1
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. Neurobiol Dis 2024; 203:106732. [PMID: 39542221 DOI: 10.1016/j.nbd.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed in the Drosophila melanogaster nervous system with varying polyQ lengths, non-pathogenic-htt (NP-htt) and pathogenic-htt (P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 h post hatching and significant aggregates form in the segmental nerve branches at 48 h post hatching. Organelle trafficking up- and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
Affiliation(s)
- Tadros A Hana
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Veronika G Mousa
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Alice Lin
- Brown University, Neuroscience Graduate Program, Warren Alpert Medical School, Providence, RI 02906, United States of America
| | - Rawan N Haj-Hussein
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Andrew H Michael
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Madona N Aziz
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sevinch U Kamaridinova
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sabita Basnet
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Kiel G Ormerod
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America.
| |
Collapse
|
2
|
Lee JY, Gala DS, Kiourlappou M, Olivares-Abril J, Joha J, Titlow JS, Teodoro RO, Davis I. Murine glial protrusion transcripts predict localized Drosophila glial mRNAs involved in plasticity. J Cell Biol 2024; 223:e202306152. [PMID: 39037431 PMCID: PMC11262410 DOI: 10.1083/jcb.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dalia S. Gala
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Rita O. Teodoro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610525. [PMID: 39257834 PMCID: PMC11383668 DOI: 10.1101/2024.08.30.610525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed with varying polyQ lengths, non-pathogenic-htt (Q15, NP-htt) and pathogenic-htt (Q138, P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 hours post hatching and significant aggregates form in the segmental nerve branches at 48 hours post hatching. Organelle trafficking up-and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
|
4
|
Tsentsevitsky AN, Sibgatullina GV, Odoshivkina YG, Khuzakhmetova VF, Tokmakova AR, Ponomareva AA, Salnikov VV, Zakirjanova GF, Petrov AM, Bukharaeva EA. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging. Int J Mol Sci 2024; 25:8959. [PMID: 39201644 PMCID: PMC11354816 DOI: 10.3390/ijms25168959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Age-related impairment of the diaphragm causes respiratory complications. Neuromuscular junction (NMJ) dysfunction can be one of the triggering events in diaphragm weaknesses in old age. Prominent structural and functional alterations in diaphragm NMJs were described in elderly rodents, but NMJ changes in middle age remain unclear. Here, we compared diaphragm muscles from young adult (3 months) and middle-aged (12 months) BALB/c mice. Microelectrode recordings, immunofluorescent staining, electron microscopy, myography, and whole-body plethysmography were used. We revealed presynaptic (i) and postsynaptic (ii) changes. The former (i) included an increase in both action potential propagation velocity and neurotransmitter release evoked by low-, moderate-, and high-frequency activity but a decrease in immunoexpression of synapsin 1 and synaptic vesicle clustering. The latter (ii) consisted of a decrease in currents via nicotinic acetylcholine receptors and the area of their distribution. These NMJ changes correlated with increased contractile responses to moderate- to high-frequency nerve activation. Additionally, we found alterations in the pattern of respiration (an increase in peak inspiratory flow and a tendency of elevation of the tidal volume), which imply increased diaphragm activity in middle-aged mice. We conclude that enhancement of neuromuscular communication (due to presynaptic mechanism) accompanied by improved contractile responses occurs in the diaphragm in early aging.
Collapse
Affiliation(s)
- Andrei N. Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Guzel V. Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Yulia G. Odoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| | - Venera F. Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Anna R. Tokmakova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Anastasia A. Ponomareva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Guzalia F. Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| |
Collapse
|
5
|
Kim YD, Park HG, Song S, Kim J, Lee BJ, Broadie K, Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J Cell Biol 2024; 223:e202309095. [PMID: 38748250 PMCID: PMC11096849 DOI: 10.1083/jcb.202309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.
Collapse
Affiliation(s)
- Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Seunghwan Song
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Joohyung Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Byoung Ju Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kendal Broadie
- Departments of Cell and Developmental Biology, Pharmacology, and Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, USA
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Chang YC, Gao Y, Lee JY, Peng YJ, Langen J, Chang KT. Identification of secretory autophagy as a mechanism modulating activity-induced synaptic remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315958121. [PMID: 38588427 PMCID: PMC11032469 DOI: 10.1073/pnas.2315958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.
Collapse
Affiliation(s)
- Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yuan Gao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
7
|
Dominicci-Cotto C, Vazquez M, Marie B. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Front Synaptic Neurosci 2024; 16:1322771. [PMID: 38633293 PMCID: PMC11021733 DOI: 10.3389/fnsyn.2024.1322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.
