1
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Aguado C, Luján R, Wickman K. Chronic ethanol exposure in mice evokes pre- and postsynaptic deficits in GABAergic transmission in ventral tegmental area GABA neurons. Br J Pharmacol 2024. [PMID: 39358985 DOI: 10.1111/bph.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE GABAergic neurons in mouse ventral tegmental area (VTA) exhibit elevated activity during withdrawal following chronic ethanol exposure. While increased glutamatergic input and decreased GABAA receptor sensitivity have been implicated, the impact of inhibitory signaling in VTA GABA neurons has not been fully addressed. EXPERIMENTAL APPROACH We used electrophysiological and ultrastructural approaches to assess the impact of chronic intermittent ethanol vapour exposure in mice on GABAergic transmission in VTA GABA neurons during withdrawal. We used CRISPR/Cas9 ablation to mimic a somatodendritic adaptation involving the GABAB receptor (GABABR) in ethanol-naïve mice to investigate its impact on anxiety-related behaviour. KEY RESULTS The frequency of spontaneous inhibitory postsynaptic currents was reduced in VTA GABA neurons following chronic ethanol treatment and this was reversed by GABABR inhibition, suggesting chronic ethanol strengthens the GABABR-dependent suppression of GABAergic input to VTA GABA neurons. Similarly, paired-pulse depression of GABAA receptor-dependent responses evoked by optogenetic stimulation of nucleus accumbens inputs from ethanol-treated mice was reversed by GABABR inhibition. Somatodendritic currents evoked in VTA GABA neurons by GABABR activation were reduced following ethanol exposure, attributable to the suppression of GIRK (Kir3) channel activity. Mimicking this adaptation enhanced anxiety-related behaviour in ethanol-naïve mice. CONCLUSIONS AND IMPLICATIONS Chronic ethanol weakens the GABAergic regulation of VTA GABA neurons in mice via pre- and postsynaptic mechanisms, likely contributing to their elevated activity during withdrawal and expression of anxiety-related behaviour. As anxiety can promote relapse during abstinence, interventions targeting VTA GABA neuron excitability could represent new therapeutic strategies for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Eric H Mitten
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Carolina Aguado
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Luo H, Marron Fernandez de Velasco E, Gansemer B, Frederick M, Aguado C, Luján R, Thayer SA, Wickman K. Amyloid-β oligomers trigger sex-dependent inhibition of GIRK channel activity in hippocampal neurons in mice. Sci Signal 2024; 17:eado4132. [PMID: 39353038 DOI: 10.1126/scisignal.ado4132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K+ (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology. Synthetic oAβ1-42 suppressed GIRK-dependent signaling in hippocampal neurons from male mice, but not from female mice. This effect required cellular prion protein, the receptor mGluR5, and production of arachidonic acid by the phospholipase PLA2. Although oAβ suppressed GIRK channel activity only in male hippocampal neurons, intrahippocampal infusion of oAβ or genetic suppression of GIRK channel activity in hippocampal pyramidal neurons impaired performance on a memory test in both male and female mice. Moreover, genetic enhancement of GIRK channel activity in hippocampal pyramidal neurons blocked oAβ-induced cognitive impairment in both male and female mice. In APP/PS1 AD model mice, GIRK-dependent signaling was diminished in hippocampal CA1 pyramidal neurons from only male mice before cognitive deficit was detected. However, enhancing GIRK channel activity rescued cognitive deficits in older APP/PS1 mice of both sexes. Thus, whereas diminished GIRK channel activity contributes to cognitive deficits in male mice with increased oAβ burden, enhancing its activity may have therapeutic potential for both sexes.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Benjamin Gansemer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - McKinzie Frederick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, Spain
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Marron Fernandez de Velasco E, Tipps ME, Haider B, Souders A, Aguado C, Rose TR, Vo BN, DeBaker MC, Luján R, Wickman K. Ethanol-Induced Suppression of G Protein-Gated Inwardly Rectifying K +-Dependent Signaling in the Basal Amygdala. Biol Psychiatry 2023; 94:863-874. [PMID: 37068702 PMCID: PMC10576835 DOI: 10.1016/j.biopsych.