1
|
Park GY, Lee G, Yoon J, Han J, Choi P, Kim M, Lee S, Park C, Wu Z, Li Y, Choi M. Glia-like taste cells mediate an intercellular mode of peripheral sweet adaptation. Cell 2024:S0092-8674(24)01258-3. [PMID: 39561773 DOI: 10.1016/j.cell.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
The sense of taste generally shows diminishing sensitivity to prolonged sweet stimuli, referred to as sweet adaptation. Yet, its mechanistic landscape remains incomplete. Here, we report that glia-like type I cells provide a distinct mode of sweet adaptation via intercellular crosstalk with chemosensory type II cells. Using the microfluidic-based intravital tongue imaging system, we found that sweet adaptation is facilitated along the synaptic transduction from type II cells to gustatory afferent nerves, while type I cells display temporally delayed and prolonged activities. We identified that type I cells receive purinergic input from adjacent type II cells via P2RY2 and provide inhibitory feedback to the synaptic transduction of sweet taste. Aligning with our cellular-level findings, purinergic activation of type I cells attenuated sweet licking behavior, and P2RY2 knockout mice showed decelerated adaptation behavior. Our study highlights a veiled intercellular mode of sweet adaptation, potentially contributing to the efficient encoding of prolonged sweetness.
Collapse
Affiliation(s)
- Gha Yeon Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Geehyun Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jongmin Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Pyonggang Choi
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Minjae Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Chaeri Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Mikami A, Huang H, Hyodo A, Horie K, Yasumatsu K, Ninomiya Y, Mitoh Y, Iida S, Yoshida R. The role of GABA in modulation of taste signaling within the taste bud. Pflugers Arch 2024; 476:1761-1775. [PMID: 39210062 PMCID: PMC11461785 DOI: 10.1007/s00424-024-03007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Taste buds contain 2 types of GABA-producing cells: sour-responsive Type III cells and glial-like Type I cells. The physiological role of GABA, released by Type III cells is not fully understood. Here, we investigated the role of GABA released from Type III cells using transgenic mice lacking the expression of GAD67 in taste bud cells (Gad67-cKO mice). Immunohistochemical experiments confirmed the absence of GAD67 in Type III cells of Gad67-cKO mice. Furthermore, no difference was observed in the expression and localization of cell type markers, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2), gustducin, and carbonic anhydrase 4 (CA4) in taste buds between wild-type (WT) and Gad67-cKO mice. Short-term lick tests demonstrated that both WT and Gad67-cKO mice exhibited normal licking behaviors to each of the five basic tastants. Gustatory nerve recordings from the chorda tympani nerve demonstrated that both WT and Gad67-cKO mice similarly responded to five basic tastants when they were applied individually. However, gustatory nerve responses to sweet-sour mixtures were significantly smaller than the sum of responses to each tastant in WT mice but not in Gad67-cKO mice. In summary, elimination of GABA signalling by sour-responsive Type III taste cells eliminates the inhibitory cell-cell interactions seen with application of sour-sweet mixtures.
Collapse
Affiliation(s)
- Ayaka Mikami
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hai Huang
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aiko Hyodo
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kengo Horie
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | | | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan.
| |
Collapse
|
3
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
4
|
Nishida K, Bansho S, Ikukawa A, Kubota T, Ohishi A, Nagasawa K. Expression profile of the zinc transporter ZnT3 in taste cells of rat circumvallate papillae and its role in zinc release, a potential mechanism for taste stimulation. Eur J Histochem 2022; 66. [DOI: 10.4081/ejh.2022.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Zinc is an essential trace element, and its deficiency causes taste dysfunction. Zinc accumulates in zinc transporter (ZnT)3-expressing presynaptic vesicles in hippocampal neurons and acts as a neurotransmitter in the central nervous system. However, the distribution of zinc and its role as a signal transmitter in taste buds remain unknown. Therefore, we examined the distribution of zinc and expression profiles of ZnT3 in taste cells and evaluated zinc release from isolated taste cells upon taste stimuli. Taste cells with a spindle or pyriform morphology were revealed by staining with the fluorescent zinc dye ZnAF-2DA and autometallography in the taste buds of rat circumvallate papillae. Znt3 mRNA levels were detected in isolated taste buds. ZnT3-immunoreactivity was found in phospholipase-β2-immunopositive type II taste cells and aromatic amino acid decarboxylase-immunopositive type III cells but not in nucleoside triphosphate diphosphohydrolase 2-immunopositive type I cells. Moreover, we examined zinc release from taste cells using human transient receptor potential A1-overexpressing HEK293 as zinc-sensor cells. These cells exhibited a clear response to isolated taste cells exposed to taste stimuli. However, pretreatment with magnesium-ethylenediaminetetraacetic acid, an extracellular zinc chelator - but not with zinc-ethylenediaminetetraacetic acid, used as a negative control - significantly decreased the response ratio of zinc-sensor cells. These findings suggest that taste cells release zinc to the intercellular area in response to taste stimuli and that zinc may affect signaling within taste buds.