Collapse
Affiliation(s)
- Carihann Dominicci-Cotto
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mariam Vazquez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| | - Bruno Marie
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
8
|
Shaheen A, Richter Gorey CL, Sghaier A, Dason JS. Cholesterol is required for activity-dependent synaptic growth. J Cell Sci 2023; 136:jcs261563. [PMID: 37902091 DOI: 10.1242/jcs.261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Changes in cholesterol content of neuronal membranes occur during development and brain aging. Little is known about whether synaptic activity regulates cholesterol levels in neuronal membranes and whether these changes affect neuronal development and function. We generated transgenic flies that express the cholesterol-binding D4H domain of perfringolysin O toxin and found increased levels of cholesterol in presynaptic terminals of Drosophila larval neuromuscular junctions following increased synaptic activity. Reduced cholesterol impaired synaptic growth and largely prevented activity-dependent synaptic growth. Presynaptic knockdown of adenylyl cyclase phenocopied the impaired synaptic growth caused by reducing cholesterol. Furthermore, the effects of knocking down adenylyl cyclase and reducing cholesterol were not additive, suggesting that they function in the same pathway. Increasing cAMP levels using a dunce mutant with reduced phosphodiesterase activity failed to rescue this impaired synaptic growth, suggesting that cholesterol functions downstream of cAMP. We used a protein kinase A (PKA) sensor to show that reducing cholesterol levels reduced presynaptic PKA activity. Collectively, our results demonstrate that enhanced synaptic activity increased cholesterol levels in presynaptic terminals and that these changes likely activate the cAMP-PKA pathway during activity-dependent growth.
Collapse
Affiliation(s)
- Amber Shaheen
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Claire L Richter Gorey
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Adam Sghaier
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Jeffrey S Dason
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
9
|
Chang YC, Gao Y, Lee JY, Langen J, Chang KT. Identification of secretory autophagy as a novel mechanism modulating activity-induced synaptic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.560931. [PMID: 38328055 PMCID: PMC10849665 DOI: 10.1101/2023.10.06.560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity from synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We further demonstrate that neuronal activity stimulates autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a novel trans-synaptic signaling mechanism modulating structural plasticity.
Collapse
|
10
|
Lewis SA, Bakhtiari S, Forstrom J, Bayat A, Bilan F, Le Guyader G, Alkhunaizi E, Vernon H, Padilla-Lopez SR, Kruer MC. AGAP1-associated endolysosomal trafficking abnormalities link gene-environment interactions in neurodevelopmental disorders. Dis Model Mech 2023; 16:dmm049838. [PMID: 37470098 PMCID: PMC10548112 DOI: 10.1242/dmm.049838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Jacob Forstrom
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers, 86000 Poitiers, France
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, 86000 Poitiers, France
| | - Gwenaël Le Guyader
- Service de Génétique, CHU de Poitiers, 86000 Poitiers, France
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, 86000 Poitiers, France
| | - Ebba Alkhunaizi
- Department of Medical Genetics, North York General Hospital, Toronto, ON M3J0K2, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M3J0K2, Canada
| | - Hilary Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sergio R. Padilla-Lopez
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Fernandes AR, Martins JP, Gomes ER, Mendes CS, Teodoro RO. Drosophila motor neuron boutons remodel through membrane blebbing coupled with muscle contraction. Nat Commun 2023; 14:3352. [PMID: 37291089 PMCID: PMC10250368 DOI: 10.1038/s41467-023-38421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Wired neurons form new presynaptic boutons in response to increased synaptic activity, however the mechanism(s) by which this occurs remains uncertain. Drosophila motor neurons (MNs) have clearly discernible boutons that display robust structural plasticity, being therefore an ideal system in which to study activity-dependent bouton genesis. Here, we show that in response to depolarization and in resting conditions, MNs form new boutons by membrane blebbing, a pressure-driven mechanism that occurs in 3-D cell migration, but to our knowledge not previously described to occur in neurons. Accordingly, F-actin is decreased in boutons during outgrowth, and non-muscle myosin-II is dynamically recruited to newly formed boutons. Furthermore, muscle contraction plays a mechanical role, which we hypothesize promotes bouton addition by increasing MN confinement. Overall, we identified a mechanism by which established circuits form new boutons allowing their structural expansion and plasticity, using trans-synaptic physical forces as the main driving force.
Collapse
Affiliation(s)
- Andreia R Fernandes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João P Martins
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - César S Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Lewis SA, Bakhtiari S, Forstrom J, Bayat A, Bilan F, Le Guyader G, Alkhunaizi E, Vernon H, Padilla-Lopez SR, Kruer MC. AGAP1-associated endolysosomal trafficking abnormalities link gene-environment interactions in a neurodevelopmental disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526497. [PMID: 36778426 PMCID: PMC9915612 DOI: 10.1101/2023.01.31.526497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.