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) regulates mood and associative learning and has been linked to the development and persistence of alcohol use disorder. The GABABR (gamma-aminobutyric acid B receptor) is a promising therapeutic target for alcohol use disorder, and previous work suggests that exposure to ethanol and other drugs can alter neuronal GABABR-dependent signaling. The effect of ethanol on GABABR-dependent signaling in the BLA is unknown. METHODS GABABR-dependent signaling in the mouse BLA was examined using slice electrophysiology following repeated ethanol exposure. Neuron-specific viral genetic manipulations were then used to understand the relevance of ethanol-induced neuroadaptations in the basal amygdala subregion (BA) to mood-related behavior. RESULTS The somatodendritic inhibitory effect of GABABR activation on principal neurons in the basal but not the lateral subregion of the BLA was diminished following ethanol exposure. This adaptation was attributable to the suppression of GIRK (G protein-gated inwardly rectifying K+) channel activity and was mirrored by a redistribution of GABABR and GIRK channels from the surface membrane to internal sites. While GIRK1 and GIRK2 subunits are critical for GIRK channel formation in BA principal neurons, GIRK3 is necessary for the ethanol-induced neuroadaptation. Viral suppression of GIRK channel activity in BA principal neurons from ethanol-naïve mice recapitulated some mood-related behaviors observed in C57BL/6J mice during ethanol withdrawal. CONCLUSIONS The ethanol-induced suppression of GIRK-dependent signaling in BA principal neurons contributes to some of the mood-related behaviors associated with ethanol withdrawal in mice. Approaches designed to prevent this neuroadaptation and/or strengthen GIRK-dependent signaling may prove useful for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
| | - Megan E Tipps
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bushra Haider
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Carolina Aguado
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Baovi N Vo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Margot C DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Rafael Luján
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Marshall P. Finding an Optimal Level of GDNF Overexpression: Insights from Dopamine Cycling. Cell Mol Neurobiol 2023; 43:3179-3189. [PMID: 37410316 PMCID: PMC10477250 DOI: 10.1007/s10571-023-01375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The application of glial cell line-derive neurotrophic factor (GDNF) to cell cultures and animal models has demonstrated positive effects upon dopaminergic neuronal survival and development, function, restoration, and protection. On this basis, recombinant GDNF protein has been trialled in the treatment of late-stage human Parkinson's disease patients with only limited success that is likely due to a lack of viable receptor targets in an advanced state of neurodegeneration. The latest research points to more refined approaches of modulating GDNF signalling and an optimal quantity and spatial regulation of GDNF can be extrapolated using regulation of dopamine as a proxy measure. The basic research literature on dopaminergic effects of GDNF in animal models is reviewed, concluding that a twofold increase in natively expressing cells increases dopamine turnover and maximises neuroprotective and beneficial motor effects whilst minimising hyperdopaminergia and other side-effects. Methodological considerations for measurement of dopamine levels and neuroanatomical distinctions are made between populations of dopamine neurons and their respective effects upon movement and behaviour that will inform future research into this still-relevant growth factor.
Collapse
Affiliation(s)
- Pepin Marshall
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
5
|
Requie LM, Gómez-Gonzalo M, Speggiorin M, Managò F, Melone M, Congiu M, Chiavegato A, Lia A, Zonta M, Losi G, Henriques VJ, Pugliese A, Pacinelli G, Marsicano G, Papaleo F, Muntoni AL, Conti F, Carmignoto G. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 2022; 25:1639-1650. [PMID: 36396976 DOI: 10.1038/s41593-022-01193-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.
Collapse
Affiliation(s)
- Linda Maria Requie
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| | - Michele Speggiorin
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, Università degli Studi di Cagliari, Cagliari, Italy.,Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Angela Chiavegato
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.,Nanoscienze Institute, National Research Council (CNR), Modena, Italy
| | - Vanessa Jorge Henriques
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Giovanni Marsicano
- University of Bordeaux and Interdisciplinary Institute for Neuroscience (CNRS), Bordeaux, France
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council (CNR), Cagliari, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience & Cell Biology, Università Politecnica delle Marche, and Center for Neurobiology of Aging, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, Section of Padova, National Research Council (CNR) and Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy.
