1
|
Bin JM, Emberley K, Buscham TJ, Eichel-Vogel MA, Doan RA, Steyer AM, Nolan MF, Möbius W, Monk KR, Werner HB, Emery B, Lyons DA. Developmental axon diameter growth of central nervous system axons does not depend on ensheathment or myelination by oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632348. [PMID: 39829751 PMCID: PMC11741303 DOI: 10.1101/2025.01.10.632348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myelination facilitates the rapid conduction of action potentials along axons. In the central nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction speed scaling linearly with increasing diameter. Axon diameter and myelination are closely interlinked, with axon diameter exerting a strong influence on myelination. Conversely, myelinating Schwann cells in the peripheral nervous system can both positively and negatively affect axon diameter. However, whether axon diameter is regulated by CNS oligodendrocytes is less clear. Here, we investigated CNS axon diameter growth in the absence of myelin using mouse (Mbp shi/shi and Myrf conditional knockout) and zebrafish (olig2 morpholino) models. We find that neither the ensheathment of axons, nor the formation of compact myelin are required for CNS axons to achieve appropriate and diverse diameters. This indicates that developmental CNS axon diameter growth is independent of myelination, and shows that myelinating cells of CNS and PNS differentially influence axonal morphology.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Katie Emberley
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryan A Doan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Unit-City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Unit-City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kelly R Monk
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. eLife 2024; 13:e87394. [PMID: 38456457 PMCID: PMC10959528 DOI: 10.7554/elife.87394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
Affiliation(s)
- Matthew Grove
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Hyukmin Kim
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Shuhuan Pang
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Jose Paz Amaya
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Michel Lemay
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Young-Jin Son
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
6
|
Krauter D, Stausberg D, Hartmann TJ, Volkmann S, Kungl T, Rasche DA, Saher G, Fledrich R, Stassart RM, Nave KA, Goebbels S, Ewers D, Sereda MW. Targeting PI3K/Akt/mTOR signaling in rodent models of PMP22 gene-dosage diseases. EMBO Mol Med 2024; 16:616-640. [PMID: 38383802 PMCID: PMC10940316 DOI: 10.1038/s44321-023-00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.
Collapse
Affiliation(s)
- Doris Krauter
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Stausberg
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Timon J Hartmann
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Volkmann
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - David A Rasche
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ruth M Stassart
- Institute of Neuropathology, University of Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David Ewers
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael W Sereda
- Research Group "Translational Neurogenetics", Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530298. [PMID: 38293102 PMCID: PMC10827063 DOI: 10.1101/2023.02.27.530298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
|
8
|
Zhu X, Xie S, Chen J, Lu Q, Wang X, Duan F, Xu S, Zhang Y, Huang H, Wang Y, Wang H, Chen B, Huang H. Sildenafil Enhances the Therapeutic Effect of Islet Transplantation for Diabetic Peripheral Neuropathy via mTOR/S6K1 Pathway. Int J Endocrinol 2023; 2023:8199029. [PMID: 37841556 PMCID: PMC10576648 DOI: 10.1155/2023/8199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to investigate the potential mechanism underlying the therapeutic effect of sildenafil in combination with islet transplantation for diabetic peripheral neuropathy. Methods A streptozotocin-induced diabetic mouse model was established to evaluate the effects of islet transplantation and sildenafil intervention. The mice were subjected to different interventions for 6 weeks, and histopathological staining and immunohistochemistry techniques were employed to examine the pathological changes and protein expressions of BDNF, MBP, and cleaved caspase-3 in the sciatic nerve tissue. Moreover, RSC96 cells were cocultured with islet cells and sildenafil under high glucose conditions to investigate the potential involvement of the mTOR/S6K1 pathway, BDNF, and MBP proteins. Western blotting was used to detect protein expression in each group. Results The results showed that islet transplantation can restore sciatic nerve injury in diabetic mice, and sildenafil can enhance the therapeutic effect of islet transplantation. In addition, the combination of sildenafil and islet cells significantly upregulated the expression levels of mTOR/S6K1, BDNF, and MBP in RSC96 cells under high glucose conditions. Conclusions Islet transplantation can reverse sciatic nerve injury in diabetic mice, and islet cells exhibit a protective effect on RSC96 cells under high glucose conditions via the activation of the mTOR/S6K1 pathway. Sildenafil enhances the therapeutic effect of islet transplantation, which may represent a potential treatment strategy for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Xiandong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shangjing Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Qiaohong Lu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sinian Xu
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Huanjie Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
9
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Fenn JD, Li Y, Julien JP, Jung P, Brown A. The Mobility of Neurofilaments in Mature Myelinated Axons of Adult Mice. eNeuro 2023; 10:ENEURO.0029-23.2023. [PMID: 36882311 PMCID: PMC10035772 DOI: 10.1523/eneuro.0029-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
Studies in cultured neurons have shown that neurofilaments are cargoes of axonal transport that move rapidly but intermittently along microtubule tracks. However, the extent to which axonal neurofilaments move in vivo has been controversial. Some researchers have proposed that most axonally transported neurofilaments are deposited into a persistently stationary network and that only a small proportion of axonal neurofilaments are transported in mature axons. Here we use the fluorescence photoactivation pulse-escape technique to test this hypothesis in intact peripheral nerves of adult male hThy1-paGFP-NFM mice, which express low levels of mouse neurofilament protein M tagged with photoactivatable GFP. Neurofilaments were photoactivated in short segments of large, myelinated axons, and the mobility of these fluorescently tagged polymers was determined by analyzing the kinetics of their departure. Our results show that >80% of the fluorescence departed the window within 3 h after activation, indicating a highly mobile neurofilament population. The movement was blocked by glycolytic inhibitors, confirming that it was an active transport process. Thus, we find no evidence for a substantial stationary neurofilament population. By extrapolation of the decay kinetics, we predict that 99% of the neurofilaments would have exited the activation window after 10 h. These data support a dynamic view of the neuronal cytoskeleton in which neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon, even in mature myelinated axons. The filaments spend a large proportion of their time pausing, but on a timescale of hours, most of them move.
