1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Sun Y, Tao Y, Cao J, Zhang Y, Huang Z, Wang S, Lu W, Zhu Q, Shan L, Jiang D, Zhang Y, Tao J. H3K27 Trimethylation-Mediated Downregulation of miR-216a-3p in Sensory Neurons Regulates Neuropathic Pain Behaviors via Targeting STIM1. J Neurosci 2025; 45:e0607242024. [PMID: 39592234 DOI: 10.1523/jneurosci.0607-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Although the therapeutic potential of microRNA-mediated gene regulation has been investigated, its precise functional regulatory mechanism in neuropathic pain remains incompletely understood. In this study, we elucidate that miR-216a-3p serves as a critical noncoding RNA involved in the modulation of trigeminal-mediated neuropathic pain. By conducting RNA-seq and qPCR analysis, we observed a notable decrease of miR-216a-3p in the injured trigeminal ganglia (TG) of male rats. Intra-TG administration of miR-216a-3p agomir or lentiviral-mediated overexpression of miR-216a-3p specifically in sensory neurons of injured TGs alleviated established neuropathic pain behaviors, while downregulation of miR-216a-3p (pharmacologically or genetically) in naive rats induced pain behaviors. Moreover, nerve injury significantly elevated the histone H3 lysine-27 (H3K27) trimethylation (H3K27me3) levels in the ipsilateral TG, thereby suppressing the SRY-box TF 10 (SOX10) binding to the miR-216a-3p promoter and resulting in the reduction of miR-216a-3p. Inhibiting the enzymes responsible for catalyzing H3K27me3 restored the nerve injury-induced reduction in miR-216a-3p expression and markedly ameliorated neuropathic pain behaviors. Furthermore, miR-216a-3p targeted stromal interaction molecule 1 (STIM1), and the decreased miR-216a-3p associated with neuropathic pain caused a significant upregulation in the protein abundance of STIM1. Conversely, overexpression of miR-216a-3p in the injured TG suppressed the upregulation of STIM1 expression and reversed the mechanical allodynia. Together, the mechanistic understanding of H3K27me3-dependent SOX10/miR-216a-3p/STIM1 signaling axial in sensory neurons may facilitate the discovery of innovative therapeutic strategies for neuropathic pain management.
Collapse
Affiliation(s)
- Yufang Sun
- Department of Geriatrics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Junping Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yaqun Zhang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zitong Huang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shoupeng Wang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qi Zhu
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Lidong Shan
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Dongsheng Jiang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich 81377, Germany
| | - Yuan Zhang
- Department of Geriatrics, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jin Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Che LQ, Qu ZZ, Mao ZF, Qiao Q, Zhou KP, Jia LJ, Wang WP. Low-frequency rTMS Plays a Neuroprotective role in Pilocarpine-induced Status Epilepticus Rat Models Through the AMPAR GluA1-STIM-Ca 2+ Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04521-w. [PMID: 39384697 DOI: 10.1007/s12035-024-04521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) refers to the stimulation of the brain using repetitive magnetic field pulses at a low frequency (≤ 1 Hz) to reduce seizures. Currently, the mechanism is not well understood. Male Sprague-Dawley rats underwent pilocarpine-induced status epilepticus (SE) and were then stimulated with low-frequency rTMS. An epilepsy cell model was then established by incubating rat hippocampal neurons with Mg2+-free extracellular fluids. The effects of the low-frequency rTMS on epileptogenesis and hippocampal neuron injury were evaluated using a video electroencephalogram (vEEG) and Nissl staining, and the expression of AMPAR GluA1 and STIM in the hippocampus and hippocampal neurons was assessed using western blot and immunofluorescence. Additionally, the intracellular Ca2+ concentration and reactive oxygen species (ROS) were measured using flow cytometry. Low-frequency rTMS attenuated spontaneous recurrent seizures in rats with epilepsy, with the SE group exhibiting a higher incidence (100%) and frequency (3.00 ± 0.18 times/day) than the SE + 0.3 (50% incidence, 0.06 ± 0.03 times/day), SE + 0.5 (0.20 ± 0.02 times/day) and SE + 1 Hz (1.02 ± 0.05 times/day) groups. Additionally, rTMS reduced the damage and apoptosis of hippocampal pyramidal neurons, increasing their numbers in the CA1 and CA3 regions. Furthermore, AMPAR GluA1 and STIM expression were upregulated in the hippocampus when using rTMS, reversing the downregulation caused by seizures. Immunofluorescence verified the increased fluorescence intensity of AMPAR GluA1 and STIM. Moreover, rTMS inhibited Ca2+ overload and ROS in epileptic neuron models. Low-frequency rTMS may exert neuroprotective effects through the AMPAR GluA1-STIM-Ca2+ pathway.
Collapse
Affiliation(s)
- Li-Qin Che
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Zhen-Zhen Qu
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Zhuo-Feng Mao
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Qi Qiao
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Kai-Ping Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China
| | - Li-Jing Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China.
| | - Wei-Ping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No.215 of West Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
4
|
Saloman JL, Epouhe AY, Ruff CF, Albers KM. PDX1, a transcription factor essential for organ differentiation, regulates SERCA-dependent Ca 2+ homeostasis in sensory neurons. Cell Calcium 2024; 120:102884. [PMID: 38574509 PMCID: PMC11188734 DOI: 10.1016/j.ceca.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic and duodenal homeobox 1 (PDX1) is a transcription factor required for the development and differentiation of the pancreas. Previous studies indicated that PDX1 expression was restricted to the gastrointestinal tract. Using a cre-dependent reporter, we observed PDX1-dependent expression of tdtomato (PDX1-tom) in a subpopulation of sensory nerves. Many of these PDX1-tom afferents expressed the neurofilament 200 protein and projected to the skin. Tdtomato-labeled terminals were associated with hair follicles in the form of longitudinal and circumferential lanceolate endings suggesting a role in tactile and proprioceptive perception. To begin to examine the functional significance of PDX1 in afferents, we used Fura-2 imaging to examine calcium (Ca2+) handling under naïve and nerve injury conditions. Neuropathic injury is associated with increased intracellular Ca2+ signaling that in part results from dysregulation of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA). Here we demonstrate that under naïve conditions, PDX1 regulates expression of the SERCA2B isoform in sensory neurons. In response to infraorbital nerve injury, a significant reduction of PDX1 and SERCA2B expression and dysregulation of Ca2+ handling occurs in PDX1-tom trigeminal ganglia neurons. The identification of PDX1 expression in the somatosensory system and its regulation of SERCA2B and Ca2+ handling provide a new mechanism to explain pathological changes in primary afferents that may contribute to pain associated with nerve injury.
