynaptic development and synaptic strength. This review focuses on the role of Wnts in postsynaptic development at central synapses and the neuromuscular junction. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 818–827, 2014
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
30
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
31
|
Loew LM, Hell SW. Superresolving dendritic spines. Biophys J 2013; 104:741-3. [PMID: 23442950 DOI: 10.1016/j.bpj.2013.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/10/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Leslie M Loew
- University of Connecticut Health Center, Farmington, Connecticut.
| | | |
Collapse
|
32
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
33
|
Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO J 2013; 32:1730-44. [PMID: 23685357 DOI: 10.1038/emboj.2013.107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.
Collapse
|
34
|
Nelson JC, Stavoe AKH, Colón-Ramos DA. The actin cytoskeleton in presynaptic assembly. Cell Adh Migr 2013; 7:379-87. [PMID: 23628914 DOI: 10.4161/cam.24803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.
Collapse
Affiliation(s)
- Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration and Repair; Department of Cell Biology; Yale University; New Haven, CT USA
| | | | | |
Collapse
|
35
|
Goh WWB, Sergot MJ, Sng JCG, Sng JC, Wong L. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice. J Proteome Res 2013; 12:2116-27. [PMID: 23557376 PMCID: PMC3805323 DOI: 10.1021/pr301127f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Despite
its prominence for characterization of complex mixtures,
LC–MS/MS frequently fails to identify many proteins. Network-based
analysis methods, based on protein–protein interaction networks
(PPINs), biological pathways, and protein complexes, are useful for
recovering non-detected proteins, thereby enhancing analytical resolution.
However, network-based analysis methods do come in varied flavors
for which the respective efficacies are largely unknown. We compare
the recovery performance and functional insights from three distinct
instances of PPIN-based approaches, viz., Proteomics Expansion Pipeline
(PEP), Functional Class Scoring (FCS), and Maxlink, in a test scenario
of valproic acid (VPA)-treated mice. We find that the most comprehensive
functional insights, as well as best non-detected protein recovery
performance, are derived from FCS utilizing real biological complexes.
This outstrips other network-based methods such as Maxlink or Proteomics
Expansion Pipeline (PEP). From FCS, we identified known biological
complexes involved in epigenetic modifications, neuronal system development,
and cytoskeletal rearrangements. This is congruent with the observed
phenotype where adult mice showed an increase in dendritic branching
to allow the rewiring of visual cortical circuitry and an improvement
in their visual acuity when tested behaviorally. In addition, PEP
also identified a novel complex, comprising YWHAB, NR1, NR2B, ACTB,
and TJP1, which is functionally related to the observed phenotype.
Although our results suggest different network analysis methods can
produce different results, on the whole, the findings are mutually
supportive. More critically, the non-overlapping information each
provides can provide greater holistic understanding of complex phenotypes.
Collapse
|
36
|
Burette AC, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman MH, Weinberg RJ. Electron tomographic analysis of synaptic ultrastructure. J Comp Neurol 2013; 520:2697-711. [PMID: 22684938 DOI: 10.1002/cne.23067] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synaptic function depends on interactions among sets of proteins that assemble into complex supramolecular machines. Molecular biology, electrophysiology, and live-cell imaging studies have provided tantalizing glimpses into the inner workings of the synapse, but fundamental questions remain regarding the functional organization of these "nano-machines." Electron tomography reveals the internal structure of synapses in three dimensions with exceptional spatial resolution. Here we report results from an electron tomographic study of axospinous synapses in neocortex and hippocampus of the adult rat, based on aldehyde-fixed material stabilized with tannic acid in lieu of postfixation with osmium tetroxide. Our results provide a new window into the structural basis of excitatory synaptic processing in the mammalian brain.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell & Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways. J Neurosci 2013; 33:1846-57. [PMID: 23365224 DOI: 10.1523/jneurosci.4284-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.