Collapse
Affiliation(s)
- J Daniel Fenn
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio 43210
| | - Yinyun Li
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Department of Psychiatry and Neuroscience, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Barnes-Vélez JA, Aksoy Yasar FB, Hu J. Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (N Y) 2023; 4:100360. [PMID: 36588745 PMCID: PMC9800635 DOI: 10.1016/j.xinn.2022.100360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin is a specialized cell membrane indispensable for rapid nerve conduction. The high abundance of membrane lipids is one of myelin's salient features that contribute to its unique role as an insulator that electrically isolates nerve fibers across their myelinated surface. The most abundant lipids in myelin include cholesterol, glycosphingolipids, and plasmalogens, each playing critical roles in myelin development as well as function. This review serves to summarize the role of lipid metabolism in myelination and myelin maintenance, as well as the molecular determinants of myelin lipid homeostasis, with an emphasis on findings from genetic models. In addition, the implications of myelin lipid dysmetabolism in human diseases are highlighted in the context of hereditary leukodystrophies and neuropathies as well as acquired disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Joseph A. Barnes-Vélez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR 00936-5067, USA
| | - Fatma Betul Aksoy Yasar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| |
Collapse
|
12
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
14
|
Okura A, Inoue K, Sakuma E, Takase H, Ueki T, Mase M. SGK1 in Schwann cells is a potential molecular switch involved in axonal and glial regeneration during peripheral nerve injury. Biochem Biophys Res Commun 2022; 607:158-165. [DOI: 10.1016/j.bbrc.2022.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
|
15
|
Blades F, Chambers JD, Aumann TD, Nguyen CTO, Wong VHY, Aprico A, Nwoke EC, Bui BV, Grayden DB, Kilpatrick TJ, Binder MD. White matter tract conductivity is resistant to wide variations in paranodal structure and myelin thickness accompanying the loss of Tyro3: an experimental and simulated analysis. Brain Struct Funct 2022; 227:2035-2048. [PMID: 35441271 DOI: 10.1007/s00429-022-02489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
Myelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system. We have used a genetic model in which myelin thickness is reduced to investigate the effect of myelin alterations upon action potential velocity. A detailed examination of the myelin ultrastructure of mice in which the receptor tyrosine kinase Tyro3 has been deleted showed that, in addition to thinner myelin, these mice have significantly disrupted paranodes. Despite these alterations to myelin and paranodal structure, we did not identify a reduction in conductivity in either the corpus callosum or the optic nerve. Exploration of these results using a mathematical model of neuronal conductivity predicts that the absence of Tyro3 would lead to reduced conductivity in single fibres, but would not affect the compound action potential of multiple myelinated neurons as seen in neuronal tracts. Our data highlight the importance of experimental assessment of conductivity and suggests that simple assessment of structural changes to myelin is a poor predictor of neural functional outcomes.
Collapse
Affiliation(s)
- Farrah Blades
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Solar Biotechnology, Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jordan D Chambers
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy D Aumann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Eze C Nwoke
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David B Grayden
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
17
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
19
|
Della-Flora Nunes G, Wilson ER, Hurley E, He B, O'Malley BW, Poitelon Y, Wrabetz L, Feltri ML. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. eLife 2021; 10:e66278. [PMID: 34519641 PMCID: PMC8478418 DOI: 10.7554/elife.66278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Emma R Wilson
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
| | - Bin He
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist HospitalHoustonUnited States
| | - Bert W O'Malley
- Department of Medicine and Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical CollegeAlbanyUnited States
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
20
|
Ishii A, Furusho M, Bansal R. Mek/ERK1/2-MAPK and PI3K/Akt/mTOR signaling plays both independent and cooperative roles in Schwann cell differentiation, myelination and dysmyelination. Glia 2021; 69:2429-2446. [PMID: 34157170 DOI: 10.1002/glia.24049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Multiple signals are involved in the regulation of developmental myelination by Schwann cells and in the maintenance of a normal myelin homeostasis throughout adult life, preserving the integrity of the axons in the PNS. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination in the PNS. In addition, hyperactivation of these signaling pathways in Schwann cells leads to a late onset of various pathological changes in the sciatic nerves. However, it remains poorly understood whether these pathways function independently or sequentially or converge using a common mechanism to facilitate Schwann cell differentiation and myelin growth during development and in causing pathological changes in the adult animals. To address these questions, we analyzed multiple genetically modified mice using simultaneous loss- and constitutive gain-of-function approaches. We found that during development, the Mek/ERK1/2-MAPK pathway plays a primary role in Schwann cell differentiation, distinct from mTOR. However, during active myelination, ERK1/2 is dependent on mTOR signaling to drive the growth of the myelin sheath and regulate its thickness. Finally, our data suggest that peripheral nerve pathology during adulthood caused by hyperactivation of Mek/ERK1/2-MAPK or PI3K is likely to be independent or dependent on mTOR-signaling in different contexts. Thus, this study highlights the complexities in the roles played by two major intracellular signaling pathways in Schwann cells that affect their differentiation, myelination, and later PNS pathology and predicts that potential therapeutic modulation of these pathways in PNS neuropathies could be a complex process.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