Collapse
Affiliation(s)
- Jami L Saloman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ariel Y Epouhe
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine F Ruff
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Department of Neurobiology, Center for Neuroscience and Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Wei D, Birla H, Dou Y, Mei Y, Huo X, Whitehead V, Osei-Owusu P, Feske S, Patafio G, Tao Y, Hu H. PGE2 Potentiates Orai1-Mediated Calcium Entry Contributing to Peripheral Sensitization. J Neurosci 2024; 44:e0329232023. [PMID: 37952941 PMCID: PMC10851687 DOI: 10.1523/jneurosci.0329-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.
Collapse
Affiliation(s)
- Dongyu Wei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Yixiao Mei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Xiaodong Huo
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Victoria Whitehead
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Patrick Osei-Owusu
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, New York 10016
| | - Giovanna Patafio
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yuanxiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| |
Collapse
|
6
|
Higham JP, Smith ESJ, Bulmer DC. A note on estimating absolute cytosolic Ca 2+ concentration in sensory neurons using a single wavelength Ca 2+ indicator. Mol Pain 2024; 20:17448069241230420. [PMID: 38379503 PMCID: PMC10880540 DOI: 10.1177/17448069241230420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Ca2+ imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca2+ indicators remains the most common approach to study Ca2+ signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca2+ and ease of use. However, unlike ratiometric indicators, the emission intensity from single-wavelength indicators can be affected by indicator concentration, optical path length, excitation intensity and detector efficiency. As such, without careful calibration, it can be difficult to draw inferences from differences in the magnitude of Ca2+ transients recorded using Fluo4. Here, we show that a method scarcely used in sensory neurophysiology - first proposed by Maravall and colleagues (2000) - can provide reliable estimates of absolute cytosolic Ca2+ concentration ([Ca2+]cyt) in acutely dissociated sensory neurons using Fluo4. This method is straightforward to implement; is applicable to any high-affinity single-wavelength Ca2+ indicator with a large dynamic range; and provides estimates of [Ca2+]cyt in line with other methods, including ratiometric imaging. Use of this method will improve the granularity of sensory neuron Ca2+ imaging data obtained with Fluo4.
Collapse
Affiliation(s)
- James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Wang W, Wang Q, Huang J, Li H, Li F, Li X, Liu R, Xu M, Chen J, Mao Y, Ma L. Store-operated calcium entry mediates hyperalgesic responses during neuropathy. FEBS Open Bio 2023; 13:2020-2034. [PMID: 37606998 PMCID: PMC10626277 DOI: 10.1002/2211-5463.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
Neuropathic pain (NP), resulting from nerve injury, alters neural plasticity in spinal cord and brain via the release of inflammatory mediators. The remodeling of store-operated calcium entry (SOCE) involves the refilling of calcium in the endoplasmic reticulum via STIM1 and Orai1 proteins and is crucial for maintaining neural plasticity and neurotransmitter release. The mechanism underlying SOCE-mediated NP remains largely unknown. In this study, we found SOCE-mediated calcium refilling was significantly higher during neuropathic pain, and the major component Orai1 was specifically co-localized with neuronal markers. Intrathecal injection of SOCE antagonist SKF96365 remarkably alleviated nerve injury- and formalin-induced pain and suppressed c-Fos expression in response to innocuous mechanical stimulation. RNA sequencing revealed that SKF96365 altered the expression of spinal transcription factors, including Fos, Junb, and Socs3, during neuropathic pain. In order to identify the genes critical for SKF96365-induced effects, we performed weighted gene co-expression network analysis (WGCNA) to identify the genes most correlated with paw withdrawal latency phenotypes. Of the 16 modules, MEsalmon module was the most highly correlated with SKF96365 induced effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the enriched genes of MEsalmon module were significantly related to Toll-like receptor signaling, steroid biosynthesis, and chemokine signaling, which may mediate the analgesic effect caused by SKF9636 treatment. Additionally, the SOCE antagonist YM-58483 produced similar analgesic effects in nerve injury- and formalin-induced pain. Our results suggest that manipulation of spinal SOCE signaling might be a promising target for pain relief by regulating neurotransmitter production and spinal transcription factor expression.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Qiru Wang
- Department of PharmacyFudan University Shanghai Cancer Center, Minhang BranchShanghaiChina
| | - Jinlu Huang
- Department of PharmacyShanghai Jiao Tong University Affiliated Sixth People's HospitalChina
| | - Hong Li
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fangjie Li
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Li
- Department of Laboratory MedicineChanghai HospitalShanghaiChina
| | - Ruimei Liu
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Xu
- Department of Digital and Cosmetic Dentistry, School & Hospital of StomatologyTongji UniversityShanghaiChina
| | - Jinghong Chen
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Yemeng Mao
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Le Ma
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| |
Collapse
|
8
|
Aydın MŞ, Bay S, Yiğit EN, Özgül C, Oğuz EK, Konuk EY, Ayşit N, Cengiz N, Erdoğan E, Him A, Koçak M, Eroglu E, Öztürk G. Active shrinkage protects neurons following axonal transection. iScience 2023; 26:107715. [PMID: 37701578 PMCID: PMC10493506 DOI: 10.1016/j.isci.2023.107715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Trauma, vascular events, or neurodegenerative processes can lead to axonal injury and eventual transection (axotomy). Neurons can survive axotomy, yet the underlying mechanisms are not fully understood. Excessive water entry into injured neurons poses a particular risk due to swelling and subsequent death. Using in vitro and in vivo neurotrauma model systems based on laser transection and surgical nerve cut, we demonstrated that axotomy triggers actomyosin contraction coupled with calpain activity. As a consequence, neurons shrink acutely to force water out through aquaporin channels preventing swelling and bursting. Inhibiting shrinkage increased the probability of neuronal cell death by about 3-fold. These studies reveal a previously unrecognized cytoprotective response mechanism to neurotrauma and offer a fresh perspective on pathophysiological processes in the nervous system.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Cemil Özgül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Elif Kaval Oğuz
- Department of Science Education, Faculty of Education, Yüzüncü Yıl University, Van 65080, Türkiye
| | - Elçin Yenidünya Konuk
- Department of Medical Biology, School of Medicine, Bakırçay University, İzmir 35665, Türkiye
| | - Neşe Ayşit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Medical Biology and Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Nureddin Cengiz
- Department of Histology and Embryology, School of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir 10200, Türkiye
| | - Ender Erdoğan
- Department of Histology and Embryology, School of Medicine, Selçuk University, Konya 42130, Türkiye
| | - Aydın Him
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Mehmet Koçak
- Biostatistics and Bioinformatics Analysis Unit, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
9
|
Itson-Zoske B, Gani U, Mikesell A, Qiu C, Fan F, Stucky C, Hogan Q, Shin SM, Yu H. Selective RNAi-silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury. RESEARCH SQUARE 2023:rs.3.rs-3405016. [PMID: 37886453 PMCID: PMC10602140 DOI: 10.21203/rs.3.rs-3405016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We previously reported functional Piezo1 expression in Schwann cells of the peripheral nervous system. This study is designed to further investigate the role of Schwann cell Piezo1 in peripheral nociception. We first developed an adeno-associated viral (AAV) vector that has primary Schwann cell tropism after delivery into the sciatic nerve. This was achieved by packing AAV-GFP transcribed by a hybrid CMV enhancer/chicken β-actin (CBA) promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Five weeks after intrasciatic injection of AAVolig001-CBA-GFP in naïve rats, GFP expression was detected selectively in the Schwann cells of the sciatic nerve. A short hairpin RNA against rat Piezo1 (PZ1shRNA) was designed that showed efficient physical and functional knockdown of Piezo1 in NG108 neuronal cells. A dual promoter and bidirectional AAV encoding a U6-driven PZ1shRNA and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated, compared to rats subjected with AAVolig001-scramble. Selective in vivo Schwann cell transduction and functional block of Piezo1 channel activity of primary cultured Schwann cells was confirmed. Together, our data demonstrate that 1) AAVolig001 has unique and selective primary tropism to Schwann cells via intrasciatic delivery and 2) Schwann cell Piezo1 contributes to mechanical hypersensitivity following nerve injury.