Collapse
Affiliation(s)
- Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Jacob Forstrom
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Allan Bayat
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Frédéric Bilan
- Service de Génétique, CHU de Poitiers
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, Poitiers, France
| | - Gwenaël Le Guyader
- Service de Génétique, CHU de Poitiers
- Laboratoire de Neurosciences Experimentales et Cliniques, INSERM U1084, Poitiers, France
| | - Ebba Alkhunaizi
- Department of Medical Genetics, North York General Hospital, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Hilary Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Sergio R. Padilla-Lopez
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ USA
- Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, University of Arizona College of Medicine Phoenix, AZ USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
13
|
Qu X, Wang S, Lin G, Li M, Shen J, Wang D. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Aphis gossypii. Int J Mol Sci 2022; 23:ijms23169388. [PMID: 36012653 PMCID: PMC9408958 DOI: 10.3390/ijms23169388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.
Collapse
|
14
|
Kim YJ. Activity-induced synaptic structural modifications by Akt. Biochem Biophys Res Commun 2022; 621:94-100. [PMID: 35820284 DOI: 10.1016/j.bbrc.2022.06.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
The activity-dependent regulation of synaptic structures plays a key role in synaptic development and plasticity; however, the signaling mechanisms involved remain largely unknown. The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in a wide range of physiological functions. We focused on the importance of Akt in rapid synaptic structural changes after stimulation at the Drosophila neuromuscular junction, a well-studied model synapse. Compared with wild-type larvae, akt mutants showed significantly reduced muscle size and an increased number of boutons per area, suggesting that Akt is required for proper pre- and postsynaptic growth. In addition, the level of cysteine string protein (CSP) was significantly increased, and its distribution was different in akt mutants. After high K+ single stimulation, the CSP level of akt mutant NMJs increased dramatically compared with that of wild-type NMJs. Interestingly, ghost boutons without postsynaptic specialization were found in akt mutant NMJs, and the number of these boutons was significantly increased by patterned stimulation. In contrast, the postsynaptic change in the subsynaptic reticulum (SSR) in the akt mutant occurred independent of stimulation. These results suggest that Akt functions in both pre- and postsynaptic growth and differentiation, and in particular, presynaptic action occurs in an activity-dependent manner.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Ueda A, O'Harrow TCDG, Xing X, Ehaideb S, Manak JR, Wu CF. Abnormal larval neuromuscular junction morphology and physiology in Drosophila prickle isoform mutants with known axonal transport defects and adult seizure behavior. J Neurogenet 2022; 36:65-73. [PMID: 35775303 DOI: 10.1080/01677063.2022.2093353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous studies have demonstrated the striking mutational effects of the Drosophila planar cell polarity gene prickle (pk) on larval motor axon microtubule-mediated vesicular transport and on adult epileptic behavior associated with neuronal circuit hyperexcitability. Mutant alleles of the prickle-prickle (pkpk) and prickle-spiny-legs (pksple) isoforms (hereafter referred to as pk and sple alleles, respectively) exhibit differential phenotypes. While both pk and sple affect larval motor axon transport, only sple confers motor circuit and behavior hyperexcitability. However, mutations in the two isoforms apparently counteract to ameliorate adult motor circuit and behavioral hyperexcitability in heteroallelic pkpk/pksple flies. We have further investigated the consequences of altered axonal transport in the development and function of the larval neuromuscular junction (NMJ). We uncovered robust dominant phenotypes in both pk and sple alleles, including synaptic terminal overgrowth (as revealed by anti-HRP and -Dlg immunostaining) and poor vesicle release synchronicity (as indicated by synaptic bouton focal recording). However, we observed recessive alteration of synaptic transmission only in pk/pk larvae, i.e. increased excitatory junctional potential (EJP) amplitude in pk/pk but not in pk/+ or sple/sple. Interestingly, for motor terminal excitability sustained by presynaptic Ca2+ channels, both pk and sple exerted strong effects to produce prolonged depolarization. Notably, only sple acted dominantly whereas pk/+ appeared normal, but was able to suppress the sple phenotypes, i.e. pk/sple appeared normal. Our observations contrast the differential roles of the pk and sple isoforms and highlight their distinct, variable phenotypic expression in the various structural and functional aspects of the larval NMJ.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | | | - Xiaomin Xing
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Salleh Ehaideb
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA.,Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Neuroscience Ph.D. Program, University of Iowa, Iowa City, IA, USA
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, IA, USA.,Genetics Ph.D. Program, University of Iowa, Iowa City, IA, USA.,Neuroscience Ph.D. Program, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
17
|
Maldonado-Díaz C, Vazquez M, Marie B. A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ. PLoS One 2021; 16:e0260553. [PMID: 34847197 PMCID: PMC8631638 DOI: 10.1371/journal.pone.0260553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022] Open
Abstract
The Drosophila NMJ is a system of choice for investigating the mechanisms underlying the structural and functional modifications evoked during activity-dependent synaptic plasticity. Because fly genetics allows considerable versatility, many strategies can be employed to elicit this activity. Here, we compare three different stimulation methods for eliciting activity-dependent changes in structure and function at the Drosophila NMJ. We find that the method using patterned stimulations driven by a K+-rich solution creates robust structural modifications but reduces muscle viability, as assessed by resting potential and membrane resistance. We argue that, using this method, electrophysiological studies that consider the frequency of events, rather than their amplitude, are the only reliable studies. We contrast these results with the expression of CsChrimson channels and red-light stimulation at the NMJ, as well as with the expression of TRPA channels and temperature stimulation. With both these methods we observed reliable modifications of synaptic structures and consistent changes in electrophysiological properties. Indeed, we observed a rapid appearance of immature boutons that lack postsynaptic differentiation, and a potentiation of spontaneous neurotransmission frequency. Surprisingly, a patterned application of temperature changes alone is sufficient to provoke both structural and functional plasticity. In this context, temperature-dependent TRPA channel activation induces additional structural plasticity but no further increase in the frequency of spontaneous neurotransmission, suggesting an uncoupling of these mechanisms.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Mariam Vazquez
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Bruno Marie
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
18
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
19
|
Li X, Fetter R, Schwabe T, Jung C, Liu L, Steller H, Gaul U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021; 10:68275. [PMID: 34382936 PMCID: PMC8390003 DOI: 10.7554/elife.68275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.