Collapse
|
5
|
Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. Int J Mol Sci 2022; 23:ijms23158225. [PMID: 35897802 PMCID: PMC9329783 DOI: 10.3390/ijms23158225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Sweet taste, a proxy for sugar-derived calories, is an important driver of food intake, and animals have evolved robust molecular and cellular machinery for sweet taste signaling. The overconsumption of sugar-derived calories is a major driver of obesity and other metabolic diseases. A fine-grained appreciation of the dynamic regulation of sweet taste signaling mechanisms will be required for designing novel noncaloric sweeteners with better hedonic and metabolic profiles and improved consumer acceptance. Sweet taste receptor cells express at least two signaling pathways, one mediated by a heterodimeric G-protein coupled receptor encoded by taste 1 receptor members 2 and 3 (TAS1R2 + TAS1R3) genes and another by glucose transporters and the ATP-gated potassium (KATP) channel. Despite these important discoveries, we do not fully understand the mechanisms regulating sweet taste signaling. We will introduce the core components of the above sweet taste signaling pathways and the rationale for having multiple pathways for detecting sweet tastants. We will then highlight the roles of key regulators of the sweet taste signaling pathways, including downstream signal transduction pathway components expressed in sweet taste receptor cells and hormones and other signaling molecules such as leptin and endocannabinoids.
Collapse
|
6
|
Wessels AG. Influence of the Gut Microbiome on Feed Intake of Farm Animals. Microorganisms 2022; 10:microorganisms10071305. [PMID: 35889024 PMCID: PMC9315566 DOI: 10.3390/microorganisms10071305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of microbiome research, the requirement to consider the intestinal microbiome as the “last organ” of an animal emerged. Through the production of metabolites and/or the stimulation of the host’s hormone and neurotransmitter synthesis, the gut microbiota can potentially affect the host’s eating behavior both long and short-term. Based on current evidence, the major mediators appear to be short-chain fatty acids (SCFA), peptide hormones such as peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), as well as the amino acid tryptophan with the associated neurotransmitter serotonin, dopamine and γ-Aminobutyrate (GABA). The influence appears to extend into central neuronal networks and the expression of taste receptors. An interconnection of metabolic processes with mechanisms of taste sensation suggests that the gut microbiota may even influence the sensations of their host. This review provides a summary of the current status of microbiome research in farm animals with respect to general appetite regulation and microbiota-related observations made on the influence on feed intake. This is briefly contrasted with the existing findings from research with rodent models in order to identify future research needs. Increasing our understanding of appetite regulation could improve the management of feed intake, feed frustration and anorexia related to unhealthy conditions in farm animals.
Collapse
Affiliation(s)
- Anna Grete Wessels
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
7
|
Cherkashin AP, Rogachevskaja OA, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca 2+ in the Extracellular Medium. Cells 2022; 11:1369. [PMID: 35456048 PMCID: PMC9030112 DOI: 10.3390/cells11081369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5-5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislav S. Kolesnikov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (A.P.C.); (O.A.R.); (N.V.K.); (P.D.K.); (M.F.B.)
| |
Collapse
|
8
|
Abstract
This review summarizes our understanding of ATP signaling in taste and describes new directions for research. ATP meets all requisite criteria to be considered a neurotransmitter: (1) presence in taste cells, as in all cells; (2) release upon appropriate taste stimulation; (3) binding to cognate purinergic receptors P2X2 and P2X3 on gustatory afferent neurons, and (4) after release, enzymatic degradation to adenosine and other nucleotides by the ectonucleotidase, NTPDase2, expressed on the Type I, glial-like cells in the taste bud. Importantly, double knockout of P2X2 and P2X3 or pharmacological inhibition of P2X3 abolishes transmission of all taste qualities. In Type II taste cells (those that respond to sweet, bitter, or umami stimuli), ATP is released non-vesicularly by a large conductance ion channel composed of CALHM1 and CALHM3, which form a so-called channel synapse at areas of contact with afferent taste nerve fibers. Although ATP release has been detected only from Type II cells, it is also required for the transmission of salty and sour stimuli, which are mediated primarily by the Type III taste cells. The source of the ATP required for Type III cell signaling to afferent fibers is still unclear and is a focus for future experiments. The ionotropic purinergic receptor, P2X3, is widely expressed on many sensory afferents and has been a therapeutic target for treating chronic cough and pain. However, its requirement for taste signaling has complicated efforts at treatment since patients given P2X3 antagonists report substantial disturbances of taste and become non-compliant.