| |
Collapse
|
6
|
Rue MC, Alonso LM, Marder E. Repeated applications of high potassium elicit long-term changes in a motor circuit from the crab, Cancer borealis. iScience 2022; 25:104919. [PMID: 36060056 PMCID: PMC9436765 DOI: 10.1016/j.isci.2022.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
We examined the effects of altered extracellular potassium concentration on the output of the well-studied pyloric circuit in the crab, Cancer borealis. Pyloric neurons initially become quiescent, then recover spiking and bursting activity in high potassium saline (2.5x[K+]). These changes in circuit robustness are maintained after the perturbation is removed; pyloric neurons are more robust to subsequent potassium perturbations even after several hours of wash in control saline. Despite this long-term "memory" of the stimulus history, we found no differences in neuronal activity in control saline. The circuit's adaptation is erased by both low potassium saline (0.4x[K+]) and direct hyperpolarizing current. Initial sensitivity of PD neurons to high potassium saline also varies seasonally, indicating that changes in robustness may reflect natural changes in circuit states. Thus, perturbation, followed by recovery of normal activity, can hide cryptic changes in neuronal properties that are only revealed by subsequent challenges.
Collapse
Affiliation(s)
- Mara C.P. Rue
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Leandro M. Alonso
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA,Corresponding author
| |
Collapse
|
7
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Taylor EL, Weaver SR, Lorang IM, Arnold KM, Bradley EW, Marron Fernandez de Velasco E, Wickman K, Westendorf JJ. GIRK3 deletion facilitates kappa opioid signaling in chondrocytes, delays vascularization and promotes bone lengthening in mice. Bone 2022; 159:116391. [PMID: 35314385 PMCID: PMC9035100 DOI: 10.1016/j.bone.2022.116391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.
Collapse
Affiliation(s)
- Earnest L Taylor
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Cell Biology, University of North Carolina, NC, United States of America
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian M Lorang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; University of Washington School of Medicine, Seattle, WA, United States of America
| | - Katherine M Arnold
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
9
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
10
|
Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2020; 456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Besides their primary function mediating the repolarization phase of action potentials, potassium channels exquisitely and ubiquitously regulate the resting membrane potential of neurons and therefore have a key role establishing their intrinsic excitability. This group of proteins is composed of a very diverse collection of voltage-dependent and -independent ion channels, whose specific distribution is finely tuned at the level of the synapse. Both at the presynaptic and postsynaptic membranes, different types of potassium channels are subjected to modulation by second messenger signaling cascades triggered by metabotropic receptors, which in this way serve as a link between neurotransmitter actions and changes in the neuron membrane excitability. On the one hand, by regulating the resting membrane potential of the postsynaptic membrane, potassium channels appear to be critical towards setting the threshold for the induction of long-term potentiation and depression. On the other hand, these channels maintain the presynaptic membrane potential under control, therefore influencing the probability of neurotransmitter release underlying different forms of short-term plasticity. In the present review, we examine in detail the role of metabotropic receptors translating their activation by different neurotransmitters into a final effect modulating several types of potassium channels. Furthermore, we evaluate the consequences that this interplay has on the induction and maintenance of different forms of synaptic plasticity.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain.
| | - J A Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
11
|
Miguel E, Vekovischeva O, Kuokkanen K, Vesajoki M, Paasikoski N, Kaskinoro J, Myllymäki M, Lainiola M, Janhunen SK, Hyytiä P, Linden A, Korpi ER. GABA B receptor positive allosteric modulators with different efficacies affect neuroadaptation to and self-administration of alcohol and cocaine. Addict Biol 2019; 24:1191-1203. [PMID: 30421860 DOI: 10.1111/adb.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
Drugs of abuse induce widespread synaptic adaptations in the mesolimbic dopamine (DA) neurons. Such drug-induced neuroadaptations may constitute an initial cellular mechanism eventually leading to compulsive drug-seeking behavior. To evaluate the impact of GABAB receptors on addiction-related persistent neuroplasticity, we tested the ability of orthosteric agonist baclofen and two positive allosteric modulators (PAMs) of GABAB receptors to suppress neuroadaptations in the ventral tegmental area (VTA) and reward-related behaviors induced by ethanol and cocaine. A novel compound (S)-1-(5-fluoro-2,3-dihydro-1H-inden-2-yl)-4-methyl-6,7,8,9-tetrahydro-[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-one (ORM-27669) was found to be a GABAB PAM of low efficacy as agonist, whereas the reference compound (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) had a different allosteric profile being a more potent PAM in the calcium-based assay and an agonist, coupled with potent PAM activity, in the [35 S] GTPγS binding assay in rat and human recombinant receptors. Using autoradiography, the high-efficacy rac-BHFF and the low-efficacy ORM-27669 potentiated the effects of baclofen on [35 S] GTPγS binding with identical brain regional distribution. Treatment of mice with baclofen, rac-BHFF, or ORM-27669 failed to induce glutamate receptor neuroplasticity in the VTA DA neurons. Pretreatment with rac-BHFF at non-sedative doses effectively reversed both ethanol- and cocaine-induced plasticity and attenuated cocaine i.v. self-administration and ethanol drinking. Pretreatment with ORM-27669 only reversed ethanol-induced neuroplasticity and attenuated ethanol drinking but had no effects on cocaine-induced neuroplasticity or self-administration. These findings encourage further investigation of GABAB receptor PAMs with different efficacies in addiction models to develop novel treatment strategies for drug addiction.