Collapse
Affiliation(s)
- Xiaoling Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| | - Richard Fetter
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Tina Schwabe
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany.,Rockefeller University, New York, United States
| |
Collapse
|
20
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Lnenicka GA. Crayfish and Drosophila NMJs. Neurosci Lett 2020; 732:135110. [PMID: 32497734 DOI: 10.1016/j.neulet.2020.135110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
Many synaptic studies have utilized the experimental advantages of the Arthropod NMJ and the most prominent preparations have been the crayfish and Drosophila larval NMJs. Early cellular studies in the crayfish established the framework for later molecular studies in Drosophila. The two neuromuscular systems are compared including the advantages presented by each preparation for cellular analysis. Beginning with the early work in the crayfish, research developments are followed in the areas of structure/function relationships, activity-dependent synaptic plasticity/development and synaptic homeostasis. A reoccurring theme in these studies is the regulation of active zone structure and function. Early studies in the crayfish focused on the role of active zone number/size and possible functional heterogeneity in regulating transmitter release. Recent studies in Drosophila have begun to characterize this heterogeneity using new approaches that combine imaging of transmitter release, Ca2+ influx and molecular composition for individual active zones.
Collapse
Affiliation(s)
- Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222, United States.
| |
Collapse
|
23
|
Chou VT, Johnson S, Long J, Vounatsos M, Van Vactor D. dTACC restricts bouton addition and regulates microtubule organization at the Drosophila neuromuscular junction. Cytoskeleton (Hoboken) 2020; 77:4-15. [PMID: 31702858 PMCID: PMC7027520 DOI: 10.1002/cm.21578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.
Collapse
Affiliation(s)
- Vivian T. Chou
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Seth Johnson
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Jennifer Long
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Maxime Vounatsos
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - David Van Vactor
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
24
|
Ojelade SA, Lee TV, Giagtzoglou N, Yu L, Ugur B, Li Y, Duraine L, Zuo Z, Petyuk V, De Jager PL, Bennett DA, Arenkiel BR, Bellen HJ, Shulman JM. cindr, the Drosophila Homolog of the CD2AP Alzheimer's Disease Risk Gene, Is Required for Synaptic Transmission and Proteostasis. Cell Rep 2019; 28:1799-1813.e5. [PMID: 31412248 PMCID: PMC6703184 DOI: 10.1016/j.celrep.2019.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The Alzheimer's disease (AD) susceptibility gene, CD2-associated protein (CD2AP), encodes an actin binding adaptor protein, but its function in the nervous system is largely unknown. Loss of the Drosophila ortholog cindr enhances neurotoxicity of human Tau, which forms neurofibrillary tangle pathology in AD. We show that Cindr is expressed in neurons and present at synaptic terminals. cindr mutants show impairments in synapse maturation and both synaptic vesicle recycling and release. Cindr associates and genetically interacts with 14-3-3ζ, regulates the ubiquitin-proteasome system, and affects turnover of Synapsin and the plasma membrane calcium ATPase (PMCA). Loss of cindr elevates PMCA levels and reduces cytosolic calcium. Studies of Cd2ap null mice support a conserved role in synaptic proteostasis, and CD2AP protein levels are inversely related to Synapsin abundance in human postmortem brains. Our results reveal CD2AP neuronal requirements with relevance to AD susceptibility, including for proteostasis, calcium handling, and synaptic structure and function.