Collapse
|
10
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
11
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
12
|
Shin SM, Itson-Zoske B, Fan F, Gani U, Rahman M, Hogan QH, Yu H. Peripheral sensory neurons and non-neuronal cells express functional Piezo1 channels. Mol Pain 2023; 19:17448069231174315. [PMID: 37247618 PMCID: PMC10240879 DOI: 10.1177/17448069231174315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Here, we present evidence showing Piezo1 protein expression in the primary sensory neurons (PSNs) and non-neuronal cells of rat peripheral nervous system. Using a knockdown/knockout validated antibody, we detected Piezo1 immunoreactivity (IR) in ∼60% of PSNs of rat dorsal root ganglia (DRG) with higher IR density in the small- and medium-sized neurons. Piezo1-IR was clearly identified in DRG perineuronal glia, including satellite glial cells (SGCs) and Schwann cells; in sciatic nerve Schwann cells surrounding the axons and cutaneous afferent endings; and in skin epidermal Merkel cells and melanocytes. Neuronal and non-neuronal Piezo1 channels were functional since various cells (dissociated PSNs and SGCs from DRGs, isolated Schwann cells, and primary human melanocytes) exhibited a robust response to Piezo1 agonist Yoda1 by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses were abolished by non-specific Piezo1 antagonist GsMTx4. Immunoblots showed elevated Piezo1 protein in DRG proximal to peripheral nerve injury-induced painful neuropathy, while PSNs and SGCs from rats with neuropathic pain showed greater Yoda1-evoked elevation of [Ca2+]i and an increased frequency of cells responding to Yoda1, compared to controls. Sciatic nerve application of GsMTx4 alleviated mechanical hypersensitivity induced by Yoda1. Overall, our data show that Piezo1 is widely expressed by the neuronal and non-neuronal cells in the peripheral sensory pathways and that painful nerve injury appeared associated with activation of Piezo1 in PSNs and peripheral glial cells.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Uarda Gani
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mahmudur Rahman
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
13
|
Yamada H, Ohmori R, Okada N, Nakamura S, Kagawa K, Fujii S, Miki H, Ishizawa K, Abe M, Sato Y. A machine learning model using SNPs obtained from a genome-wide association study predicts the onset of vincristine-induced peripheral neuropathy. THE PHARMACOGENOMICS JOURNAL 2022; 22:241-246. [PMID: 35752658 DOI: 10.1038/s41397-022-00282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Vincristine treatment may cause peripheral neuropathy. In this study, we identified the genes associated with the development of peripheral neuropathy due to vincristine therapy using a genome-wide association study (GWAS) and constructed a predictive model for the development of peripheral neuropathy using genetic information-based machine learning. The study included 72 patients admitted to the Department of Hematology, Tokushima University Hospital, who received vincristine. Of these, 56 were genotyped using the Illumina Asian Screening Array-24 Kit, and a GWAS for the onset of peripheral neuropathy caused by vincristine was conducted. Using Sanger sequencing for 16 validation samples, the top three single nucleotide polymorphisms (SNPs) associated with the onset of peripheral neuropathy were determined. Machine learning was performed using the statistical software R package "caret". The 56 GWAS and 16 validation samples were used as the training and test sets, respectively. Predictive models were constructed using random forest, support vector machine, naive Bayes, and neural network algorithms. According to the GWAS, rs2110179, rs7126100, and rs2076549 were associated with the development of peripheral neuropathy on vincristine administration. Machine learning was performed using these three SNPs to construct a prediction model. A high accuracy of 93.8% was obtained with the support vector machine and neural network using rs2110179 and rs2076549. Thus, peripheral neuropathy development due to vincristine therapy can be effectively predicted by a machine learning prediction model using SNPs associated with it.
Collapse
Affiliation(s)
- Hiroki Yamada
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan
| | - Rio Ohmori
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan
| | - Naoto Okada
- Department of Pharmacy, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Youichi Sato
- Department of Pharmaceutical Information Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8505, Japan.
| |
Collapse
|
14
|
Hartung JE, Moy JK, Loeza-Alcocer E, Nagarajan V, Jostock R, Christoph T, Schroeder W, Gold MS. Voltage-gated calcium currents in human dorsal root ganglion neurons. Pain 2022; 163:e774-e785. [PMID: 34510139 PMCID: PMC8882208 DOI: 10.1097/j.pain.0000000000002465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Voltage-gated calcium channels in sensory neurons underlie processes ranging from neurotransmitter release to gene expression and remain a therapeutic target for the treatment of pain. Yet virtually all we know about voltage-gated calcium channels has been obtained through the study of rodent sensory neurons and heterologously expressed channels. To address this, high voltage-activated (HVA) Ca2+ currents in dissociated human and rat dorsal root ganglion neurons were characterized with whole-cell patch clamp techniques. The HVA currents from both species shared basic biophysical and pharmacological properties. However, HVA currents in human neurons differed from those in the rat in at least 3 potentially important ways: (1) Ca2+ current density was significantly smaller, (2) the proportion of nifedipine-sensitive currents was far greater, and (3) a subpopulation of human neurons displayed relatively large constitutive current inhibition. These results highlight the need to for the study of native proteins in their native environment before initiating costly clinical trials.