Collapse
Affiliation(s)
- Elena Miguel
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Katja Kuokkanen
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Marja Vesajoki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Nelli Paasikoski
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Janne Kaskinoro
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mikko Myllymäki
- Research and Development, Orion Pharma, Orion Corporation Finland
| | - Mira Lainiola
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | | | - Petri Hyytiä
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Anni‐Maija Linden
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| | - Esa R. Korpi
- Department of Pharmacology, Faculty of MedicineUniversity of Helsinki Finland
| |
Collapse
|
12
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Ma Z, Gao F, Larsen B, Gao M, Luo Z, Chen D, Ma X, Qiu S, Zhou Y, Xie J, Xi ZX, Wu J. Mechanisms of cannabinoid CB 2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area. EBioMedicine 2019; 42:225-237. [PMID: 30952618 PMCID: PMC6491419 DOI: 10.1016/j.ebiom.2019.03.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/24/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have recently reported that activation of cannabinoid type 2 receptors (CB2Rs) reduces dopamine (DA) neuron excitability in mouse ventral tegmental area (VTA). Here, we elucidate the underlying mechanisms. METHODS Patch-clamp recordings were performed in mouse VTA slices and dissociated single VTA DA neurons. FINDINGS Using cell-attached recording in VTA slices, bath-application of CB2R agonists (JWH133 or five other CB2R agonists) significantly reduced VTA DA neuron action potential (AP) firing rate. Under the patch-clamp whole-cell recording model, JWH133 (10 μM) mildly reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs). JWH133 also did not alter evoked EPSCs or IPSCs. In freshly dissociated VTA DA neurons, JWH133 reduced AP firing rate, delayed AP initiation and enhanced AP after-hyperpolarization. In voltage-clamp recordings, JWH133 (1 μM) enhanced M-type K+ currents and this effect was absent in CB2-/- mice and abolished by co-administration of a selective CB2R antagonist (10 μM, AM630). CB2R-mediated inhibition in VTA DA neuron firing can be mimicked by M-current opener (10 μM retigabine) and blocked by M-current blocker (30 μM XE991). In addition, enhancement of neuronal cAMP by forskolin (10 μM) reduced M-current and increased DA neuron firing rate. Finally, pharmacological block of synaptic transmission by NBQX (10 μM), D-APV (50 μM) and picrotoxin (100 μM) in VTA slices failed to prevent CB2R-mediated inhibition, while intracellular infusion of guanosine 5'-O-2-thiodiphosphate (600 μM, GDP-β-S) through recording electrode to block postsynaptic G-protein function prevented JWH133-induced reduction in AP firing. INTERPRETATION Our results suggest that CB2Rs modulate VTA DA neuron excitability mainly through an intrinsic mechanism, including a CB2R-mediated reduction of intracellular cAMP, and in turn enhancement of M-type K+ currents. FUND: This research was supported by the Barrow Neuroscience Foundation, the BNI-BMS Seed Fund, and CNSF (81771437).