Collapse
|
38
|
Jausoro I, Mestres I, Quassollo G, Masseroni L, Heredia F, Caceres A. Regulation of spine density and morphology by IQGAP1 protein domains. PLoS One 2013; 8:e56574. [PMID: 23441206 PMCID: PMC3575492 DOI: 10.1371/journal.pone.0056574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022] Open
Abstract
IQGAP1 is a scaffolding protein that regulates spine number. We now show a differential role for IQGAP1 domains in spine morphogenesis, in which a region of the N-terminus that promotes Arp2/3-mediated actin polymerization and branching stimulates spine head formation while a region that binds to Cdc42 and Rac is required for stalk extension. Conversely, IQGAP1 rescues spine deficiency induced by expression of dominant negative Cdc42 by stimulating formation of stubby spines. Together, our observations place IQGAP1 as a crucial regulator of spine number and shape acting through the N-Wasp Arp2/3 complex, as well as upstream and downstream of Cdc42.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ivan Mestres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lujan Masseroni
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alfredo Caceres
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
39
|
Shen JN, Wang DS, Wang R. The protection of acetylcholinesterase inhibitor on β-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:900-13. [PMID: 23119107 PMCID: PMC3484487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA's effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes.
Collapse
Affiliation(s)
- Jiao-Ning Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and TechnologyShanghai 200237, China
| | - Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of WisconsinMadison, Wisconsin, USA
| | - Rui Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and TechnologyShanghai 200237, China
| |
Collapse
|
40
|
Wang CL, Tang FL, Peng Y, Shen CY, Mei L, Xiong WC. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 2012; 1:1248-57. [PMID: 23259059 PMCID: PMC3522886 DOI: 10.1242/bio.20122451] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase) and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.
Collapse
Affiliation(s)
- Chun-Lei Wang
- Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University , Augusta, GA 30912 , USA
| | | | | | | | | | | |
Collapse
|
41
|
Wayman GA, Yang D, Bose DD, Lesiak A, Ledoux V, Bruun D, Pessah IN, Lein PJ. PCB-95 promotes dendritic growth via ryanodine receptor-dependent mechanisms. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:997-1002. [PMID: 22534141 PMCID: PMC3404670 DOI: 10.1289/ehp.1104832] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroclor 1254 (A1254) interferes with normal dendritic growth and plasticity in the developing rodent brain, but the mechanism(s) mediating this effect have yet to be established. Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) enhance the activity of ryanodine receptor (RyR) calcium ion (Ca(2+)) channels, which play a central role in regulating the spatiotemporal dynamics of intracellular Ca(2+) signaling. Ca(2+) signaling is a predominant factor in shaping dendritic arbors, but whether PCB potentiation of RyR activity influences dendritic growth is not known. OBJECTIVE We determined whether RyR activity is required for PCB effects on dendritic growth. METHODS AND RESULTS Golgi analysis of hippocampi from weanling rats confirmed that developmental exposure via the maternal diet to NDL PCB-95 (2,2',3,5'6-pentachlorobiphenyl), a potent RyR potentiator, phenocopies the dendrite-promoting effects of A1254. Dendritic growth in dissociated cultures of primary hippocampal neurons and in hippocampal slice cultures is similarly enhanced by PCB-95 but not by PCB-66 (2,3,4',4-tetrachlorobiphenyl), a congener with negligible effects on RyR activity. The dendrite-promoting effects of PCB-95 are evident at concentrations as low as 2 pM and are inhibited by either pharmacologic blockade or siRNA knockdown of RyRs. CONCLUSIONS Our findings demonstrate that environmentally relevant levels of NDL PCBs modulate neuronal connectivity via RyR-dependent effects on dendritic arborization. In addition, these findings identify RyR channel dysregulation as a novel mechanism contributing to dysmorphic dendritogenesis associated with heritable and environmentally triggered neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gary A Wayman
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Palubinsky AM, Martin JA, McLaughlin B. The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 2012; 34:129-39. [PMID: 22572535 PMCID: PMC6065248 DOI: 10.1159/000336828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