Collapse
Affiliation(s)
- Sue Kinnamon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Thomas Finger
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
9
|
Finger T, Kinnamon S. Purinergic neurotransmission in the gustatory system. Auton Neurosci 2021; 236:102874. [PMID: 34536906 DOI: 10.1016/j.autneu.2021.102874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Taste buds consist of specialized epithelial cells which detect particular tastants and synapse onto the afferent taste nerve innervating the endorgan. The nature of the neurotransmitter released by taste cells onto the nerve fiber was enigmatic early in this century although neurotransmitters for other sensory receptor cell types, e.g. hair cells, photoreceptors, was known for at least a decade. A 1999 paper by Burnstock and co-workers (Bo et al., 1999) showing the presence of P2X receptors on the afferent nerves served as a springboard for research that ultimately led to the discovery of ATP as the crucial neurotransmitter in the taste system (Finger et al., 2005). Subsequent work showed that a subpopulation of taste cells utilize a unique release channel, CALHM1/3, to release ATP in a voltage-dependent manner. Despite these advances, several aspects of purinergic transmission in this system remain to be elucidated.
Collapse
Affiliation(s)
- T Finger
- Dept. Cell & Developmental Biology, Dept. Otolaryngology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora, CO 80045, United States of America.
| | - Sue Kinnamon
- Dept. Cell & Developmental Biology, Dept. Otolaryngology, Univ. Colorado School of Medicine, Anschutz Medical Campus, MS 8108, Room L18-11118, RC-1, 12801 E. 17th Ave., Aurora, CO 80045, United States of America
| |
Collapse
|
10
|
Jang JH, Kwon O, Moon SJ, Jeong YT. Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinol Metab (Seoul) 2021; 36:469-477. [PMID: 34139798 PMCID: PMC8258330 DOI: 10.3803/enm.2021.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Taste sensation is the gatekeeper for direct decisions on feeding behavior and evaluating the quality of food. Nutritious and beneficial substances such as sugars and amino acids are represented by sweet and umami tastes, respectively, whereas noxious substances and toxins by bitter or sour tastes. Essential electrolytes including Na+ and other ions are recognized by the salty taste. Gustatory information is initially generated by taste buds in the oral cavity, projected into the central nervous system, and finally processed to provide input signals for food recognition, regulation of metabolism and physiology, and higher-order brain functions such as learning and memory, emotion, and reward. Therefore, understanding the peripheral taste system is fundamental for the development of technologies to regulate the endocrine system and improve whole-body metabolism. In this review article, we introduce previous widely-accepted views on the physiology and genetics of peripheral taste cells and primary gustatory neurons, and discuss key findings from the past decade that have raised novel questions or solved previously raised questions.
Collapse
Affiliation(s)
- Jea Hwa Jang
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Obin Kwon
- Departments of Biochemistry and Molecular Biology, Yonsei University College of Dentistry, Seoul,
Korea
- Biomedical Sciences, Seoul National University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| |
Collapse
|
11
|
Golden EJ, Larson ED, Shechtman LA, Trahan GD, Gaillard D, Fellin TJ, Scott JK, Jones KL, Barlow LA. Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. eLife 2021; 10:64013. [PMID: 34009125 PMCID: PMC8172241 DOI: 10.7554/elife.64013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Erin J Golden
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Eric D Larson
- The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Timothy J Fellin
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jennifer K Scott
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
12
|
Roper SD. Chemical and electrical synaptic interactions among taste bud cells. CURRENT OPINION IN PHYSIOLOGY 2021; 20:118-125. [PMID: 33521414 DOI: 10.1016/j.cophys.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chemical synapses between taste cells were first proposed based on electron microscopy of fish taste buds. Subsequently, researchers found considerable evidence for electrical coupling in fish, amphibian, and possibly mammalian taste buds. The development lingual slice and isolated cell preparations allowed detailed investigations of cell-cell interactions, both chemical and electrical, in taste buds. The identification of serotonin and ATP as taste neurotransmitters focused attention onto chemical synaptic interactions between taste cells and research on electrical coupling faded. Findings from Ca2+ imaging, electrophysiology, and molecular biology indicate that several neurotransmitters, including ATP, serotonin, GABA, acetylcholine, and norepinephrine, are secreted by taste cells and exert paracrine interactions in taste buds. Most work has been done on interactions between Type II and Type III taste cells. This brief review follows the trail of studies on cell-cell interactions in taste buds, from the initial ultrastructural observations to the most recent optogenetic manipulations.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology & Biophysics and Department of Otolaryngology, Miller School of Medicine, University of Miami, FL 33136
| |
Collapse
|
13
|
Rong J, Tang Y, Zha S, Han Y, Shi W, Liu G. Ocean acidification impedes gustation-mediated feeding behavior by disrupting gustatory signal transduction in the black sea bream, Acanthopagrus schlegelii. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105182. [PMID: 33049543 DOI: 10.1016/j.marenvres.2020.105182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Growing evidence suggests that ocean acidification (OA) may affect animal behaviors such as feeding. Although gustation plays a crucial role in evaluating the quality and palatability of food and ultimately influences whether or not teleosts consume the food, the potential impact of OA on gustation-mediated feeding behavior remains unknown. In this study, gustation mediated-feeding behavior, as indicated by the consumption rate (CR) and swallowing rate (SR) of agar pellets with or without feed upon OA exposure was investigated in black sea bream (Acanthopagrus schlegelii). Results showed that the exposure to acidified seawater led to significant reductions in the CR and SR of feed-containing agar pellets. In addition, the in vivo contents of three neurotransmitters and expression of genes from the gustatory signal transduction pathway were all significantly suppressed by the OA treatment. In general, the data obtained indicated that OA may hinder the gustation-mediated feeding behavior of A. schlegelii by disrupting gustatory signal transduction, which may aggravate the issue of food shortage for wild populations of black sea bream.