Collapse
Affiliation(s)
- Shamsideen A Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nikolaos Giagtzoglou
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lita Duraine
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin R Arenkiel
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in Drosophila. eNeuro 2019; 6:ENEURO.0060-19.2019. [PMID: 31387877 PMCID: PMC6709223 DOI: 10.1523/eneuro.0060-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
Synapse formation can be promoted by intense activity. At the Drosophila larval neuromuscular junction (NMJ), new synaptic boutons can grow acutely in response to patterned stimulation. We combined confocal imaging with electron microscopy and tomography to investigate the initial stages of growth and differentiation of new presynaptic boutons at the Drosophila NMJ. We found that the new boutons can form rapidly in intact larva in response to intense crawling activity, and we observed two different patterns of bouton formation and maturation. The first pathway involves the growth of filopodia followed by a formation of boutons that are initially devoid of synaptic vesicles (SVs) but filled with filamentous matrix. The second pathway involves rapid budding of synaptic boutons packed with SVs, and these more mature boutons are sometimes capable of exocytosis/endocytosis. We demonstrated that intense activity predominantly promotes the second pathway, i.e., budding of more mature boutons filled with SVs. We also showed that this pathway depends on synapsin (Syn), a neuronal protein which reversibly associates with SVs and mediates their clustering via a protein kinase A (PKA)-dependent mechanism. Finally, we took advantage of the temperature-sensitive mutant sei to demonstrate that seizure activity can promote very rapid budding of new boutons filled with SVs, and this process occurs at scale of minutes. Altogether, these results demonstrate that intense activity acutely and selectively promotes rapid budding of new relatively mature presynaptic boutons filled with SVs, and that this process is regulated via a PKA/Syn-dependent pathway.
Collapse
|
26
|
Matos H, Quiles R, Andrade R, Bykhovskaia M. Growth and excitability at synapsin II deficient hippocampal neurons. Mol Cell Neurosci 2019; 96:25-34. [PMID: 30858140 DOI: 10.1016/j.mcn.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.
Collapse
Affiliation(s)
- Heidi Matos
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Raymond Quiles
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
27
|
Doktór B, Damulewicz M, Pyza E. Overexpression of Mitochondrial Ligases Reverses Rotenone-Induced Effects in a Drosophila Model of Parkinson's Disease. Front Neurosci 2019; 13:94. [PMID: 30837828 PMCID: PMC6382686 DOI: 10.3389/fnins.2019.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mul1 and Park are two major mitochondrial ligases responsible for mitophagy. Damaged mitochondria that cannot be removed are a source of an increased level of free radicals, which in turn can destructively affect other cell organelles as well as entire cells. One of the toxins that damages mitochondria is rotenone, a neurotoxin that after exposure displays symptoms typical of Parkinson’s disease. In the present study, we showed that overexpressing genes encoding mitochondrial ligases protects neurons during treatment with rotenone. Drosophila strains with overexpressed mul1 or park show a significantly reduced degeneration of dopaminergic neurons, as well as normal motor activity during exposure to rotenone. In the nervous system, rotenone affected synaptic proteins, including Synapsin, Synaptotagmin and Disk Large1, as well as the structure of synaptic vesicles, while high levels of Mul1 or Park suppressed degenerative events at synapses. We concluded that increased levels of mitochondrial ligases are neuroprotective and could be considered in developing new therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Li C, Bademci G, Subasioglu A, Diaz-Horta O, Zhu Y, Liu J, Mitchell TG, Abad C, Seyhan S, Duman D, Cengiz FB, Tokgoz-Yilmaz S, Blanton SH, Farooq A, Walz K, Zhai RG, Tekin M. Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc Natl Acad Sci U S A 2019; 116:1347-1352. [PMID: 30610177 PMCID: PMC6347722 DOI: 10.1073/pnas.1810951116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a GRAP variant (c.311A>T; p.Gln104Leu) cosegregating with autosomal recessive nonsyndromic deafness in two unrelated families. GRAP encodes a member of the highly conserved growth factor receptor-bound protein 2 (GRB2)/Sem-5/drk family of proteins, which are involved in Ras signaling; however, the function of the growth factor receptor-bound protein 2 (GRB2)-related adaptor protein (GRAP) in the auditory system is not known. Here, we show that, in mouse, Grap is expressed in the inner ear and the protein localizes to the neuronal fibers innervating cochlear and utricular auditory hair cells. Downstream of receptor kinase (drk), the Drosophila homolog of human GRAP, is expressed in Johnston's organ (JO), the fly hearing organ, and the loss of drk in JO causes scolopidium abnormalities. drk mutant flies present deficits in negative geotaxis behavior, which can be suppressed by human wild-type but not mutant GRAP. Furthermore, drk specifically colocalizes with synapsin at synapses, suggesting a potential role of such adaptor proteins in regulating actin cytoskeleton dynamics in the nervous system. Our findings establish a causative link between GRAP mutation and nonsyndromic deafness and suggest a function of GRAP/drk in hearing.