21
|
Sen MK, Hossain MJ. Oligodendrocyte-Specific Mechanisms of Myelin Thinning: Implications for Neurodegenerative Diseases. Front Neurosci 2021; 15:663053. [PMID: 33841096 PMCID: PMC8024530 DOI: 10.3389/fnins.2021.663053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Peter Duncan Neuroscience Research Unit, St. Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, NSW, Australia
| | | |
Collapse
|
22
|
Abstract
Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| |
Collapse
|
23
|
Comprehensive Analysis of Age-related Changes in Lipid Metabolism and Myelin Sheath Formation in Sciatic Nerves. J Mol Neurosci 2021; 71:2310-2323. [PMID: 33492614 DOI: 10.1007/s12031-020-01768-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
To investigate the molecular changes related to myelin formation and lipid metabolism in the sciatic nerve in Sprague Dawley (SD) rats during aging. Thirty-six healthy male SD rats were divided into five groups according to age: 1 week, 1 month, 6 months, 12 months, and 24 months. Sciatic nerves were collected from 1-month-old and 24-month-old SD rats (n = 3) to perform next-generation sequencing (NGS) and bioinformatics analysis. Specimens from each group were harvested and analyzed by qPCR, Western blotting, and transmission electron microscopy (TEM). Protein-protein interaction (PPI) networks of differentially expressed mRNAs (DEmRNAs) related to myelin and lipid metabolism were constructed. DEmRNAs in subnetworks were verified using qPCR. A total of 4580 DEmRNAs were found during aging. The top enriched GO biological processes were primarily clustered in cholesterol and lipid metabolism, including the cholesterol biosynthetic process (RF = 3.16), sterol biosynthetic process (RF = 3.03), cholesterol metabolic process (RF = 2.15), sterol metabolic process (RF = 2.11), fatty acid biosynthetic process (RF = 2.09), and lipid biosynthetic process (RF = 1.79). The mRNA levels of MBP, PMP22, and MPZ were downregulated during aging, while the protein expression of MBP showed an increasing trend. The TEM results showed thin myelin sheaths and an increased number of unmyelinated axons in the 1-week-old rats, and the sheaths became thickened with degenerated axons appearing in older animals. Forty PPI subnetworks related to lipid metabolism were constructed, including one primary subnetwork and two smaller subnetworks. The hub genes were mTOR in sub-network 1, Akt1 in sub-network 2, and SIRT1 in sub-network 3. No gene expression was found consistent with the sequencing results, while in the downregulated genes, AKT1, CEBPA, LIPE, LRP5, PHB, and Rara were significantly downregulated in 24-month-old rats. Lipid metabolism might play an important role in maintaining the structure and physiological function in sciatic nerves during aging and could be candidates for nerve aging research.
Collapse
|
24
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
25
|
Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020; 12:123. [PMID: 32787975 PMCID: PMC7425575 DOI: 10.1186/s13148-020-00913-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes (T2D). Although the cellular and molecular mechanisms of DPN are poorly understood, we and others have shown that altered gene expression and DNA methylation are implicated in disease pathogenesis. However, how DNA methylation might functionally impact gene expression and contribute to nerve damage remains unclear. Here, we analyzed genome-wide transcriptomic and methylomic profiles of sural nerves from T2D patients with DPN. RESULTS Unbiased clustering of transcriptomics data separated samples into groups, which correlated with HbA1c levels. Accordingly, we found 998 differentially expressed genes (DEGs) and 929 differentially methylated genes (DMGs) between the groups with the highest and lowest HbA1c levels. Functional enrichment analysis revealed that DEGs and DMGs were enriched for pathways known to play a role in DPN, including those related to the immune system, extracellular matrix (ECM), and axon guidance. To understand the interaction between the transcriptome and methylome in DPN, we performed an integrated analysis of the overlapping genes between DEGs and DMGs. Integrated functional and network analysis identified genes and pathways modulating functions such as immune response, ECM regulation, and PI3K-Akt signaling. CONCLUSION These results suggest for the first time that DNA methylation is a mechanism regulating gene expression in DPN. Overall, DPN patients with high HbA1c have distinct alterations in sural nerve DNA methylome and transcriptome, suggesting that optimal glycemic control in DPN patients is an important factor in maintaining epigenetic homeostasis and nerve function.
Collapse
Affiliation(s)
- Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| | - Stephanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah E. Elzinga
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Crystal Pacut
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| |
Collapse
|
26
|
Licht-Mayer S, Campbell GR, Canizares M, Mehta AR, Gane AB, McGill K, Ghosh A, Fullerton A, Menezes N, Dean J, Dunham J, Al-Azki S, Pryce G, Zandee S, Zhao C, Kipp M, Smith KJ, Baker D, Altmann D, Anderton SM, Kap YS, Laman JD, Hart BA', Rodriguez M, Watzlawick R, Schwab JM, Carter R, Morton N, Zagnoni M, Franklin RJM, Mitchell R, Fleetwood-Walker S, Lyons DA, Chandran S, Lassmann H, Trapp BD, Mahad DJ. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol 2020; 140:143-167. [PMID: 32572598 PMCID: PMC7360646 DOI: 10.1007/s00401-020-02179-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.