Collapse
Affiliation(s)
- Zegang Ma
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Brett Larsen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Ming Gao
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Zhihua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China
| | - Dejie Chen
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China
| | - Xiaokuang Ma
- Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yu Zhou
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jie Wu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Department of Neurobiology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 210854, China; Department of Neurology, Yunfu People's Hospital, Yunfu, Guangdong 527300, China.
| |
Collapse
|
14
|
Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress 2019; 10:100152. [PMID: 30937357 PMCID: PMC6430618 DOI: 10.1016/j.ynstr.2019.100152] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Exposure to unpredictable environmental stress is widely recognized as a major determinant for risk and severity in neuropsychiatric disorders such as major depressive disorder, anxiety, schizophrenia, and PTSD. The ability of ostensibly unrelated disorders to give rise to seemingly similar psychiatric phenotypes highlights a need to identify circuit-level concepts that could unify diverse factors under a common pathophysiology. Although difficult to disentangle a causative effect of stress from other factors on medial prefrontal cortex (PFC) dysfunction, a wealth of data from humans and rodents demonstrates that the PFC is a key target of stress. The present study sought to identify a model of chronic unpredictable stress (CUS) which induces affective behaviors in C57BL6J mice and once established, measure stress-related alterations in intrinsic excitability and synaptic regulation of mPFC layer 5/6 pyramidal neurons. Adult male mice received 2 weeks of 'less intense' stress or 2 or 4 weeks of 'more intense' CUS followed by sucrose preference for assessment of anhedonia, elevated plus maze for assessment of anxiety and forced swim test for assessment of depressive-like behaviors. Our findings indicate that more intense CUS exposure results in increased anhedonia, anxiety, and depressive behaviors, while the less intense stress results in no measured behavioral phenotypes. Once a behavioral model was established, mice were euthanized approximately 21 days post-stress for whole-cell patch clamp recordings from layer 5/6 pyramidal neurons in the prelimbic (PrL) and infralimbic (IL) cortices. No significant differences were initially observed in intrinsic cell excitability in either region. However, post-hoc analysis and subsequent confirmation using transgenic mice expressing tdtomato or eGFP under control of dopamine D1-or D2-type receptor showed that D1-expressing pyramidal neurons (D1-PYR) in the PrL exhibit reduced thresholds to fire an action potential (increased excitability) but impaired firing capacity at more depolarized potentials, whereas D2-expressing pyramidal neurons (D2-PYR) showed an overall reduction in excitability and spike firing frequency. Examination of synaptic transmission showed that D1-and D2-PYR exhibit differences in basal excitatory and inhibitory signaling under naïve conditions. In CUS mice, D1-PYR showed increased frequency of both miniature excitatory and inhibitory postsynaptic currents, whereas D2-PYR only showed a reduction in excitatory currents. These findings demonstrate that D1-and D2-PYR subpopulations differentially undergo stress-induced intrinsic and synaptic plasticity that may have functional implications for stress-related pathology, and that these adaptations may reflect unique differences in basal properties regulating output of these cells.
Collapse
|
15
|
GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine. J Neurosci 2019; 39:3600-3610. [PMID: 30837265 DOI: 10.1523/jneurosci.3101-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.
Collapse
|
16
|
Bonnet U, Strasser JC, Scherbaum N. Screening for physical and behavioral dependence on non-opioid analgesics in a German elderly hospital population. Addict Behav 2019; 90:265-271. [PMID: 30472534 DOI: 10.1016/j.addbeh.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To provide further evidence of dependence on non-opioid analgesics (NOAs). METHODS Post-hoc-analysis of a cross-sectional study of a ≥ -65-year-old non-demented German general hospital population. Four hundred in-patients (75 ± 6.4 years; 63% females) were included and screened for current and past dependence on NOAs using a structured interview (SKID-I) based on DSM-IV-TR. The addiction section of SKID-I was expanded to the following NOAs: gabapentinoids, acetaminophen, metamizole, flupirtine, and non-steroidal anti-inflammatory drugs (NSAIDs). RESULTS We found twenty-eight seniors (7%) who fulfilled the criteria for a NOA-dependence. Of whom, twenty-four and four patients were currently dependent and in remission, respectively. According to SKID-I, twenty-one (75%) patients were mildly, five patients (17.9%) moderately, and two (7.1%) patients severely dependent on NOAs. All patients showed at least one sign of physical dependence (tolerance and/or withdrawal symptoms) and most of them reported additional behavioral dependence symptoms. Whereas there was one dependence on gabapentinoids or acetaminophen only, NSAIDs and metamizole were involved in the majority of cases (n = 25; 89.3%). Of note, ten (35.7%) seniors had a de-novo substance dependence exclusively on NOAs - including 2 females with signs of a de-novo dependence on metamizole, a NOA which yet has been not in the focus of addiction medicine. CONCLUSION This cross-sectional study provides further evidence of the existence of a physical and behavioral dependence on NOAs including NSAIDs. Furthermore, preliminary evidence of a de-novo dependence on metamizole is provided which needs further verification.