Collapse
Affiliation(s)
- Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Asli Subasioglu
- Department of Medical Genetics, Izmir Ataturk Education and Research Hospital, 35360 Izmir, Turkey
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, Shandong, China
| | - Timothy Gavin Mitchell
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, 06260 Ankara, Turkey
| | - Filiz Basak Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Suna Tokgoz-Yilmaz
- Department of Audiology, Ankara University School of Medicine, 06260 Ankara, Turkey
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Amjad Farooq
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136;
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, Shandong, China
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136;
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
29
|
He T, Nitabach MN, Lnenicka GA. Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ. J Neurogenet 2018; 32:209-220. [PMID: 30175644 DOI: 10.1080/01677063.2018.1498496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Presynaptic Ca2+ appears to play multiple roles in synaptic development and physiology. We examined the effect of buffering presynaptic Ca2+ by expressing parvalbumin (PV) in Drosophila neurons, which do not normally express PV. The studies were performed on the identified Ib terminal that innervates muscle fiber 5. The volume-averaged, residual Ca2+ resulting from single action potentials (APs) and AP trains was measured using the fluorescent Ca2+ indicator, OGB-1. PV reduced the amplitude and decay time constant (τ) for single-AP Ca2+ transients. For AP trains, there was a reduction in the rate of rise and decay of [Ca2+]i but the plateau [Ca2+]i was not affected. Electrophysiological recordings from muscle fiber 5 showed a reduction in paired-pulse facilitation, particularly the F1 component; this was likely due to the reduction in residual Ca2+. These synapses also showed reduced synaptic enhancement during AP trains, presumably due to less buildup of synaptic facilitation. The transmitter release for single APs was increased for the PV-expressing terminals and this may have been a homeostatic response to the decrease in facilitation. Confocal microscopy was used to examine the structure of the motor terminals and PV expression resulted in smaller motor terminals with fewer synaptic boutons and active zones. This result supports earlier proposals that increased AP activity promotes motor terminal growth through increases in presynaptic [Ca2+]i.
Collapse
Affiliation(s)
- Tao He
- a Division of Pulmonary and Critical Care Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Michael N Nitabach
- b Department of Cellular and Molecular Physiology , Yale School of Medicine , New Haven , CT , USA
| | - Gregory A Lnenicka
- c Department of Biological Sciences , University at Albany , Albany , NY , USA
| |
Collapse
|
30
|
Dear ML, Shilts J, Broadie K. Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci Signal 2017; 10:eaan3181. [PMID: 29114039 PMCID: PMC5743058 DOI: 10.1126/scisignal.aan3181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase (MMP) functions modulate synapse formation and activity-dependent plasticity. Aberrant MMP activity is implicated in fragile X syndrome (FXS), a disease caused by the loss of the RNA-binding protein FMRP and characterized by neurological dysfunction and intellectual disability. Gene expression studies in Drosophila suggest that Mmps cooperate with the heparan sulfate proteoglycan (HSPG) glypican co-receptor Dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling and that synaptogenic defects in the fly model of FXS are alleviated by either inhibition of Mmp or genetic reduction of Dlp. We used the Drosophila neuromuscular junction (NMJ) glutamatergic synapse to test activity-dependent Dlp and Mmp intersections in the context of FXS. We found that rapid, activity-dependent synaptic bouton formation depended on secreted Mmp1. Acute neuronal stimulation reduced the abundance of Mmp2 but increased that of both Mmp1 and Dlp, as well as enhanced the colocalization of Dlp and Mmp1 at the synapse. Dlp function promoted Mmp1 abundance, localization, and proteolytic activity around synapses. Dlp glycosaminoglycan (GAG) chains mediated this functional interaction with Mmp1. In the FXS fly model, activity-dependent increases in Mmp1 abundance and activity were lost but were restored by reducing the amount of synaptic Dlp. The data suggest that neuronal activity-induced, HSPG-dependent Mmp regulation drives activity-dependent synaptogenesis and that this is impaired in FXS. Thus, exploring this mechanism further may reveal therapeutic targets that have the potential to restore synaptogenesis in FXS patients.
Collapse
Affiliation(s)
- Mary L Dear
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jarrod Shilts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical School, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical School, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Wu CH, Giampetruzzi A, Tran H, Fallini C, Gao FB, Landers JE. A Drosophila model of ALS reveals a partial loss of function of causative human PFN1 mutants. Hum Mol Genet 2017; 26:2146-2155. [PMID: 28379367 DOI: 10.1093/hmg/ddx112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
Mutations in the profilin 1 (PFN1) gene are causative for familial amyotrophic lateral sclerosis (fALS). However, it is still not fully understood how these mutations lead to neurodegeneration. To address this question, we generated a novel Drosophila model expressing human wild-type and ALS-causative PFN1 mutants. We show that at larval neuromuscular junctions (NMJ), motor neuron expression of wild-type human PFN1 increases the number of ghost boutons, active zone density, F-actin content, and the formation of filopodia. In contrast, the expression of ALS-causative human PFN1 mutants causes a less pronounced phenotype, suggesting a loss of function of these mutants in promoting NMJ remodeling. Importantly, expression of human PFN1 in motor neurons results in progressive locomotion defects and shorter lifespan in adult flies, while ALS-causative PFN1 mutants display a less toxic effect. In summary, our study provides evidence that PFN1 is important in regulating NMJ morphology and influences survival and locomotion in Drosophila. Furthermore, our results suggest ALS-causative human PFN1 mutants display a partial loss of function relative to wild-type hPFN1 that may contribute to human disease pathogenesis.