Collapse
Affiliation(s)
- Simon Licht-Mayer
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Graham R Campbell
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marco Canizares
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angus B Gane
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Katie McGill
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Aniket Ghosh
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Alexander Fullerton
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Niels Menezes
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jasmine Dean
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jordon Dunham
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, OH44195, USA
| | - Sarah Al-Azki
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Gareth Pryce
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Stephanie Zandee
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Chao Zhao
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany
| | - Kenneth J Smith
- Department of Neuroinflammation, The UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - David Baker
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Daniel Altmann
- Faculty of Medicine, Department of Medicine, Hammersmith Campus, London, UK
| | - Stephen M Anderton
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jon D Laman
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Dept. Biomedical Sciences of Cells and Systems and MS Center Noord Nederland (MSCNN), University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Dept. Biomedical Sciences of Cells and Systems and MS Center Noord Nederland (MSCNN), University Medical Center Groningen, University Groningen, Groningen, The Netherlands
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (V|UMC|), Amsterdam, Netherlands
| | - Moses Rodriguez
- Department of Neurology and Immunology, Mayo College of Medicine and Science, Rochester, MN, MN55905, USA
| | - Ralf Watzlawick
- Department of Neurosurgery, Freiburg University Medical Center, Freiburg, Germany
| | - Jan M Schwab
- Spinal Cord Injury Medicine, Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, USA
| | - Roderick Carter
- Centre for Cardiovascular Science, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Nicholas Morton
- Centre for Cardiovascular Science, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Robin J M Franklin
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Rory Mitchell
- Centre for Discovery Brain Science, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Sue Fleetwood-Walker
- Centre for Discovery Brain Science, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Discovery Brain Science, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Bruce D Trapp
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, OH44195, USA
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
27
|
Sawade L, Grandi F, Mignanelli M, Patiño-López G, Klinkert K, Langa-Vives F, Di Guardo R, Echard A, Bolino A, Haucke V. Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nat Commun 2020; 11:2835. [PMID: 32503983 PMCID: PMC7275063 DOI: 10.1038/s41467-020-16696-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth. Charcot-Marie-Tooth (CMT) is an inherited peripheral neuropathy. Here, the authors show that Rab35 forms a complex with genes implicated in CMT, MTMR13 and MTMR2, which regulates myelin growth by controlling mTORC1 signaling through lipid turnover.
Collapse
Affiliation(s)
- Linda Sawade
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Federica Grandi
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marianna Mignanelli
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.,San Raffaele Vita-Salute University, Via Olgettina 60, 20132, Milan, Italy
| | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez. C.P, 06720, Ciudad de México, México
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France.,Sorbonne Université, Collège doctoral, F-75005, Paris, France
| | - Francina Langa-Vives
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Roberta Di Guardo
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, NeuroCure Cluster of Excellence, 10117, Berlin, Germany.
| |
Collapse
|
28
|
Ornelas IM, Khandker L, Wahl SE, Hashimoto H, Macklin WB, Wood TL. The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia 2020; 68:1274-1290. [PMID: 31904150 DOI: 10.1002/glia.23776] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) differentiate and mature into oligodendrocytes, which produce myelin in the central nervous system. Prior studies have shown that the mechanistic target of rapamycin (mTOR) is necessary for proper myelination of the mouse spinal cord and that bone morphogenetic protein (BMP) signaling inhibits oligodendrocyte differentiation, in part by promoting expression of inhibitor of DNA binding 2 (Id2). Here we provide evidence that mTOR functions specifically in the transition from early stage OPC to immature oligodendrocyte by downregulating BMP signaling during postnatal spinal cord development. When mTOR is deleted from the oligodendrocyte lineage, expression of the FK506 binding protein 1A (FKBP12), a suppressor of BMP receptor activity, is reduced, downstream Smad activity is increased and Id2 expression is elevated. Additionally, mTOR inhibition with rapamycin in differentiating OPCs alters the transcriptional complex present at the Id2 promoter. Deletion of mTOR in oligodendroglia in vivo resulted in fewer late stage OPCs and fewer newly formed oligodendrocytes in the spinal cord with no effect on OPC proliferation or cell cycle exit. Finally, we demonstrate that inhibiting BMP signaling rescues the rapamycin-induced deficit in myelin protein expression. We conclude that mTOR promotes early oligodendrocyte differentiation by suppressing BMP signaling in OPCs.
Collapse
Affiliation(s)
- Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Stacey E Wahl
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hirokazu Hashimoto
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
29
|
Ferdoushi A, Li X, Jamaluddin MFB, Hondermarck H. Proteomic Profile of Human Schwann Cells. Proteomics 2019; 20:e1900294. [PMID: 31820567 DOI: 10.1002/pmic.201900294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Schwann cells (SC) are essential for the growth, maintenance, and regeneration of peripheral nerves, but the proteome of normal human SC is poorly defined. Here, a proteomic analysis by LC-MS/MS is performed to define the protein expression profile of primary human SC. A total of 19 557 unique peptides corresponding to 1553 individual proteins are identified. Ingenuity Pathway Analysis (IPA), Gene Ontology (GO), and Database for Annotation, Visualization, and Integrated Discovery (DAVID) are used to assign protein localization and function, and to define enriched pathways. EIF2, mTOR, and integrin signaling are among the most enriched pathways and the most enriched biological function is cell-cell adhesion, which is in agreement with the supportive role of SC in peripheral nerves. In addition, several nociceptors and synaptic proteins are identified and may contribute to the recently discovered role of SC in pain sensation and cancer progression. This proteome analysis of normal human SC constitutes a reference for future molecular explorations of physiological and pathological processes where SC are involved.