Collapse
|
17
|
Groos D, Zheng F, Rauh M, Quinger B, Kornhuber J, Müller CP, Alzheimer C. Chronic antipsychotic treatment targets GIRK current suppression, loss of long-term synaptic depression and behavioural sensitization in a mouse model of amphetamine psychosis. J Psychopharmacol 2018; 33:269881118812235. [PMID: 30488738 DOI: 10.1177/0269881118812235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND: Antipsychotic drugs (APDs) are the mainstay of the pharmacological treatment of psychotic disorders like schizophrenia. While the clinical efficacy of APDs has long since been established, the neurobiological mechanisms underlying their therapeutic benefits are still not well understood. METHODS: Here, we used an escalating amphetamine regimen to induce a psychosis-like state in mice. To achieve clinically relevant drug concentrations in amphetamine-pretreated mice, the typical APD haloperidol or the atypical APD olanzapine were chronically administered via subcutaneously implanted osmotic mini-pumps. RESULTS: Demonstrating their therapeutic efficacy, both drugs dampened amphetamine-induced hyperlocomotion and restored normal behaviour in the light-induced activity test. Whole-cell recordings from dopaminergic neurons of the ventral tegmental area (VTA) in ex vivo brain slices revealed two pronounced aberrations associated with the psychosis-like state: Strongly enhanced spontaneous firing and a substantial loss of G protein-gated inwardly rectifying potassium (GIRK) current upon activation of GABAB receptors with baclofen. Chronic haloperidol and olanzapine restored normal firing and partially rescued the GIRK current response to baclofen. In ex vivo slices containing the nucleus accumbens, which receives a dopaminergic projection from the VTA, abrogation of long-term synaptic depression (LTD) and enhanced excitatory drive onto medium spiny neurons were identified as synaptic consequences of amphetamine-induced psychosis. Again, both alterations proved amenable to chronic APD treatment. CONCLUSION: Our data provide evidence for aberrant neuronal function and plasticity in the mesolimbic dopamine system during an induced psychotic state and identify these alterations as targets of chronic APD treatment.
Collapse
Affiliation(s)
- Dominik Groos
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- 2 Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Quinger
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian P Müller
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization. Proc Natl Acad Sci U S A 2018; 115:E9479-E9488. [PMID: 30228121 PMCID: PMC6176583 DOI: 10.1073/pnas.1807788115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D2R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse's sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.
Collapse
|
19
|
Francis TC, Gantz SC, Moussawi K, Bonci A. Synaptic and intrinsic plasticity in the ventral tegmental area after chronic cocaine. Curr Opin Neurobiol 2018; 54:66-72. [PMID: 30237117 PMCID: PMC10131346 DOI: 10.1016/j.conb.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/28/2022]
Abstract
Cocaine exposure induces persistent changes in synaptic transmission and intrinsic properties of ventral tegmental area (VTA) dopamine neurons. Despite significant progress in understanding cocaine-induced plasticity, an effective treatment of cocaine addiction is lacking. Chronic cocaine potentiates excitatory and alters inhibitory transmission to dopamine neurons, induces dopamine neuron hyperexcitability, and reduces dopamine release in projection areas. Understanding how intrinsic and synaptic plasticity interact to control dopamine neuron firing and dopamine release could prove useful in the development of new therapeutics. In this review, we examine recent literature discussing cocaine-induced plasticity in the VTA and highlight potential therapeutic interventions.