Collapse
Affiliation(s)
- Jiahuan Rong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Poor Sleep Quality Is Associated with Altered Taste Perception in Chinese Adults. J Acad Nutr Diet 2020; 121:435-445. [PMID: 32828739 DOI: 10.1016/j.jand.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Small clinical studies have suggested that individuals with insufficient sleep could experience taste dysfunction. However, this notion has not been examined in a large-scale, population-based study. OBJECTIVE This study aimed to examine whether overall sleep quality, as assessed by insomnia, daytime sleepiness, snoring, and sleep duration, was associated with the odds of having altered taste perception in a large population-based study. DESIGN This was a cross-sectional study that used data from a subcohort of the Kailuan study, an ongoing multicenter cohort study that began in 2006 in Tangshan City, China. PARTICIPANTS/SETTING The participants were 11,030 adults aged 25 years or older (mean age 53.7 ± 10.7 years), who were free of neurodegenerative diseases. All the participants had undergone questionnaire assessments and medical examinations at Kailuan General Hospital from June 2012 to October 2013. MAIN OUTCOME MEASURES Altered taste and olfactory perception were assessed via a questionnaire with two questions regarding whether participants had any problems with sense of taste or smell for ≥3 months. STATISTICAL ANALYSES PERFORMED The association between sleep quality and altered taste/olfactory perception was examined using a logistic regression model, adjusting for age, sex, lifestyle factors (eg, obesity, smoking, alcohol intake, and physical activity) and health status (eg, lipid profiles, blood pressure, modification use, and presence of chronic diseases). RESULTS Poor overall sleep quality was associated with a higher risk of having altered taste perception (adjusted odds ratio for low vs high sleep quality 2.03, 95% CI 1.42 to 2.91; P < 0.001). Specifically, insomnia, daytime sleepiness, and short sleep duration, but not prolonged sleep duration and snoring, were significantly associated with altered taste perception. A significant association between overall sleep quality and the risk of having altered olfactory perception was also observed (adjusted odds ratio for low vs high sleep quality 2.17, 95% CI 1.68 to 2.80; P < 0.001). CONCLUSIONS In this population-based study, poor sleep quality was associated with a high likelihood of altered taste perception.
Collapse
|
15
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
16
|
|
17
|
Abstract
In the last few years, single-cell profiling of taste cells and ganglion cells has advanced our understanding of transduction, encoding, and transmission of information from taste buds as relayed to the central nervous system. This review focuses on new knowledge from these molecular approaches and attempts to place this in the context of previous questions and findings in the field. The individual taste cells within a taste bud are molecularly specialized for detection of one of the primary taste qualities: salt, sour, sweet, umami, and bitter. Transduction and transmitter release mechanisms differ substantially for taste cells transducing sour (Type III cells) compared with those transducing the qualities of sweet, umami, or bitter (Type II cells), although ultimately all transmission of taste relies on activation of purinergic P2X receptors on the afferent nerves. The ganglion cells providing innervation to the taste buds also appear divisible into functional and molecular subtypes, and each ganglion cell is primarily but not exclusively responsive to one taste quality.
Collapse
Affiliation(s)
- Sue C. Kinnamon
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Thomas E. Finger
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 2019; 1:1110-1126. [PMID: 32432213 PMCID: PMC7236889 DOI: 10.1038/s42255-019-0135-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.