Collapse
Affiliation(s)
- Aysha Ferdoushi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, 2305, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, 2305, Australia
| | - Muhammad Fairuz Bin Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, 2305, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, 2305, Australia
| |
Collapse
|
30
|
Hackett AR, Strickland A, Milbrandt J. Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia 2019; 68:963-978. [PMID: 31758725 DOI: 10.1002/glia.23755] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Although diabetic mice have been studied for decades, little is known about the cell type specific contributions to diabetic neuropathy (DN). Schwann cells (SCs) myelinate and provide trophic support to peripheral nervous system axons. Altered SC metabolism leads to myelin defects, which can be seen both in inherited and DNs. How SC metabolism is altered in DN is not fully understood, but it is clear that insulin resistance underlies impaired lipid metabolism in many cell types throughout the body via the phosphoinositide 3-kinase/protein kinase b (PKB)/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Here, we created an insulin resistant SC by deleting both insulin receptor (INSR) and insulin-like growth factor receptor 1 (IGF1R), to determine the role of this signaling pathway in development and response to injury in order to understand SC defects in DN. We found that myelin is thinner throughout development and adulthood in INSR/IGF1R Schwann cell specific knock out mice. The nerves of these mutant mice had reduced expression of key genes that mediate fatty acid and cholesterol synthesis due to reduced mTOR-sterol regulatory element-binding protein signaling. In adulthood, these mice show sensory neuropathy phenotypes reminiscent of diabetic mice. Altogether, these data suggest that SCs may play an important role in DN and targeting their metabolism could lead to new therapies for DN.
Collapse
Affiliation(s)
- Amber R Hackett
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
31
|
Fledrich R, Kungl T, Nave KA, Stassart RM. Axo-glial interdependence in peripheral nerve development. Development 2019; 146:146/21/dev151704. [PMID: 31719044 DOI: 10.1242/dev.151704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.
Collapse
Affiliation(s)
- Robert Fledrich
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany .,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany .,Department of Neuropathology, University Clinic Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Suminaite D, Lyons DA, Livesey MR. Myelinated axon physiology and regulation of neural circuit function. Glia 2019; 67:2050-2062. [PMID: 31233642 PMCID: PMC6772175 DOI: 10.1002/glia.23665] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The study of structural and functional plasticity in the central nervous system (CNS) to date has focused primarily on that of neurons and synapses. However, more recent studies implicate glial cells as key regulators of neural circuit function. Among these, the myelinating glia of the CNS, oligodendrocytes, have been shown to be responsive to extrinsic signals including neuronal activity, and in turn, tune neurophysiological function. Due to the fact that myelin fundamentally alters the conduction properties of axons, much attention has focused on how dynamic regulation of myelination might represent a form of functional plasticity. Here, we highlight recent research that indicates that it is not only myelin, but essentially all the function-regulating components of the myelinated axon that are responsive to neuronal activity. For example, the axon initial segment, nodes of Ranvier, heminodes, axonal termini, and the morphology of the axon itself all exhibit the potential to respond to neuronal activity, and in so doing might underpin specific functional outputs. We also highlight emerging evidence that the myelin sheath itself has a rich physiology capable of influencing axonal physiology. We suggest that to fully understand nervous system plasticity we need to consider the fact that myelinated axon is an integrated functional unit and adaptations that influence the entire functional unit are likely to underpin modifications to neural circuit function.
Collapse
Affiliation(s)
| | - David A. Lyons
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
33
|
Harty BL, Coelho F, Pease-Raissi SE, Mogha A, Ackerman SD, Herbert AL, Gereau RW, Golden JP, Lyons DA, Chan JR, Monk KR. Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7. Nat Commun 2019; 10:2976. [PMID: 31278268 PMCID: PMC6611888 DOI: 10.1038/s41467-019-10881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/05/2019] [Indexed: 01/12/2023] Open
Abstract
In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair. The authors find that deletion from Schwann cells of an E3 ubiquitin ligase component called Fbxw7 leads to a phenotype reminiscent of myelination in the central nervous system where a single oligodendrocyte ensheaths multiple axons.
Collapse
Affiliation(s)
- Breanne L Harty
- Thaden School, 410 SE Staggerwing Lane, Bentonville, AR, 72712, USA.,Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Fernanda Coelho
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah E Pease-Raissi
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Institute of Neuroscience, University of Oregon, 1440 Franklin Blvd., Eugene, OR, 97403, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA.,Department of Developmental Biology, Stanford University, 279W. Campus Dr., Stanford, CA, 94305, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, 660S. Euclid Ave., St. Louis, MO, 63110, USA
| | - David A Lyons
- Centre for Brain Discovery Sciences, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Ave., St. Louis, MO, 63110, USA. .,Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Radu AG, Torch S, Fauvelle F, Pernet-Gallay K, Lucas A, Blervaque R, Delmas V, Schlattner U, Lafanechère L, Hainaut P, Tricaud N, Pingault V, Bondurand N, Bardeesy N, Larue L, Thibert C, Billaud M. LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. SCIENCE ADVANCES 2019; 5:eaau5106. [PMID: 31328154 PMCID: PMC6636984 DOI: 10.1126/sciadv.aau5106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.
Collapse
Affiliation(s)
- Anca G. Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Florence Fauvelle
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
- Univ. Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
| | - Anthony Lucas
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Renaud Blervaque
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Univ Grenoble Alpes, 38185 Grenoble, France
- INSERM U1055, 38041 Grenoble France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre Hainaut
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | | | | | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- Corresponding author. (M.B.); (C.T.)
| | - Marc Billaud
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- “Clinical and experimental model of lymphomagenesis” Univ Lyon, Université Claude Bernard Lyon1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon France
- Corresponding author. (M.B.); (C.T.)
| |
Collapse
|
35
|
Terada N, Saitoh Y, Kamijo A, Yamauchi J, Ohno N, Sakamoto T. Structures and Molecular Composition of Schmidt-Lanterman Incisures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:181-198. [PMID: 31760645 DOI: 10.1007/978-981-32-9636-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G-membrane protein palmitoylated 6 (MPP6)-cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan.