Collapse
Affiliation(s)
- Jane E Hartung
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | - Jamie K Moy
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | | | - Vidhya Nagarajan
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | | | | | | | - Michael S Gold
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| |
Collapse
|
15
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
16
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
17
|
Zhou Z, Mao M, Cai X, Zhu W, Sun J. Store-Operated Calcium Channels Contribute to Remifentanil-Induced Postoperative Hyperalgesia via Phosphorylation of CaMKIIα in Rats. J Pain Res 2021; 14:3289-3299. [PMID: 34703304 PMCID: PMC8536888 DOI: 10.2147/jpr.s333297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The mechanisms of remifentanil-induced postoperative hyperalgesia (RIPH) remain unclear. Store-operated calcium channels (SOCCs) are mainly comprised of stromal interaction molecules 1 (STIM1) and pore-forming subunits (Orai1). They were found to take a pivotal part in Ca2+-dependent procedures and involved in the development of central sensitization and pain. Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα), regulated by Ca2+/calmodulin complex, has been shown to have a crucial role in RIPH. This study aims to determine whether SOCCs contribute to RIPH via activating CaMKIIα. Materials and Methods Intra-operative infusion of remifentanil (1.0 µg kg−1 min−1, 60 min) was used to establish a RIPH rat model. The SOCCs blocker (YM-58483) was applied intrathecally to confirm the results. Animal behavioral tests including paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) were performed at −24, 2, 6, 24, 48 h after incision and remifentanil treatments. The protein expression of STIM1, Orai1, CaMKIIα, and p-CaMKIIα was assayed with Western blot, and the number of STIM1 and Orai1 positive cells was shown by immunofluorescence. Results Remifentanil administration significantly induced postoperative mechanical and thermal hyperalgesia, as well as increased STIM1 and Orai1 protein expression in the spinal dorsal horn. Furthermore, the intrathecal administration of YM-58483 effectively alleviated remifentanil-induced postoperative mechanical and thermal hyperalgesia according to the behavioral tests. In addition, YM-58483 suppressed the phosphorylation of CaMKIIα but had no effect on the expression of STIM1 and Orai1. Conclusion Our study demonstrated that SOCCs are involved in RIPH. The over-expressed STIM1 and Orai1 in the spinal cord contribute to RIPH via mediating the phosphorylation of CaMKIIα. Blockade of SOCCs may provide an effective therapeutic approach for RIPH.
Collapse
Affiliation(s)
- Zhenhui Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Mao
- Department of Anesthesiology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuechun Cai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Shin SM, Itson-Zoske B, Cai Y, Qiu C, Pan B, Stucky CL, Hogan QH, Yu H. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain 2021; 16:1744806920925425. [PMID: 32484015 PMCID: PMC7268132 DOI: 10.1177/1744806920925425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund’s adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
19
|
Fozzato A, Telešova G. Insight on novel mechanisms mediating the generation of inflammatory pain in somatosensory neurons. J Physiol 2021; 599:2999-3001. [PMID: 33932962 DOI: 10.1113/jp281677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Arianna Fozzato
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Greta Telešova
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Wu S, Yang S, Ou M, Chen J, Huang J, Xiong D, Sun W, Xiao L. Transcriptome Analysis Reveals the Role of Cellular Calcium Disorder in Varicella Zoster Virus-Induced Post-Herpetic Neuralgia. Front Mol Neurosci 2021; 14:665931. [PMID: 34079439 PMCID: PMC8166323 DOI: 10.3389/fnmol.2021.665931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
As a typical neuropathic pain, post-herpetic neuralgia (PHN) is a common complication of herpes zoster (HZ), which seriously affects the normal life and work of patients. The unclear pathogenesis and lack of effective drugs make the clinical efficacy of PHN unsatisfactory. Here, we obtained the transcriptome profile of neuroblastoma cells (SH-SY5Y) and DRG in rats infected with varicella zoster virus (VZV) by transcriptome sequencing (RNA-Seq) combined with publicly available gene array data sets. Next, the data processing of the transcriptome map was analyzed using bioinformatics methods, including the screening of differentially expressed genes (DEGs), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, real-time fluorescent quantitative PCR (qRT-PCR) was used to detect the expression of calcium-related genes, and calcium fluorescent probes and calcium colorimetry were used to evaluate the distribution and content of calcium ions in cells after VZV infection. Transcriptome data analysis (GO and KEGG enrichment analysis) showed that calcium disorder played an important role in SH-SY5Y cells infected by VZV and dorsal root ganglion (DRG) of the PHN rat model. The results of qRT-PCR showed that the expression levels of calcium-related genes BHLHA15, CACNA1F, CACNG1, CHRNA9, and STC2 were significantly upregulated, while the expression levels of CHRNA10, HRC, and TNNT3 were significantly downregulated in SH-SY5Y cells infected with VZV. Our calcium fluorescent probe and calcium colorimetric test results showed that VZV could change the distribution of calcium ions in infected cells and significantly increase the intracellular calcium content. In conclusion, our results revealed that the persistence of calcium disorder caused by VZV in nerve cells might be a crucial cause of herpetic neuralgia, and a potential target for clinical diagnosis and treatment of PHN.
Collapse
Affiliation(s)
- Songbin Wu
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mingxi Ou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiamin Chen
- Vanke Bilingual School (VBS), Shenzhen, China
| | - Jiabing Huang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wuping Sun
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
21
|
Analgesic dorsal root ganglionic field stimulation blocks conduction of afferent impulse trains selectively in nociceptive sensory afferents. Pain 2021; 161:2872-2886. [PMID: 32658148 DOI: 10.1097/j.pain.0000000000001982] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased excitability of primary sensory neurons after peripheral nerve injury may cause hyperalgesia and allodynia. Dorsal root ganglion field stimulation (GFS) is effective in relieving clinical pain associated with nerve injury and neuropathic pain in animal models. However, its mechanism has not been determined. We examined effects of GFS on transmission of action potentials (APs) from the peripheral to central processes by in vivo single-unit recording from lumbar dorsal roots in sham injured rats and rats with tibial nerve injury (TNI) in fiber types defined by conduction velocity. Transmission of APs directly generated by GFS (20 Hz) in C-type units progressively abated over 20 seconds, whereas GFS-induced Aβ activity persisted unabated, while Aδ showed an intermediate pattern. Activity generated peripherally by electrical stimulation of the sciatic nerve and punctate mechanical stimulation of the receptive field (glabrous skin) was likewise fully blocked by GFS within 20 seconds in C-type units, whereas Aβ units were minimally affected and a subpopulation of Aδ units was blocked. After TNI, the threshold to induce AP firing by punctate mechanical stimulation (von Frey) was reduced, which was reversed to normal during GFS. These results also suggest that C-type fibers, not Aβ, mainly contribute to mechanical and thermal hypersensitivity (von Frey, brush, acetone) after injury. Ganglion field stimulation produces use-dependent blocking of afferent AP trains, consistent with enhanced filtering of APs at the sensory neuron T-junction, particularly in nociceptive units.