Collapse
Affiliation(s)
- Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew W Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rita Nano
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chen Kang
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rajan Sah
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Division of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Departments of Medicine and Microbiology/Immunology, Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Witt M. Anatomy and development of the human taste system. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:147-171. [DOI: 10.1016/b978-0-444-63855-7.00010-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
20
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
21
|
Huang AY, Wu SY. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds. Br J Pharmacol 2018; 175:1039-1053. [PMID: 29328505 DOI: 10.1111/bph.14142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/21/2017] [Accepted: 12/23/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. KEY RESULTS Our results showed that SP elicited PLC activation-dependent intracellular Ca2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. CONCLUSION AND IMPLICATIONS Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
22
|
Wilson CE, Finger TE, Kinnamon SC. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice. Chem Senses 2017; 42:759-767. [PMID: 28968659 DOI: 10.1093/chemse/bjx055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields.
Collapse
Affiliation(s)
- Courtney E Wilson
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas E Finger
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sue C Kinnamon
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Abstract
Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT7 or 5-HT4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.
Collapse
|
24
|
Abstract
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
Collapse
|
25
|
Shajib MS, Baranov A, Khan WI. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci 2017; 8:920-931. [PMID: 28288510 DOI: 10.1021/acschemneuro.6b00414] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut is the largest producer of serotonin or 5-hydroxytryptamine (5-HT) in the human body, and 5-HT has been recognized as an important signaling molecule in the gut for decades. There are two distinct sources of enteric 5-HT. Mucosal 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract, and neuronal 5-HT in the gut is produced by serotonergic neurons of the enteric nervous system (ENS). The quantity of mucosal 5-HT produced vastly eclipses the amount of neuronal 5-HT in the gut. Though it is difficult to separate the functions of neuronal and mucosal 5-HT, in the normal gut both types of enteric 5-HT work synergistically playing a prominent role in the maintenance of GI functions. In inflammatory conditions of the gut, like inflammatory bowel disease (IBD) recent studies have revealed new diverse functions of enteric 5-HT. Mucosal 5-HT plays an important role in the production of pro-inflammatory mediators from immune cells, and neuronal 5-HT provides neuroprotection in the ENS. Based on searches for terms such as "5-HT", "EC cell", "ENS", and "inflammation" in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of enteric 5-HT and its immune mediators in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Md. Sharif Shajib
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Adriana Baranov
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Hamilton
Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
26
|
Kim D, Chung S, Lee SH, Koo JH, Lee JH, Jahng JW. Decreased expression of 5-HT1A in the circumvallate taste cells in an animal model of depression. Arch Oral Biol 2017; 76:42-47. [PMID: 28119169 DOI: 10.1016/j.archoralbio.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE It has been reported that stress can cause anhedonia, a core symptom of depression, and also affect taste responses of the stressed subjects. Anhedonia refers to a reduction of the ability to experience pleasure, which can be detected by decreased response to palatable food in rats. The present study was conducted to examine if stress-induced anhedonia is accompanied by changes in gene expression for taste. DESIGN For anhedonia test, rats had free choices of cookies, a palatable food, and chow for 1h following 1h of daily restraint sessions. To examine the development of behavioral depression by restraint stress, ambulatory activity and forced swim tests were performed. Taste cells were harvested from the circumvallate papillae of rats on the 1st, 3rd and 7th day of stress exposure and subjected to the analysis of gene expression for taste. RESULTS One hour of daily stress exposure did not affect chow intake during the entire experimental period. However, from day 2 cookie intake was suppressed, suggesting the development of anhedonia. Ambulatory activity was significantly decreased, and immobility during forced swim test was increased, after the 7th day of stress exposure, but not before. 5-HT1A mRNA expression, but not T1R2, T1R3, T2R6, α-gustducin or PLCβ2 mRNA expression, appeared to be decreased after the 3rd day of stress exposure. CONCLUSION Reduced expression of 5-HT1A in the taste cells, possibly leading to a reduced processing of taste information for palatable food, may additively contribute to the development of anhedonia as a pre-symptomatic feature of depression in stressed subjects.
Collapse
Affiliation(s)
- Doyun Kim
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea; Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea
| | - Sena Chung
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea
| | - Sung Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea
| | - Jae Hyung Koo
- Department of Brain Science, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea
| | - Jong-Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea.
| | - Jeong Won Jahng
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University, School of Dentistry, Seoul, 110-768, South Korea.
| |
Collapse
|
27
|
Huang AY, Wu SY. The effect of imiquimod on taste bud calcium transients and transmitter secretion. Br J Pharmacol 2016; 173:3121-3133. [PMID: 27464850 DOI: 10.1111/bph.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. KEY RESULTS Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2+ responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2+ -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2+ mobilization elicited by imiquimod was dependent on release from internal Ca2+ stores. Moreover, combining studies of Ca2+ imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. CONCLUSION AND IMPLICATIONS Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA. .,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
28
|
Abstract
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.