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Takeharu Sakamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
36
|
Beck-Wödl S, Harzer K, Sturm M, Buchert R, Rieß O, Mennel HD, Latta E, Pagenstecher A, Keber U. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease - a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun 2018; 6:145. [PMID: 30591081 PMCID: PMC6307319 DOI: 10.1186/s40478-018-0646-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Homozygous mutation of TBC1 domain-containing kinase (TBCK) is the cause of a very recently defined severe childhood disorder, which is characterized by severe hypotonia, global developmental delay, intellectual disability, epilepsy, characteristic facies and premature death. The link between TBCK loss of function and symptoms in patients with TBCK deficiency disorder (TBCK-DD) remains elusive. Here we demonstrate for the first time the histopathological characteristics of TBCK deficiency consisting of 1) a widespread and massive accumulation of lipofuscin storage material in neurons of the central nervous system without notable neuronal degeneration, 2) storage deposits in few astrocytes, 3) carbohydrate-rich deposits in brain, spleen and liver and 4) vacuolated lymphocytes. Biochemical examinations ruled out more than 20 known lysosomal storage diseases. These investigations strikingly uncover TBCK-DD as a novel type of lysosomal storage disease which is characterized by different storage products rather than one specific type of accumulated material. Due to the clear predominance of intraneuronal lipofuscin storage material and the characteristic clinical presentation we propose to classify this disease as a new subtype of neuronal ceroid lipofuscinosis (CLN15). Our results and previous reports suggest an autophagosomal-lysosomal dysfunction caused by enhanced mTORC1-mediated autophagosome formation and reduced Rab-mediated autophagosome-lysosome fusion, thus disclosing potential novel targets for therapeutic approaches in TBCK-DD.
Collapse
|
37
|
Beirowski B. The LKB1-AMPK and mTORC1 Metabolic Signaling Networks in Schwann Cells Control Axon Integrity and Myelination: Assembling and upholding nerves by metabolic signaling in Schwann cells. Bioessays 2018; 41:e1800075. [PMID: 30537168 DOI: 10.1002/bies.201800075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/03/2018] [Indexed: 01/10/2023]
Abstract
The Liver kinase B1 with its downstream target AMP activated protein kinase (LKB1-AMPK), and the key nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) form two signaling systems that coordinate metabolic and cellular activity with changes in the environment in order to preserve homeostasis. For example, nutritional fluctuations rapidly feed back on these signaling systems and thereby affect cell-specific functions. Recent studies have started to reveal important roles of these strategic metabolic regulators in Schwann cells for the trophic support and myelination of axons. Because aberrant intermediate metabolism along with mitochondrial dysfunction in Schwann cells is mechanistically linked to nerve abnormalities found in acquired and inherited peripheral neuropathies, manipulation of the LKB1-AMPK, and mTORC1 signaling hubs may be a worthwhile therapeutic target to mitigate nerve damage in disease. Here, recent advances in our understanding of LKB1-AMPK and mTORC1 functions in Schwann cells are covered, and future research areas for this key metabolic signaling network are proposed.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
38
|
Jiang M, Rao R, Wang J, Wang J, Xu L, Wu LM, Chan JR, Wang H, Lu QR. The TSC1-mTOR-PLK axis regulates the homeostatic switch from Schwann cell proliferation to myelination in a stage-specific manner. Glia 2018; 66:1947-1959. [PMID: 29722913 PMCID: PMC6185760 DOI: 10.1002/glia.23449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
Proper peripheral myelination depends upon the balance between Schwann cell proliferation and differentiation programs. The serine/threonine kinase mTOR integrates various environmental cues to serve as a central regulator of cell growth, metabolism, and function. We report here that tuberous sclerosis complex 1 (TSC1), a negative regulator of mTOR activity, establishes a stage-dependent program for Schwann cell lineage progression and myelination by controlling cell proliferation and myelin homeostasis. Tsc1 ablation in Schwann cell progenitors in mice resulted in activation of mTOR signaling, and caused over-proliferation of Schwann cells and blocked their differentiation, leading to hypomyelination. Transcriptome profiling analysis revealed that mTOR activation in Tsc1 mutants resulted in upregulation of a polo-like kinase (PLK)-dependent pathway and cell cycle regulators. Attenuation of mTOR or pharmacological inhibition of polo-like kinases partially rescued hypomyelination caused by Tsc1 loss in the developing peripheral nerves. In contrast, deletion of Tsc1 in mature Schwann cells led to redundant and overgrown myelin sheaths in adult mice. Together, our findings indicate stage-specific functions for the TSC1-mTOR-PLK signaling axis in controlling the transition from proliferation to differentiation and myelin homeostasis during Schwann cell development.