The human brain is dependent upon successfully maintaining ionic, energetic and redox homeostasis within exceptionally narrow margins for proper function. The ability of neurons to adapt to genetic and environmental perturbations and evoke a 'new normal' can be most fully appreciated in the context of neurological disorders in which clinical impairments do not manifest until late in life, although dysfunctional proteins are expressed early in development. We now know that proteins controlling ATP generation, mitochondrial stability, and the redox environment are associated with neurological disorders such as Parkinson's disease and amyotrophic lateral sclerosis. Generally, focus is placed on the role that early or long-term environmental stress has in altering the survival of cells targeted by genetic dysfunctions; however, the central nervous system undergoes several periods of intense stress during normal maturation. One of the most profound periods of stress occurs when 50% of neurons are removed via programmed cell death. Unfortunately, we have virtually no understanding of how these events proceed in individuals who harbor mutations that are lethal later in life. Moreover, there is a profound lack of information on circuit formation, cell fate during development and neurochemical compensation in either humans or the animals used to model neurodegenerative diseases. In this review, we consider the current knowledge of how energetic and oxidative stress signaling differs between neurons in early versus late stages of life, the influence of a new group of proteins that can integrate cell stress signals at the mitochondrial level, and the growing body of evidence that suggests early development should be considered a critical period for the genesis of chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Amy M. Palubinsky
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob A. Martin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| | - BethAnn McLaughlin
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Hippocampal dendritic spines modifications induced by perinatal asphyxia. Neural Plast 2012; 2012:873532. [PMID: 22645692 PMCID: PMC3356716 DOI: 10.1155/2012/873532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/17/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023] Open
Abstract
Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.
Collapse
|
44
|
Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005587. [PMID: 22357909 DOI: 10.1101/cshperspect.a005587] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Kristen M Harris
- Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
| | | |
Collapse
|
45
|
MacDonald JIS, Dietrich A, Gamble S, Hryciw T, Grant RI, Meakin SO. Nesca, a novel neuronal adapter protein, links the molecular motor kinesin with the pre-synaptic membrane protein, syntaxin-1, in hippocampal neurons. J Neurochem 2012; 121:861-80. [PMID: 22404429 DOI: 10.1111/j.1471-4159.2012.07729.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vesicular transport in neurons plays a vital role in neuronal function and survival. Nesca is a novel protein that we previously identified and herein describe its pattern of expression, subcellular localization and protein-protein interactions both in vitro and in vivo. Specifically, a large proportion of Nesca is in tight association with both actin and microtubule cytoskeletal proteins. Nesca binds to F-actin, microtubules, βIII and acetylated α-tubulin, but not neurofilaments or the actin-binding protein drebrin, in in vitro-binding assays. Nesca co-immunoprecipitates with kinesin heavy chain (KIF5B) and kinesin light-chain motors as well as with the synaptic membrane precursor protein, syntaxin-1, and is a constituent of the post-synaptic density. Moreover, in vitro-binding assays indicate that Nesca directly binds KIF5B, kinesin light-chain and syntaxin-1. In contrast, Nesca does not co-immunoprecipitate with the kinesin motors KIF1B, KIF3A nor does it bind syntaxin-4 or the synaptosome-associated protein 25 kDa (SNAP-25) in vitro. Nesca expression in neurons is highly punctuate, co-stains with syntaxin-1, and is found in fractions containing markers of early endosomes and Golgi suggesting that it is involved in vesicular transport. Collectively, these data suggest that Nesca functions as an adapter involved in neuronal vesicular transport including vesicles containing soluble N-ethylmaleimide sensitive factor attachment protein receptors that are essential to exocytosis.