Collapse
|
29
|
Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:71-106. [PMID: 26944619 DOI: 10.1016/bs.ircmb.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs.
Collapse
|
30
|
Maeda N, Ohmoto M, Yamamoto K, Kurokawa A, Narukawa M, Ishimaru Y, Misaka T, Matsumoto I, Abe K. Expression of serotonin receptor genes in cranial ganglia. Neurosci Lett 2016; 617:46-51. [PMID: 26854841 DOI: 10.1016/j.neulet.2016.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells.
Collapse
Affiliation(s)
- Naohiro Maeda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Ohmoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Kurumi Yamamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Azusa Kurokawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Kanagawa Academy of Science and Technology, Takatsu-ku, Kawasaki-shi, Kanagawa, Japan.
| |
Collapse
|
31
|
Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds. J Neurosci 2016; 35:12714-24. [PMID: 26377461 DOI: 10.1523/jneurosci.0100-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. SIGNIFICANCE STATEMENT The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain.
Collapse
|
32
|
Peng WH, Chau YP, Lu KS, Kung HN. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice. Chem Senses 2015; 41:25-34. [PMID: 26453050 DOI: 10.1093/chemse/bjv059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants.
Collapse
Affiliation(s)
- Wei-Hau Peng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan and
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, 46, Sec. 3, Zhongzheng Road, Sanzhi District, New Taipei City 252, Taiwan
| | - Kuo-Shyan Lu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan and
| | - Hsiu-Ni Kung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan and
| |
Collapse
|
33
|
Pal Choudhuri S, Delay RJ, Delay ER. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors. PLoS One 2015; 10:e0130088. [PMID: 26110622 PMCID: PMC4482487 DOI: 10.1371/journal.pone.0130088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/15/2015] [Indexed: 12/01/2022] Open
Abstract
Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.
Collapse
Affiliation(s)
- Shreoshi Pal Choudhuri
- Department of Biology and Vermont Chemosensory Group, The University of Vermont, Burlington, Vermont, United States of America
| | - Rona J. Delay
- Department of Biology and Vermont Chemosensory Group, The University of Vermont, Burlington, Vermont, United States of America
| | - Eugene R. Delay
- Department of Biology and Vermont Chemosensory Group, The University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
34
|
Roebber JK, Izenwasser S, Chaudhari N. Cocaine decreases saccharin preference without altering sweet taste sensitivity. Pharmacol Biochem Behav 2015; 133:18-24. [PMID: 25812471 PMCID: PMC4430401 DOI: 10.1016/j.pbb.2015.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
In rodents, saccharin consumption is suppressed when the sweet taste stimulus is paired with moderate doses of cocaine. Several hypotheses have been used to explain the seemingly contradictory effect of decreased consumption of a normally preferred substance following a highly rewarding drug. A common theme across these hypotheses is that saccharin is interpreted as less rewarding after cocaine pairing. We considered the alternative possibility that suppression is caused not by a change in reward circuitry, but rather by a change in taste detection, for instance by altering the afferent taste response and decreasing sensitivity to sweet taste stimuli. To evaluate this possibility, we measured saccharin taste sensitivity of mice before and after a standard cocaine-pairing paradigm. We measured taste sensitivity using a brief-access lickometer equipped with multiple concentrations of saccharin solution and established concentration-response curves before and after saccharin-cocaine pairing. Our results indicate that the EC50 for saccharin was unaltered following pairing. Instead, the avidity of licking saccharin, an indicator of motivation, was depressed. Latency to first-lick, a negative indicator of motivation, was also dramatically increased. Thus, our findings are consistent with the interpretation that saccharin-cocaine pairing results in devaluing of the sweet taste reward.
Collapse
Affiliation(s)
- Jennifer K Roebber
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
35
|
Kurokawa A, Narukawa M, Ohmoto M, Yoshimoto J, Abe K, Misaka T. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction. J Neurochem 2015; 133:806-14. [PMID: 25692331 PMCID: PMC6680196 DOI: 10.1111/jnc.13073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/04/2015] [Accepted: 02/04/2015] [Indexed: 11/30/2022]
Abstract
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2‐knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2‐knockout mice were significantly lower than those in wild‐type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons.
A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2‐ knockout mice were significantly lower than those in wild‐type mice. These suggested that CPLX2 participated in synaptic taste transduction.