Collapse
Affiliation(s)
- Chi-Hong Wu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anthony Giampetruzzi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Helene Tran
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
32
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
33
|
Shilts J, Broadie K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J Cell Sci 2017; 130:2344-2358. [PMID: 28576972 DOI: 10.1242/jcs.200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Synaptogenesis is coordinated by trans-synaptic signals that traverse the specialized synaptomatrix between presynaptic and postsynaptic cells. Matrix metalloproteinase (Mmp) activity sculpts this environment, balanced by secreted tissue inhibitors of Mmp (Timp). Here, we use the simplified Drosophila melanogaster matrix metalloproteome to test the consequences of eliminating all Timp regulatory control of Mmp activity at the neuromuscular junction (NMJ). Using in situ zymography, we find Timp limits Mmp activity at the NMJ terminal and shapes extracellular proteolytic dynamics surrounding individual synaptic boutons. In newly generated timp null mutants, NMJs exhibit architectural overelaboration with supernumerary synaptic boutons. With cell-targeted RNAi and rescue studies, we find that postsynaptic Timp limits presynaptic architecture. Functionally, timp null mutants exhibit compromised synaptic vesicle cycling, with activity that is lower in amplitude and fidelity. NMJ defects manifest in impaired locomotor function. Mechanistically, we find that Timp limits BMP trans-synaptic signaling and the downstream synapse-to-nucleus signal transduction. Pharmacologically restoring Mmp inhibition in timp null mutants corrects bone morphogenetic protein (BMP) signaling and synaptic properties. Genetically restoring BMP signaling in timp null mutants corrects NMJ structure and motor function. Thus, Timp inhibition of Mmp proteolytic activity restricts BMP trans-synaptic signaling to coordinate synaptogenesis.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
34
|
San Martin A, Rela L, Gelb B, Pagani MR. The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes. J Neurosci 2017; 37:4992-5007. [PMID: 28432141 PMCID: PMC5426186 DOI: 10.1523/jneurosci.2607-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/16/2017] [Accepted: 04/08/2017] [Indexed: 11/21/2022] Open
Abstract
In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.SIGNIFICANCE STATEMENT Long-term memory (LTM) induced by repeated trials spaced over time is known as the spacing effect, a common property in the animal kingdom. Altered mechanisms in the spacing effect have been found in animal models of disorders with intellectual disability, such as Noonan syndrome. Although LTM is sustained by structural synaptic plasticity, how synapses integrate spaced stimuli and decode them into specific plastic changes remains elusive. Here, we show that the spacing effect is a phenomenon detected at the synaptic level, which determines the properties of the response in structural plasticity, including precision of such response. Whereas suppressing or enhancing Ras/mitogen-activated protein kinase signaling changed how synapses decode a pattern of stimuli, a disease-related Ras allele abolished the spacing effect for plastic changes.
Collapse
Affiliation(s)
- Alvaro San Martin
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| | - Lorena Rela
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| | - Bruce Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mario Rafael Pagani
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| |
Collapse
|
35
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
36
|
Activity-Induced Synaptic Structural Modifications by an Activator of Integrin Signaling at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:3246-3263. [PMID: 28219985 DOI: 10.1523/jneurosci.3128-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic structural modification is crucial for neural development and synaptic plasticity, but the molecular players involved in this process are not well defined. Here, we report that a protein named Shriveled (Shv) regulates synaptic growth and activity-dependent synaptic remodeling at the Drosophila neuromuscular junction. Depletion of Shv causes synaptic overgrowth and an accumulation of immature boutons. We find that Shv physically and genetically interacts with βPS integrin. Furthermore, Shv is secreted during intense, but not mild, neuronal activity to acutely activate integrin signaling, induce synaptic bouton enlargement, and increase postsynaptic glutamate receptor abundance. Consequently, loss of Shv prevents activity-induced synapse maturation and abolishes post-tetanic potentiation, a form of synaptic plasticity. Our data identify Shv as a novel trans-synaptic signal secreted upon intense neuronal activity to promote synapse remodeling through integrin receptor signaling.SIGNIFICANCE STATEMENT The ability of neurons to rapidly modify synaptic structure in response to neuronal activity, a process called activity-induced structural remodeling, is crucial for neuronal development and complex brain functions. The molecular players that are important for this fundamental biological process are not well understood. Here we show that the Shriveled (Shv) protein is required during development to maintain normal synaptic growth. We further demonstrate that Shv is selectively released during intense neuronal activity, but not mild neuronal activity, to acutely activate integrin signaling and trigger structural modifications at the Drosophila neuromuscular junction. This work identifies Shv as a key modulator of activity-induced structural remodeling and suggests that neurons use distinct molecular cues to differentially modulate synaptic growth and remodeling to meet synaptic demand.