Collapse
Affiliation(s)
- Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Rohit Rao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jincheng Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lingli Xu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lai Man Wu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jonah R. Chan
- Department of Neurology and Programs in Biomedical and Neurosciences, University of California, San Francisco, CA 94158
| | - Huimin Wang
- The Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Q. Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
39
|
Shi Q, Saifetiarova J, Taylor AM, Bhat MA. mTORC1 Activation by Loss of Tsc1 in Myelinating Glia Causes Downregulation of Quaking and Neurofascin 155 Leading to Paranodal Domain Disorganization. Front Cell Neurosci 2018; 12:201. [PMID: 30050412 PMCID: PMC6052123 DOI: 10.3389/fncel.2018.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in human tuberous sclerosis complex (TSC) genes TSC1 and TSC2 are the leading causes of developmental brain abnormalities and large tumors in other tissues. Murine Tsc1/2 have been shown to negatively regulate the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in most tissues, and this pathway has been shown to be essential for proper oligodendrocytes/Schwann cell differentiation and myelination. Here, we report that ablation of Tsc1 gene specifically in oligodendrocytes/Schwann cells activates mTORC1 signaling resulting in severe motor disabilities, weight loss, and early postnatal death. The mutant mice of either sex showed reduced myelination, disrupted paranodal domains in myelinated axons, and disorganized unmyelinated Remak bundles. mRNA and protein expression analyses revealed strong reduction in the RNA-binding protein Quaking (Qk) and the 155 kDa glial Neurofascin (NfascNF155). Re-introduction of exogenous Qk gene in Tsc1 mutant oligodendrocytes restored NfascNF155 protein levels indicating that Qk is required for the stabilization of NfascNF155 mRNA. Interestingly, injection of Rapamycin, a pharmacological mTORC1 inhibitor, to pregnant mothers increased the lifespan of the mutant offspring, restored myelination as well as the levels of Qk and NfascNF155, and consequently the organization of the paranodal domains. Together our studies show a critical role of mTORC1 signaling in the differentiation of myelinating glial cells and proper organization of axonal domains and provide insights into TSC-associated myelinated axon abnormalities.
Collapse
Affiliation(s)
| | | | | | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Norrmén C, Figlia G, Pfistner P, Pereira JA, Bachofner S, Suter U. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation. J Neurosci 2018; 38:4811-4828. [PMID: 29695414 PMCID: PMC5956991 DOI: 10.1523/jneurosci.3619-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.SIGNIFICANCE STATEMENT A crucial evolutionary acquisition of vertebrates is the envelopment of axons in myelin sheaths produced by oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. When myelin is damaged, conduction of action potentials along axons slows down or is blocked, leading to debilitating diseases. Unlike oligodendrocytes, SCs have a high regenerative potential, granted by their remarkable plasticity. Thus, understanding the mechanisms underlying SC plasticity may uncover new therapeutic targets in nerve regeneration and demyelinating diseases. Our work reveals that reactivation of the mTORC1 pathway in SCs is essential for efficient SC dedifferentiation after nerve injury. Accordingly, modulating this signaling pathway might be of therapeutic relevance in peripheral nerve injury and other diseases.
Collapse
Affiliation(s)
- Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Patrick Pfistner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
41
|
Kim M, Wende H, Walcher J, Kühnemund J, Cheret C, Kempa S, McShane E, Selbach M, Lewin GR, Birchmeier C. Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes Dev 2018; 32:645-657. [PMID: 29748249 PMCID: PMC6004071 DOI: 10.1101/gad.310490.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Kim et al. define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 in myelinating Schwann cells. Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1–MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.
Collapse
Affiliation(s)
- Minchul Kim
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hagen Wende
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jan Walcher
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Johannes Kühnemund
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Cyril Cheret
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefan Kempa
- Department of Integrative Proteomics and Metabolomics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Erik McShane
- Department of Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Matthias Selbach
- Department of Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Gary R Lewin
- Department of Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Carmen Birchmeier
- Department of Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
42
|
Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Rahesh S, Jagannath K, Sengelaub DR, Trevino RC, Jackson DM, Bittner GD. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res 2018; 96:1223-1242. [PMID: 29659058 DOI: 10.1002/jnr.24225] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Complete severance of major peripheral mixed sensory-motor nerve proximally in a mammalian limb produces immediate loss of action potential conduction and voluntary behaviors mediated by the severed distal axonal segments. These severed distal segments undergo Wallerian degeneration within days. Denervated muscles atrophy within weeks. Slowly regenerating (∼1 mm/day) outgrowths from surviving proximal stumps that often nonspecifically reinnervate denervated targets produce poor, if any, restoration of lost voluntary behaviors. In contrast, in this study using completely transected female rat sciatic axons as a model system, we provide extensive morphometric, immunohistochemical, electrophysiological, and behavioral data to show that these adverse outcomes are avoided by microsuturing closely apposed axonal cut ends (neurorrhaphy) and applying a sequence of well-specified solutions, one of which contains polyethylene glycol (PEG). This "PEG-fusion" procedure within minutes reestablishes axoplasmic and axolemmal continuity and signaling by nonspecifically fusing (connecting) closely apposed open ends of severed motor and/or sensory axons at the lesion site. These PEG-fused axons continue to conduct action potentials and generate muscle action potentials and muscle twitches for months and do not undergo Wallerian degeneration. Continuously innervated muscle fibers undergo much less atrophy compared with denervated muscle fibers. Dramatic behavioral recovery to near-unoperated levels occurs within days to weeks, almost certainly by activating many central nervous system and peripheral nervous system synaptic and other plasticities, some perhaps to a greater extent than most neuroscientists would expect. Negative control transections in which neurorrhaphy and all solutions except the PEG-containing solution are applied produce none of these remarkably fortuitous outcomes observed for PEG-fusion.
Collapse
Affiliation(s)
- Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | | | - Amir Ali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Sina Rahesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Karthik Jagannath
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Richard C Trevino
- Department of Orthopedic Surgery, Wellspan Teaching Hospitals, York, Pennsylvania
| | | | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
43
|
Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, Trevino RC, Jackson DM, Tucker HO, Bittner GD. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats. J Neurosci Res 2018; 96:1243-1264. [PMID: 29659046 DOI: 10.1002/jnr.24227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice.