Collapse
Affiliation(s)
- Azusa Kurokawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Ohmoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Joto Yoshimoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Kanagawa Academy of Science and Technology, Kanagawa, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Molecular mechanisms of taste recognition: considerations about the role of saliva. Int J Mol Sci 2015; 16:5945-74. [PMID: 25782158 PMCID: PMC4394514 DOI: 10.3390/ijms16035945] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Collapse
|
37
|
Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf) 2015; 213:561-74. [PMID: 25439045 DOI: 10.1111/apha.12430] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter and hormone that contributes to the regulation of various physiological functions by its actions in the central nervous system (CNS) and in the respective organ systems. Peripheral 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract. These gut-resident cells produce much more 5-HT than all neuronal and other sources combined, establishing EC cells as the main source of this biogenic amine in the human body. Peripheral 5-HT is also a potent immune modulator and affects various immune cells through its receptors and via the recently identified process of serotonylation. Alterations in 5-HT signalling have been described in inflammatory conditions of the gut, such as inflammatory bowel disease. The association between 5-HT and inflammation, however, is not limited to the gut, as changes in 5-HT levels have also been reported in patients with allergic airway inflammation and rheumatoid arthritis. Based on searches for terms such as '5-HT', 'EC cell', 'immune cells' and 'inflammation' in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of 5-HT in biological functions with a particular focus on immune activation and inflammation.
Collapse
Affiliation(s)
- M. S. Shajib
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
| | - W. I. Khan
- Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Hamilton Regional Laboratory Medicine Program; Hamilton Health Sciences; Hamilton ON Canada
| |
Collapse
|
38
|
Vandenbeuch A, Larson ED, Anderson CB, Smith SA, Ford AP, Finger TE, Kinnamon SC. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. J Physiol 2015; 593:1113-25. [PMID: 25524179 DOI: 10.1113/jphysiol.2014.281014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022] Open
Abstract
Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Meredith TL, Corcoran A, Roper SD. Leptin's effect on taste bud calcium responses and transmitter secretion. Chem Senses 2014; 40:217-22. [PMID: 25537017 DOI: 10.1093/chemse/bju066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells.
Collapse
Affiliation(s)
- Tricia L Meredith
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA and Present address: Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Alan Corcoran
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA and
| | - Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA and Program in Neuroscience, Miller School of Medicine, University of Miami, 1600 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
40
|
Jaber L, Zhao FL, Kolli T, Herness S. A physiologic role for serotonergic transmission in adult rat taste buds. PLoS One 2014; 9:e112152. [PMID: 25386961 PMCID: PMC4227708 DOI: 10.1371/journal.pone.0112152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 11/29/2022] Open
Abstract
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.
Collapse
Affiliation(s)
- Luc Jaber
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Fang-li Zhao
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Tamara Kolli
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Scott Herness
- College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
41
|
Irune E, Dwivedi RC, Nutting CM, Harrington KJ. Treatment-related dysgeusia in head and neck cancer patients. Cancer Treat Rev 2014; 40:1106-17. [PMID: 25064135 DOI: 10.1016/j.ctrv.2014.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Head and neck cancer patients treated with radiotherapy and/or chemotherapy agents may develop altered taste acuity. This, together with radiation induced xerostomia and dysphagia, is a major contributory factor to the anorexia and concomitant morbidity often seen in this group of patients. This paper examines the existing literature in order to assess the prevalence of clinician and patient-reported dysgeusia in HNC patients undergoing oncological treatment. We also describe the temporal manifestations of the same and its reported impact on QOL.
Collapse
Affiliation(s)
- Ekpemi Irune
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Raghav C Dwivedi
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Christopher M Nutting
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Kevin J Harrington
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
42
|
Chaudhari N. Synaptic communication and signal processing among sensory cells in taste buds. J Physiol 2014; 592:3387-92. [PMID: 24665098 DOI: 10.1113/jphysiol.2013.269837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Taste buds (sensory structures embedded in oral epithelium) show a remarkable diversity of transmitters synthesized and secreted locally. The known transmitters accumulate in a cell type selective manner, with 5-HT and noradrenaline being limited to presynaptic cells, GABA being synthesized in both presynaptic and glial-like cells, and acetylcholine and ATP used for signalling by receptor cells. Each of these transmitters participates in local negative or positive feedback circuits that target particular cell types. Overall, the role of ATP is the best elucidated. ATP serves as a principal afferent transmitter, and also is the key trigger for autocrine positive feedback and paracrine circuits that result in potentiation (via adenosine) or inhibition (via GABA or 5-HT). While many of the cellular receptors and mechanisms for these circuits are known, their impact on sensory detection and perception remains to be elaborated in most instances. This brief review examines what is known, and some of the open questions and controversies surrounding the transmitters and circuits of the taste periphery.