Collapse
|
37
|
Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull 2016; 129:43-49. [PMID: 27720814 DOI: 10.1016/j.brainresbull.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
In this review I discuss recent live imaging studies that demonstrate that synapses, and in particular inhibitory synapses, are highly dynamic structures. The ongoing changes of presynaptic boutons within axons emphasize the stochastic aspect of inhibitory synapse formation and paint a picture of a dynamic trial-and-error process. Furthermore, I discuss recent and previous insights in the molecular and mechanistic pathways that underlie synapse formation, with a specific focus on the formation of inhibitory presynaptic boutons.
Collapse
Affiliation(s)
- Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
38
|
Nesler KR, Starke EL, Boin NG, Ritz M, Barbee SA. Presynaptic CamKII regulates activity-dependent axon terminal growth. Mol Cell Neurosci 2016; 76:33-41. [PMID: 27567686 DOI: 10.1016/j.mcn.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Spaced synaptic depolarization induces rapid axon terminal growth and the formation of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). Here, we identify a novel presynaptic function for the Calcium/Calmodulin-dependent Kinase II (CamKII) protein in the control of activity-dependent synaptic growth. Consistent with this function, we find that both total and phosphorylated CamKII (p-CamKII) are enriched in axon terminals. Interestingly, p-CamKII appears to be enriched at the presynaptic axon terminal membrane. Moreover, levels of total CamKII protein within presynaptic boutons globally increase within one hour following stimulation. These effects correlate with the activity-dependent formation of new presynaptic boutons. The increase in presynaptic CamKII levels is inhibited by treatment with cyclohexamide suggesting a protein-synthesis dependent mechanism. We have previously found that acute spaced stimulation rapidly downregulates levels of neuronal microRNAs (miRNAs) that are required for the control of activity-dependent axon terminal growth at this synapse. The rapid activity-dependent accumulation of CamKII protein within axon terminals is inhibited by overexpression of activity-regulated miR-289 in motor neurons. Experiments in vitro using a CamKII translational reporter show that miR-289 can directly repress the translation of CamKII via a sequence motif found within the CamKII 3' untranslated region (UTR). Collectively, our studies support the idea that presynaptic CamKII acts downstream of synaptic stimulation and the miRNA pathway to control rapid activity-dependent changes in synapse structure.
Collapse
Affiliation(s)
- Katherine R Nesler
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Emily L Starke
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Nathan G Boin
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Matthew Ritz
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - Scott A Barbee
- Department of Biological Sciences, Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA; Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA.
| |
Collapse
|
39
|
Marte A, Messa M, Benfenati F, Onofri F. Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth. Mol Neurobiol 2016; 54:484-494. [PMID: 26742525 DOI: 10.1007/s12035-015-9659-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023]
Abstract
Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.
Collapse
Affiliation(s)
- Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Mirko Messa
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, 06519, New Haven, CT, USA
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy.
| |
Collapse
|
40
|
Kleber J, Chen YC, Michels B, Saumweber T, Schleyer M, Kähne T, Buchner E, Gerber B. Synapsin is required to "boost" memory strength for highly salient events. ACTA ACUST UNITED AC 2015; 23:9-20. [PMID: 26670182 PMCID: PMC4749839 DOI: 10.1101/lm.039685.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor–sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn97) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience—in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.
Collapse
Affiliation(s)
- Jörg Kleber
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | - Yi-Chun Chen
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | - Birgit Michels
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany
| | - Thilo Kähne
- Otto von Guericke Universität Magdeburg, Institut für Experimentelle Innere Medizin, 39120 Magdeburg, Germany
| | - Erich Buchner
- Institut für Klinische Neurobiologie, 97078 Würzburg, Germany
| | - Bertram Gerber
- Leibniz Institut für Neurobiologie (LIN), Abteilung Genetik von Lernen und Gedächtnis, 39118 Magdeburg, Germany Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany Otto von Guericke Universität Magdeburg, Institut für Biologie, 39106 Magdeburg, Germany
| |
Collapse
|
41
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
42
|
Nikolova LS, Metzstein MM. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment. Development 2015; 142:3964-73. [PMID: 26428009 DOI: 10.1242/dev.127902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.
Collapse
Affiliation(s)
- Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
43
|
Abstract
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences.
Collapse
|