Collapse
|
22
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Hogea A, Shah S, Jones F, Carver CM, Hao H, Liang C, Huang D, Du X, Gamper N. Junctophilin-4 facilitates inflammatory signalling at plasma membrane-endoplasmic reticulum junctions in sensory neurons. J Physiol 2021; 599:2103-2123. [PMID: 33569781 DOI: 10.1113/jp281331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Rat somatosensory neurons express a junctional protein, junctophilin-4 (JPH4) JPH4 is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the junctions between plasma membrane and endoplasmic reticulum in these neurons. Knockdown of JPH4 impairs endoplasmic reticulum Ca2+ store refill and junctional Ca2+ signalling in sensory neurons. In vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly attenuated experimentally induced inflammatory pain in rats. Junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms. ABSTRACT Junctions of endoplasmic reticulum and plasma membrane (ER-PM junctions) form signalling nanodomains in eukaryotic cells. ER-PM junctions are present in peripheral sensory neurons and are important for the fidelity of G protein coupled receptor (GPCR) signalling. Yet little is known about the assembly, maintenance and physiological role of these junctions in somatosensory transduction. Using fluorescence imaging, proximity ligation, super-resolution microscopy, in vitro and in vivo gene knockdown we demonstrate that a member of the junctophilin protein family, junctophilin-4 (JPH4), is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the ER-PM junctions in rat somatosensory neurons. Thus we show that JPH4 localises to the ER-PM junctional areas and co-clusters with SOCE proteins STIM1 and Orai1 upon ER Ca2+ store depletion. Knockdown of JPH4 impairs SOCE and ER Ca2+ store refill in sensory neurons. Furthermore, we demonstrate a key role of the JPH4 and junctional nanodomain Ca2+ signalling in the pain-like response induced by the inflammatory mediator bradykinin. Indeed, an in vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly shortened the duration of nocifensive behaviour induced by hindpaw injection of bradykinin in rats. Since the ER supplies Ca2+ for the excitatory action of multiple inflammatory mediators, we suggest that junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms.
Collapse
Affiliation(s)
- Alexandra Hogea
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Shihab Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Ce Liang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
26
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
27
|
Wasilewska I, Gupta RK, Wojtaś B, Palchevska O, Kuźnicki J. stim2b Knockout Induces Hyperactivity and Susceptibility to Seizures in Zebrafish Larvae. Cells 2020; 9:cells9051285. [PMID: 32455839 PMCID: PMC7291033 DOI: 10.3390/cells9051285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
In neurons, stromal interaction molecule (STIM) proteins regulate store-operated Ca2+ entry (SOCE) and are involved in calcium signaling pathways. However, STIM activity in neurological diseases is unclear and should be clarified by studies that are performed in vivo rather than in cultured cells in vitro. The present study investigated the role of neuronal Stim2b protein in zebrafish. We generated stim2b knockout zebrafish, which were fertile and had a regular lifespan. Using various behavioral tests, we found that stim2b−/− zebrafish larvae were hyperactive compared with wild-type fish. The mutants exhibited increases in mobility and thigmotaxis and disruptions of phototaxis. They were also more sensitive to pentylenetetrazol and glutamate treatments. Using lightsheet microscopy, a higher average oscillation frequency and higher average amplitude of neuronal Ca2+ oscillations were observed in stim2b−/− larvae. RNA sequencing detected upregulation of the annexin 3a and gpr39 genes and downregulation of the rrm2, neuroguidin, and homer2 genes. The latter gene encodes a protein that is involved in several processes that are involved in Ca2+ homeostasis in neurons, including metabotropic glutamate receptors. We propose that Stim2b deficiency in neurons dysregulates SOCE and triggers changes in gene expression, thereby causing abnormal behavior, such as hyperactivity and susceptibility to seizures.
Collapse
Affiliation(s)
- Iga Wasilewska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland;
| | - Oksana Palchevska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
| | - Jacek Kuźnicki
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland; (I.W.); (R.K.G.); (O.P.)
- Correspondence:
| |
Collapse
|
28
|
Bakare AO, Owoyele BV. Bromelain reversed electrolyte imbalance in the chronically constricted sciatic nerve of Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:457-467. [PMID: 31655851 DOI: 10.1007/s00210-019-01744-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Derangement of electrolyte in the sensory nervous system has been attributed to the development and maintenance of hyperalgesic and allodynic symptoms in painful neuropathy. This study investigated the effect of bromelain on electrolyte imbalance in chronically constricted sciatic nerve of rats (a model of neuropathic pain). Forty Wistar rats, divided into five groups of eight animals each were used for this study. von Frey filaments, tail immersion and acetone spray tests were used to assessed allodynic and thermal hyperalgesic symptoms in the Wistar rats. Sodium ion (Na+), potassium ion (K+), calcium ion (Ca2+) and chloride ion (Cl-) concentrations as well as sodium-potassium and calcium electrogenic pump (Na-K ATPase and Ca ATPase, respectively) activities were estimated using spectrophotometry techniques. Bromelain significantly (p < 0.05) reversed elevation of Na+ and Ca2+ concentration compared with sciatic nerve chronic constriction injury (snCCI) group (35.68 ± 1.71 vs 44.46 ± 1.24 mg/ml/mg protein and 1.06 ± 0.19 vs 6.66 ± 0.03 mg/ml/mg protein, respectively). There were also significant (p < 0.05) increases in the level of K+ (0.84 ± 0.02 vs 0.36 ± 0.05 mg/ml/mg protein) and Cl- (18.51 ± 0.29 vs 15.82 ± 0.21 mg/ml/mg protein). Bromelain reduced the activities of Ca2+ electrogenic pumps significantly compared with snCCI. This study therefore suggests that bromelain mitigated electrolyte imbalance in chronic constricted injury of the sciatic nerve implying that this may be an important mechanism for the anti-nociceptive effect of bromelain.