Collapse
Affiliation(s)
- Nirupa Chaudhari
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA Program in Neurosciences, Miller School of Medicine, University of Miami, Miami, FL, 33146, USA
| |
Collapse
|
43
|
Kinnamon SC, Finger TE. A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci 2013; 7:264. [PMID: 24385952 PMCID: PMC3866518 DOI: 10.3389/fncel.2013.00264] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells.
Collapse
Affiliation(s)
- Sue C Kinnamon
- Department of Otolaryngology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine Aurora, CO, USA
| | - Thomas E Finger
- Department Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
44
|
Nishida K, Dohi Y, Yamanaka Y, Miyata A, Tsukamoto K, Yabu M, Ohishi A, Nagasawa K. Expression of adenosine A2b receptor in rat type II and III taste cells. Histochem Cell Biol 2013; 141:499-506. [PMID: 24327108 DOI: 10.1007/s00418-013-1171-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
We previously demonstrated that equilibrative nucleoside transporter 1 was expressed in taste cells, suggesting the existence of an adenosine signaling system, but whether or not the expression of an adenosine receptor occurs in rat taste buds remains unknown. Therefore, we examined the expression profiles of adenosine receptors and evaluated their functionality in rat circumvallate papillae. Among adenosine receptors, the mRNA for an adenosine A2b receptor (A2bR) was expressed by the rat circumvallate papillae, and its expression level was significantly greater in the circumvallate papillae than in the non-taste lingual epithelium. A2bR-immunoreactivity was detected primarily in type II taste cells, and partial, but significant expression was also observed in type III ones, but there was no immunoreactivity in type I ones. The cAMP generation in isolated epithelium containing taste buds treated with 500 μM adenosine or 10 μM BAY60-6583 was significantly increased compared to in the controls. These findings suggest that adenosine plays a role in signaling transmission via A2bR between taste cells in rats.
Collapse
Affiliation(s)
- Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hanson JL, Hurley LM. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience. ACTA ACUST UNITED AC 2013; 217:526-35. [PMID: 24198252 DOI: 10.1242/jeb.087627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity.
Collapse
Affiliation(s)
- Jessica L Hanson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
46
|
Srivastava S, Donaldson LF, Rai D, Melichar JK, Potokar J. Single bright light exposure decreases sweet taste threshold in healthy volunteers. J Psychopharmacol 2013; 27:921-9. [PMID: 23926241 DOI: 10.1177/0269881113499206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Bright light exposure can alter circulating serotonin levels, and alteration of available serotonin by acute selective serotonin reuptake inhibition significantly lowers sweet but not salt taste recognition thresholds. We tested the hypothesis that bright light exposure would increase sweet but not salt taste sensitivity in healthy adults. METHODS Fourteen healthy volunteers were exposed to bright (10,000 lux) and dim (<20 lux) light for 30 min each, in counterbalanced order. Measures of taste perception (salt and sweet) and mood were determined at baseline, and before and after each light exposure period. RESULTS Recognition thresholds for sucrose were significantly lower after bright but not dim light exposure. Thresholds for salt were unaffected by either condition. There were no significant changes in taste acuity, intensity or pleasantness for both the taste modalities and on visual analogue scales (VASs) for mood, anxiety, sleepiness and alertness, under either light condition. CONCLUSION Brief bright light exposure reduces sweet but not salt taste recognition thresholds in healthy humans.
Collapse
|
47
|
Vicario CM. Inborn mechanisms of food preference and avoidance: the role of polymorphisms in neuromodulatory systems. Front Mol Neurosci 2013; 6:16. [PMID: 23847466 PMCID: PMC3701865 DOI: 10.3389/fnmol.2013.00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022] Open
Affiliation(s)
- Carmelo M Vicario
- School of Psychology, University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
48
|
Rebello MR, Maliphol AB, Medler KF. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS One 2013; 8:e68174. [PMID: 23826376 PMCID: PMC3694925 DOI: 10.1371/journal.pone.0068174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/27/2013] [Indexed: 12/04/2022] Open
Abstract
Introduction We reported that ryanodine receptors are expressed in two different types of mammalian peripheral taste receptor cells: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx. Methodology/Principal Findings The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage. Conclusions/Significance Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.
Collapse
Affiliation(s)
- Michelle R. Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Amanda B. Maliphol
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed Microdevices 2013; 14:1047-53. [PMID: 22955727 DOI: 10.1007/s10544-012-9702-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.
Collapse
|
50
|
Abstract
Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, and Program in Neuroscience, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL 33136, USA.
| |
Collapse
|