Collapse
Affiliation(s)
- James I S MacDonald
- Laboratory of Neural Signaling, Molecular Brain Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Laht P, Pill K, Haller E, Veske A. Plexin-B3 interacts with EB-family proteins through a conserved motif. Biochim Biophys Acta Gen Subj 2012; 1820:888-93. [PMID: 22373814 DOI: 10.1016/j.bbagen.2012.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plexins are transmembrane receptors that are highly expressed in the central nervous system. They participate in the patterning of neural connections and regulation of cell adhesion and motility in many cell types. The aim of this study was to characterize novel protein-protein interactions of plexin-B3 intracellular portion. METHODS To identify new interactors of plexin-B3 yeast two-hybrid screen was performed. We used GST pull-down and co-immunoprecipitation to verify those results. Deletion mutants were used to map the interacting regions. The physiological relevance of this interaction was assessed with neurite outgrowth assay in Neuro2A cell line. RESULTS We show that the N-terminal segment of intracellular domain of plexin-B3 interacts with microtubule plus end-binding proteins EB1, EB2 and EB3. The corresponding region in human plexin-A2, B1 and B3 contains the conserved EB-binding motif SxIP and these plexins also associate with EBs indicating the specificity of plexin-EB binding. As to the EB proteins, their N-terminal microtubule-binding domain is dispensable for plexin interaction. Plexin-EB interaction is involved in neurite growth as the synthetic peptide corresponding to the EB-binding region of plexin-B1 increases significantly the number of neurite tips in Neuro2A cells. CONCLUSIONS Microtubule end-binding proteins EB1, EB2 and EB3 interact with plexin-A2, B1 and B3 through a conserved EB-binding motif, which is located in their intracellular domain N-terminal segment. GENERAL SIGNIFICANCE The observed interaction between plexin intracellular domain and EBs suggests a novel function for plexins in regulating EB-mediated changes in microtubule dynamics and neurite growth.
Collapse
Affiliation(s)
- Piret Laht
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | | |
Collapse
|
47
|
Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012; 31:170-7. [PMID: 22285841 DOI: 10.1016/j.matbio.2012.01.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.
Collapse
Affiliation(s)
- W Christopher Risher
- Cell Biology Department, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
48
|
Withers GS, Wallace CS, Gibbs EM, Emery IR, Applegate ML. Synapses on demand require dendrites at the ready: how defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain. Dev Psychobiol 2011; 53:443-55. [PMID: 21678392 DOI: 10.1002/dev.20560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience-expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience-dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant-expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step-wise fashion consistent with a stage-specific shift from genomically pre-programmed to activity-dependent mechanisms.
Collapse
Affiliation(s)
- Ginger S Withers
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| | | | | | | | | |
Collapse
|
49
|
Vasiljevic M, Heisler FF, Hausrat TJ, Fehr S, Milenkovic I, Kneussel M, Sieghart W. Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain. Neuroscience 2011; 202:29-41. [PMID: 22178608 PMCID: PMC3270221 DOI: 10.1016/j.neuroscience.2011.11.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Calumenin is a Ca2+-binding protein that belongs to the CREC superfamily. It contains six EF-hand domains that exhibit a low affinity for Ca2+ as well as an endoplasmic reticulum retention signal. Calumenin exhibits a broad and relatively high expression in various brain regions during development as demonstrated by in situ hybridization. Signal intensity of calumenin is highest during the early development and then declines over time to reach a relatively low expression in adult animals. Immunohistochemistry indicates that at the P0 stage, calumenin expression is most abundant in migrating neurons in the zones around the lateral ventricle. In the brain of adult animals, it is expressed in various glial and neuronal cell types, including immature neurons in subgranular zone of hippocampal dentate gyrus. At the subcellular level, calumenin is identified in punctuate and diffuse distribution mostly in somatic regions where it co-localizes with endoplasmic reticulum (ER) and partially Golgi apparatus. Upon subcellular fractionation, calumenin is enriched in fractions containing membranes and is only weakly present in soluble fractions. This study points to a possible important role of calumenin in migration and differentiation of neurons, and/or in Ca2+ signaling between glial cells and neurons.
Collapse
Affiliation(s)
- M Vasiljevic
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
50
|
Shioda N, Moriguchi S, Oya T, Ishii Y, Shen J, Matsushima T, Nishijo H, Sasahara M, Fukunaga K. Aberrant hippocampal spine morphology and impaired memory formation in neuronal platelet-derived growth factor beta-receptor lacking mice. Hippocampus 2011; 22:1371-8. [DOI: 10.1002/hipo.20973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2011] [Indexed: 02/03/2023]
|