Collapse
Affiliation(s)
- Ahmed Olalekan Bakare
- Pain and Inflammation Unit, Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria.
| | - Bamidele Victor Owoyele
- Neuroscience Unit, Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
29
|
Calcium Imaging of Parvalbumin Neurons in the Dorsal Root Ganglia. eNeuro 2019; 6:ENEURO.0349-18.2019. [PMID: 31311802 PMCID: PMC6709205 DOI: 10.1523/eneuro.0349-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 01/06/2023] Open
Abstract
We investigated the calcium dynamics of dorsal root ganglion (DRG) neurons using transgenic mice to target expression of the genetically encoded calcium indicator (GECI), GCaMP6s, to a subset of neurons containing parvalbumin (PV), a calcium-binding protein present in proprioceptors and low-threshold mechanoreceptors. This study provides the first analysis of GECI calcium transient parameters from large-diameter DRG neurons. Our approach generated calcium transients of consistent shape and time-course, with quantifiable characteristics. Four parameters of calcium transients were determined to vary independently from each other and thus are likely influenced by different calcium-regulating mechanisms: peak amplitude, rise time (RT), decay time, and recovery time. Pooled analysis of 188 neurons demonstrated unimodal distributions, providing evidence that PV+ DRG neurons regulate calcium similarly as a population despite their differences in size, electrical properties, and functional sensitivities. Calcium transients increased in size with elevated extracellular calcium, longer trains of action potentials, and higher stimulation frequencies. RT and decay time increased with the addition of the selective sarco/endoplasmic reticulum calcium ATPases (SERCA) blocker, thapsigargin (TG), while peak amplitude and recovery time remained the same. When elevating bath pH to 8.8 to block plasma-membrane calcium ATPases (PMCA), all measured parameters significantly increased. These results illustrate that GECI calcium transients provide sufficient resolution to detect changes in electrical activity and intracellular calcium concentration, as well as discern information about the activity of specific subclasses of calcium regulatory mechanisms.
Collapse
|
30
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
31
|
Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission. Mol Neurobiol 2018; 56:5241-5255. [PMID: 30565051 DOI: 10.1007/s12035-018-1445-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Collapse
|
32
|
Recording SOCE Activity in Neurons by Patch-Clamp Electrophysiology and Microfluorometric Calcium Imaging. Methods Mol Biol 2018. [PMID: 30203275 DOI: 10.1007/978-1-4939-8704-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ influx pathway at the plasma membrane that replenishes intracellular Ca2+ stores in response to depletion of Ca2+ stores. The SOC current, also known as the Ca2+ release-activated Ca2+ current (ICRAC), has a small conductance, which makes selective recording difficult. This challenge may be addressed using techniques based on identification of Ca2+ influx patch-clamp electrophysiological recording and measurement of cytoplasmic Ca2+ accumulation with Ca2+-sensitive fluorophores. Here, we describe specific methods for studying SOCE using these approaches in rat dorsal root ganglion neurons.
Collapse
|
33
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
34
|
Mei Y, Barrett JE, Hu H. Calcium release-activated calcium channels and pain. Cell Calcium 2018; 74:180-185. [PMID: 30096536 DOI: 10.1016/j.ceca.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.
Collapse
Affiliation(s)
- Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA 19102, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
35
|
Jeon S, Caterina MJ. Molecular basis of peripheral innocuous warmth sensitivity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:69-82. [PMID: 30454610 DOI: 10.1016/b978-0-444-63912-7.00004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The perception of innocuous warmth is a sensory capability that facilitates thermoregulatory, social, hedonic, and even predatory functions. It has long been recognized that innocuous warmth perception is triggered by activation of a subpopulation of specially tuned peripheral thermosensory neurons. In addition, there is growing evidence that thermotransduction by nonneuronal cells, such as skin keratinocytes, might contribute to or modulate our thermosensory experience. Yet, the precise molecular mechanisms underlying warmth transduction are only now being uncovered. Recent molecular genetics approaches have led to the identification of multiple candidate warmth-transducing molecules that appear to confer thermosensitivity upon innocuous warmth afferents and/or neighboring cell types. Most, but not all, of these candidate transducers are members of the transient receptor potential (TRP) ion channel family. Among the latter, evidence supporting a function in innocuous warmth sensation is strongest for TRPV1 and TRPM2 in mammals and for TRPA1 in nonmammalian species.
Collapse
Affiliation(s)
- Sangmin Jeon
- Departments of Neurosurgery, Biological Chemistry, and Neuroscience, and Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Michael J Caterina
- Departments of Neurosurgery, Biological Chemistry, and Neuroscience, and Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
36
|
Wei D, Mei Y, Xia J, Hu H. Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons. Front Cell Neurosci 2017; 11:400. [PMID: 29311831 PMCID: PMC5742109 DOI: 10.3389/fncel.2017.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dorsal root ganglia (DRG) is enhanced after nerve injury, suggesting that SOCs may play a peripheral role in chronic pain. However, the expression, functional distribution and significance of the SOC family in DRG neurons remain elusive and the key components that mediate SOC entry (SOCE) are still controversial. Here, we demonstrated that the SOC family (STIM1, STIM2, Orai1, Orai2, and Orai3) was expressed in DRGs and STIM1 was mainly present in small- and medium-sized DRG neurons. Using confocal live cell imaging, Ca2+ imaging and electrophysiology techniques, we demonstrated that depletion of the endoplasmic reticulum Ca2+ stores induced STIM1 and STIM2 translocation, and that inhibition of STIM1 or blockage of Orai channels with pharmacological tools attenuated SOCE and SOC currents. Using the small inhibitory RNA knockdown approach, we identified STIM1, STIM2, Orai1, and Orai3 as the key components of SOCs mediating SOCE in DRG neurons. Importantly, activation of SOCs by thapsigargin induced plasma membrane depolarization and increased neuronal excitability, which were completely abolished by inhibition of SOCs or double knockdown of Orai1 and Orai3. Our findings suggest that SOCs exert an excitatory action in DRG neurons and provide a potential peripheral mechanism for modulation of pain hypersensitivity by SOC inhibition.
Collapse
Affiliation(s)
| | | | | | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
37
|
González-Sánchez P, Del Arco A, Esteban JA, Satrústegui J. Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons. Front Cell Neurosci 2017; 11:363. [PMID: 29311823 PMCID: PMC5735122 DOI: 10.3389/fncel.2017.00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons, the presence and functions of SOCE are still in question. Here, we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase, which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs), being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions, but the underlying mechanism and, specifically, the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons, we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD, pointing out a key function of calcium and SOCE in synaptic plasticity.