Collapse
Affiliation(s)
- Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Cameron L Ghergherehchi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sina Rahesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Karthik Jagannath
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Amir Ali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47405, USA
| | - Richard C Trevino
- Department of Orthopedic Surgery, Wellspan Teaching Hospitals, York, PA, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
44
|
AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther 2018. [PMID: 29523879 DOI: 10.1038/s41434-018-0009-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotrophin 3 (NT-3) has well-recognized effects on peripheral nerve and Schwann cells, promoting axonal regeneration and associated myelination. In this study, we assessed the effects of AAV.NT-3 gene therapy on the oxidative state of the neurogenic muscle from the TremblerJ (Tr J ) mice at 16 weeks post-gene injection and found that the muscle fiber size increase was associated with a change in the oxidative state of muscle fibers towards normalization of the fiber type ratio seen in the wild type. NT-3-induced fiber size increase was most prominent for the fast twitch glycolytic fiber population. These changes in the Tr J muscle were accompanied by increased phosphorylation levels of 4E-BP1 and S6 proteins as evidence of mTORC1 activation. In parallel, the expression levels of the mitochondrial biogenesis regulator PGC1α, and the markers of glycolysis (HK1 and PK1) increased in the TrJ muscle. In vitro studies showed that recombinant NT-3 can directly induce Akt/mTOR pathway activation in the TrkC expressing myotubes but not in myoblasts. In addition, myogenin expression levels were increased in myotubes while p75 NTR expression was downregulated compared to myoblasts, indicating that NT-3 induced myoblast differentiation is associated with mTORC1 activation. These studies for the first time have shown that NT-3 increases muscle fiber diameter in the neurogenic muscle through direct activation of mTOR pathway and that the fiber size increase is more prominent for fast twitch glycolytic fibers.
Collapse
|
45
|
Wong KM, Beirowski B. Multiple lines of inhibitory feedback on AKT kinase in Schwann cells lacking TSC1/2 hint at distinct functions of mTORC1 and AKT in nerve development. Commun Integr Biol 2018; 11:e1433441. [PMID: 29497474 PMCID: PMC5824964 DOI: 10.1080/19420889.2018.1433441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
46
|
Montani L, Pereira JA, Norrmén C, Pohl HBF, Tinelli E, Trötzmüller M, Figlia G, Dimas P, von Niederhäusern B, Schwager R, Jessberger S, Semenkovich CF, Köfeler HC, Suter U. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J Cell Biol 2018; 217:1353-1368. [PMID: 29434029 PMCID: PMC5881495 DOI: 10.1083/jcb.201706010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023] Open
Abstract
Montani et al. reveal that de novo fatty acid synthesis by Schwann cells, mediated by fatty acid synthase, contributes fundamentally to driving myelination in the peripheral nervous system. They identify lipogenic activation of the PPARγ transcriptional network as a putatively involved functional mechanism. Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator.
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Hartmut B F Pohl
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Elisa Tinelli
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Martin Trötzmüller
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Penelope Dimas
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Belinda von Niederhäusern
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Rachel Schwager
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University Medical School, St. Louis, MO
| | - Harald C Köfeler
- Lipidomics Center for Medical Research, Medical University, Graz, Austria
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
48
|
Harty BL, Monk KR. Unwrapping the unappreciated: recent progress in Remak Schwann cell biology. Curr Opin Neurobiol 2017; 47:131-137. [PMID: 29096241 DOI: 10.1016/j.conb.2017.10.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022]
Abstract
Schwann cells (SCs) are specialized glial cells that myelinate and protect axons in the peripheral nervous system (PNS). Although myelinating SCs are more commonly studied, the PNS also contains a variety of non-myelinating SCs, including but not limited to Remak SCs (RSCs), terminal SCs, enteric glia. Although the field currently lacks many robust tools for interrogating the functions of non-myelinating SCs, recent evidence suggests that, like their myelinating counterparts, non-myelinating SCs are critical for proper PNS function. In this review, we focus specifically on RSCs and highlight recent advances in understanding regulators of RSC development, function, and participation in PNS regeneration.
Collapse
Affiliation(s)
- Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA.
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, USA.
| |
Collapse
|
49
|
Duan H, Li J, Zhang H, Qiu F, Yang Y. Conformations of a charged vesicle interacting with an oppositely charged particle. J Biol Phys 2017; 44:1-16. [PMID: 29019015 DOI: 10.1007/s10867-017-9471-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2017] [Indexed: 12/25/2022] Open
Abstract
Endocytotic and exocytotic processes are usually studied using particle-vesicle systems in theory, but most of them are electroneutral. Nevertheless, charged particle-vesicle systems are much closer to real biological systems. Therefore, wrapping behaviors of a negatively charged vesicle wrapping a positively charged particle are systematically investigated by a series of 2D dynamical simulations in this article. The competition between the elastic bending energy and the electrostatic energy dictates the vesicle configuration and charge distribution. It is found that only for intermediate charge concentrations and small particle sizes a vesicle can completely engulf the particle. When the charge density is high, the interaction between vesicle and particle is unexpectedly weakened by both the hardening effect of the charged membrane and the effective-transportation-frozen effect of the charged components. When the particle is strongly charged, multi-layer folding conformations are observed. These studies may provide important insights into mechanism of endocytotic and exocytotic processes in biological systems.
Collapse
Affiliation(s)
- Hua Duan
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| | - Hongdong Zhang
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| | - Feng Qiu
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yuliang Yang
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
50
|
Figlia G, Norrmén C, Pereira JA, Gerber D, Suter U. Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. eLife 2017; 6:e29241. [PMID: 28880149 PMCID: PMC5589416 DOI: 10.7554/elife.29241] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023] Open
Abstract
Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.
Collapse
Affiliation(s)
- Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Camilla Norrmén
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| |
Collapse
|