Collapse
Affiliation(s)
- Paloma González-Sánchez
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Araceli Del Arco
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo, Spain
| | - José A Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Jorgina Satrústegui
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
38
|
Orai1 Plays a Crucial Role in Central Sensitization by Modulating Neuronal Excitability. J Neurosci 2017; 38:887-900. [PMID: 29229703 DOI: 10.1523/jneurosci.3007-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear. Store-operated calcium channels (SOCs) mediate important calcium signals in nonexcitable and excitable cells. SOCs have been implicated in a wide variety of human pathophysiological conditions, including immunodeficiency, occlusive vascular diseases, and cancer. However, the role of SOCs in CNS disorders has been relatively unexplored. Orai1, a key component of SOCs, is expressed in the human and rodent spinal cord dorsal horn, but its functional significance in dorsal horn neurons is poorly understood. Here we sought to explore a potential role of Orai1 in the modulation of neuronal excitability and A-type potassium channels involved in pain plasticity. Using both male and female Orai1 knock-out mice, we found that activation of Orai1 increased neuronal excitability and reduced A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway in dorsal horn neurons. Orai1 deficiency significantly decreased acute pain induced by noxious stimuli, nearly eliminated the second phase of formalin-induced nociceptive response, markedly attenuated carrageenan-induced ipsilateral pain hypersensitivity and abolished carrageenan-induced contralateral mechanical allodynia. Consistently, carrageenan-induced increase in neuronal excitability was abolished in the dorsal horn from Orai1 mutant mice. These findings uncover a novel signaling pathway involved in the pain process and central sensitization. Our study also reveals a novel link among Orai1, ERK, A-type potassium channels, and neuronal excitability.SIGNIFICANCE STATEMENT Orai1 is a key component of store-operated calcium channels (SOCs) in many cell types. It has been implicated in such pathological conditions as immunodeficiency, autoimmunity, and cancer. However, the role of Orai1 in CNS disorders remains poorly understood. The functional significance of Orai1 in neurons is elusive. Here we demonstrate that activation of Orai1 modulates neuronal excitability and Kv4-containing A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway. Genetic knock-out of Orai1 nearly eliminates the second phase of formalin-induced pain and markedly attenuates carrageenan-induced pain hypersensitivity and neuronal excitability. These findings reveal a novel link between Orai1 and neuronal excitability and advance our understanding of central sensitization.
Collapse
|
39
|
Yu Y, Huang X, Di Y, Qu L, Fan N. Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep 2017; 7:5707. [PMID: 28720830 PMCID: PMC5515923 DOI: 10.1038/s41598-017-05954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state that often accompanies tissue damage, inflammation or injury of the nervous system. However the underlying molecular mechanisms still remain unclear. Here, we showed that CXCL12 and CXCR4 were upregulated in the dorsal root ganglion (DRG) after chronic compression of DRG (CCD), and some CXCR4 immunopositive neurons were also immunopositive for the nociceptive neuronal markers IB4, TRPV1, CGRP, and substance P. The incidence and amplitude of CXCL12-induced Ca2+ response in primary sensory neurons from CCD mice was significantly increased compared to those from control animals. CXCL12 depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2X rheobase in neurons from CCD mice. The mechanical and thermal hypernociception after CCD was attenuated by administration of a CXCR4 antagonist AMD3100. These findings suggest that CXCL12/CXCR4 signaling contributes to hypernociception after CCD, and targeting CXCL12/CXCR4 signaling pathway may alleviate neuropathic pain.
Collapse
Affiliation(s)
- Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Xini Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Yuwei Di
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, 725N. Wolfe St., Baltimore, MD, 21205, USA
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China.
| |
Collapse
|
40
|
Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain 2017; 157:2068-2080. [PMID: 27168360 DOI: 10.1097/j.pain.0000000000000612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of high-voltage-activated (HVA) calcium current (ICa) and gain of low-voltage-activated (LVA) ICa after painful peripheral nerve injury cause elevated excitability in sensory neurons. Nerve injury is also accompanied by increased expression of the extracellular matrix glycoprotein thrombospondin-4 (TSP4), and interruption of TSP4 function can reverse or prevent behavioral hypersensitivity after injury. We therefore investigated TSP4 regulation of ICa in dorsal root ganglion (DRG) neurons. During depolarization adequate to activate HVA ICa, TSP4 decreases both N- and L-type ICa and the associated intracellular calcium transient. In contrast, TSP4 increases ICa and the intracellular calcium signal after low-voltage depolarization, which we confirmed is due to ICa through T-type channels. These effects are blocked by gabapentin, which ameliorates neuropathic pain by targeting the α2δ1 calcium subunit. Injury-induced changes of HVA and LVA ICa are attenuated in TSP4 knockout mice. In the neuropathic pain model of spinal nerve ligation, TSP4 application did not further regulate ICa of injured DRG neurons. Taken together, these findings suggest that elevated TSP4 after peripheral nerve injury may contribute to hypersensitivity of peripheral sensory systems by decreasing HVA and increasing LVA in DRG neurons by targeting the α2δ1 calcium subunit. Controlling TSP4 overexpression in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
|
41
|
Guo Y, Zhang Z, Wu HE, Luo ZD, Hogan QH, Pan B. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons. Neuropharmacology 2017; 117:292-304. [PMID: 28232180 DOI: 10.1016/j.neuropharm.2017.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage-activated Ca2+ channels and increases ICa through low-voltage-activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Zhiyong Zhang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, University of California Irvine, Irvine, CA 92697, United States; Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
42
|
Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. Sci Rep 2017; 7:42586. [PMID: 28195208 PMCID: PMC5307359 DOI: 10.1038/srep42586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Collapse
Affiliation(s)
- Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Manipal University, Manipal 576104, India
| | - Katharine Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
43
|
Gruszczynska-Biegala J, Sladowska M, Kuznicki J. AMPA Receptors Are Involved in Store-Operated Calcium Entry and Interact with STIM Proteins in Rat Primary Cortical Neurons. Front Cell Neurosci 2016; 10:251. [PMID: 27826230 PMCID: PMC5078690 DOI: 10.3389/fncel.2016.00251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
The process of store-operated calcium entry (SOCE) leads to refilling the endoplasmic reticulum (ER) with calcium ions (Ca2+) after their release into the cytoplasm. Interactions between (ER)-located Ca2+ sensors (stromal interaction molecule 1 [STIM1] and STIM2) and plasma membrane-located Ca2+ channel-forming protein (Orai1) underlie SOCE and are well described in non-excitable cells. In neurons, however, SOCE appears to be more complex because of the importance of Ca2+ influx via voltage-gated or ionotropic receptor-operated Ca2+ channels. We found that the SOCE inhibitors ML-9 and SKF96365 reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced [Ca2+]i amplitude by 80% and 53%, respectively. To assess the possible involvement of AMPA receptors (AMPARs) in SOCE, we used their specific inhibitors. As estimated by Fura-2 acetoxymethyl (AM) single-cell Ca2+ measurements in the presence of CNQX or NBQX, thapsigargin (TG)-induced Ca2+ influx decreased 2.2 or 3.7 times, respectively. These results suggest that under experimental conditions of SOCE when Ca2+ stores are depleted, Ca2+ can enter neurons also through AMPARs. Using specific antibodies against STIM proteins or GluA1/GluA2 AMPAR subunits, co-immunoprecipitation assays indicated that when Ca2+ levels are low in the neuronal ER, a physical association occurs between endogenous STIM proteins and endogenous AMPAR receptors. Altogether, our data suggest that STIM proteins in neurons can control AMPA-induced Ca2+ entry as a part of the mechanism of SOCE.
Collapse
Affiliation(s)
- Joanna Gruszczynska-Biegala
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw Warsaw, Poland
| | - Maria Sladowska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw Warsaw, Poland
| |
Collapse
|
44
|
Qi Z, Wang Y, Zhou H, Liang N, Yang L, Liu L, Zhang W. The Central Analgesic Mechanism of YM-58483 in Attenuating Neuropathic Pain in Rats. Cell Mol Neurobiol 2016; 36:1035-43. [PMID: 26514127 DOI: 10.1007/s10571-015-0292-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
Calcium channel antagonists are commonly used to treat neuropathic pain. Their analgesic effects rely on inhibiting long-term potentiation, and neurotransmitters release in the spinal cord. Store-operated Ca(2+)channels (SOCCs) are highly Ca(2+)-selective cation channels broadly expressed in non-excitable cells and some excitable cells. Recent studies have shown that the potent inhibitor of SOCCs, YM-58483, has analgesic effects on neuropathic pain, but its mechanism is unclear. This experiment performed on spinal nerve ligation (SNL)-induced neuropathic pain model in rats tries to explore the mechanism, whereby YM-58483 attenuates neuropathic pain. The left L5 was ligated to produce the SNL neuropathic pain model in male Sprague-Dawley rats. The withdrawal threshold of rats was measured by the up-down method and Hargreaves' method before and after intrathecal administration of YM-58483 and vehicle. The SOCCs in the spinal dorsal horn were located by immunofluorescence. The expression of phosphorylated ERK and phosphorylated CREB, CD11b, and GFAP proteins in spinal level was tested by Western blot, while the release of proinflammatory cytokines (IL-1β, TNF-α, PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). Intrathecal YM-58483 at the concentration of 300 μM (1.5 nmol) and 1000 μM (10 nmol) produced a significant central analgesic effect on the SNL rats, compared with control + vehicle (n = 7, P < 0.001). However, both could not prevent the development of neuropathic pain, compared with normal + saline (P < 0.001). Immunofluorescent staining revealed that Orai1 and STIM1 (the two key components of SOCCs) were located in the spinal dorsal horn neurons. Western blot showed that YM-58483 could decrease the levels of P-ERK and P-CREB (n = 10, #P < 0.05), without affecting the expression of CD11b and GFAP (n = 10, #P > 0.05). YM-58483 also inhibited the release of spinal cord IL-1β, TNF-α, and PGE2, compared with control + vehicle (n = 5, #P < 0.001). The analgesic mechanism of YM-58483 may be via inhibiting central ERK/CREB signaling in the neurons and decreasing central IL-1β, TNF-α, and PGE2 release to reduce neuronal excitability in the spinal dorsal horn of the SNL rats.
Collapse
Affiliation(s)
- Zeyou Qi
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Yaping Wang
- Second Xiang-Ya Hospital of Central South University, Changsha, China.
| | - Haocheng Zhou
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Na Liang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Lin Yang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Lei Liu
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Wei Zhang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| |
Collapse
|
45
|
Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016; 61:2-16. [PMID: 26724974 PMCID: PMC4884561 DOI: 10.1016/j.jbior.2015.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
46
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
47
|
Munoz F, Hu H. The Role of Store-operated Calcium Channels in Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:139-51. [PMID: 26920011 DOI: 10.1016/bs.apha.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Store-operated calcium channels (SOCCs) are calcium-selective cation channels. Recently, there has been explosive growth in establishing the molecular mechanisms that mediate store-operated Ca(2+) entry (SOCE) and the role of this process in normal cellular function and disease states. SOCCs and its components appear to play an important role in many Ca(2+)-dependent processes in nonexcitable cells and are implicated in several possible disorders including allergies, multiple sclerosis, cancer, and inflammatory bowel disease. Recent studies have shown that SOCCs are expressed in the central nervous system (CNS) and involved in neuronal functions and pathological conditions, including chronic pain. In this chapter, we discuss SOCE and its physiological and pathological roles in the CNS. More specifically, we discuss the expression and function of SOCCs and their downstream signaling mechanisms under chronic pain conditions.
Collapse
Affiliation(s)
- Frances Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
48
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Majewski L, Kuznicki J. SOCE in neurons: Signaling or just refilling? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1940-52. [DOI: 10.1016/j.bbamcr.2015.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
|
50
|
Rao W, Zhang L, Peng C, Hui H, Wang K, Su N, Wang L, Dai SH, Yang YF, Chen T, Luo P, Fei Z. Downregulation of STIM2 improves neuronal survival after traumatic brain injury by alleviating calcium overload and mitochondrial dysfunction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2402-13. [PMID: 26300487 DOI: 10.1016/j.bbadis.2015.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/28/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
Abstract
Although store-operated calcium entry (SOCE) has been implicated in several neurological disorders, the exact mechanism for its role in traumatic brain injury (TBI) has not been elucidated. In this study, we found that TBI upregulated the expression of a calcium sensor protein called stromal interactive molecule 2 (STIM2); however, the levels of its homologue, STIM1, were unaffected. Both STIM1 and STIM2 are crucial components of SOCE, both in vivo and in vitro. Using shRNA, we discovered that downregulation of STIM2, but not STIM1, significantly improved neuronal survival in both an in vitro and in vivo model of TBI, decreasing neuronal apoptosis, and preserving neurological function. This neuroprotection was associated with alleviating TBI-induced calcium overload and preserving mitochondrial function. Additionally, downregulation of STIM2 not only inhibited Ca(2+) release from the endoplasmic reticulum (ER), but also reduced SOCE-mediated Ca(2+) influx, decreased mitochondrial Ca(2+), restored mitochondrial morphology and improved mitochondrial function, including MMP maintenance, ROS production and ATP synthesis. These results indicate that inhibition of STIM2 can protect neurons from TBI by inhibiting calcium overload and preserving mitochondrial function. This suggests that STIM2 might be an effective interventional target for TBI.
Collapse
Affiliation(s)
- Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Cheng Peng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Hao Hui
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Kai Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ning Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shu-Hui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yue-Fan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Tao Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|