Collapse
Affiliation(s)
- Tanner Chase Francis
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD 21224, USA
| | - Stephanie C Gantz
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD 21224, USA
| | - Khaled Moussawi
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD 21224, USA; Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, US National Institutes of Health, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC, USA; Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Gantz SC, Ford CP, Morikawa H, Williams JT. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu Rev Physiol 2018; 80:219-241. [PMID: 28938084 DOI: 10.1146/annurev-physiol-021317-121615] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the population of neurons in the ventral tegmental area (VTA) and substantia nigra (SN) has been examined at multiple levels. The results indicate that the projections, neurochemistry, and receptor and ion channel expression in this cell population vary widely. This review centers on the intrinsic properties and synaptic regulation that control the activity of dopamine neurons. Although all dopamine neurons fire action potentials in a pacemaker pattern in the absence of synaptic input, the intrinsic properties that underlie this activity differ considerably. Likewise, the transition into a burst/pause pattern results from combinations of intrinsic ion conductances, inhibitory and excitatory synaptic inputs that differ among this cell population. Finally, synaptic plasticity is a key regulator of the rate and pattern of activity in different groups of dopamine neurons. Through these fundamental properties, the activity of dopamine neurons is regulated and underlies the wide-ranging functions that have been attributed to dopamine.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | - John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA;
| |
Collapse
|
21
|
Marron Fernandez de Velasco E, Zhang L, N Vo B, Tipps M, Farris S, Xia Z, Anderson A, Carlblom N, Weaver CD, Dudek SM, Wickman K. GIRK2 splice variants and neuronal G protein-gated K + channels: implications for channel function and behavior. Sci Rep 2017; 7:1639. [PMID: 28487514 PMCID: PMC5431628 DOI: 10.1038/s41598-017-01820-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 11/21/2022] Open
Abstract
Many neurotransmitters directly inhibit neurons by activating G protein-gated inwardly rectifying K+ (GIRK) channels, thereby moderating the influence of excitatory input on neuronal excitability. While most neuronal GIRK channels are formed by GIRK1 and GIRK2 subunits, distinct GIRK2 isoforms generated by alternative splicing have been identified. Here, we compared the trafficking and function of two isoforms (GIRK2a and GIRK2c) expressed individually in hippocampal pyramidal neurons lacking GIRK2. GIRK2a and GIRK2c supported comparable somato-dendritic GIRK currents in Girk2 -/- pyramidal neurons, although GIRK2c achieved a more uniform subcellular distribution in pyramidal neurons and supported inhibitory postsynaptic currents in distal dendrites better than GIRK2a. While over-expression of either isoform in dorsal CA1 pyramidal neurons restored contextual fear learning in a conditional Girk2 -/- mouse line, GIRK2a also enhanced cue fear learning. Collectively, these data indicate that GIRK2 isoform balance within a neuron can impact the processing of afferent inhibitory input and associated behavior.
Collapse
Affiliation(s)
| | - Lei Zhang
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Baovi N Vo
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Megan Tipps
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Shannon Farris
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Zhilian Xia
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Allison Anderson
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Nicholas Carlblom
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - C David Weaver
- Vanderbilt University, Department of Pharmacology, Nashville, TN, 37235, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kevin Wickman
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Donahoe JW. Behavior analysis and neuroscience: Complementary disciplines. J Exp Anal Behav 2017; 107:301-320. [DOI: 10.1002/jeab.251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022]
|
23
|
Rifkin RA, Moss SJ, Slesinger PA. G Protein-Gated Potassium Channels: A Link to Drug Addiction. Trends Pharmacol Sci 2017; 38:378-392. [PMID: 28188005 DOI: 10.1016/j.tips.2017.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are regulators of neuronal excitability in the brain. Knockout mice lacking GIRK channels display altered behavioral responses to multiple addictive drugs, implicating GIRK channels in addictive behaviors. Here, we review the effects of GIRK subunit deletions on the behavioral response to psychostimulants, such as cocaine and methamphetamine. Additionally, exposure of mice to psychostimulants produces alterations in the surface expression of GIRK channels in multiple types of neurons within the reward system of the brain. Thus, we compare the subcellular mechanisms by which drug exposure appears to alter GIRK expression in multiple cell types and provide an outlook on future studies examining the role of GIRK channels in addiction. A greater understanding of how GIRK channels are regulated by addictive drugs may enable the development of therapies to prevent or treat drug abuse.
Collapse
Affiliation(s)
- Robert A Rifkin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Stephen J Moss
- Dept of Neuroscience, Tufts University School of Medicine, Boston, MA 02155, USA; Dept of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Paul A Slesinger
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
24
|
McCall NM, Kotecki L, Dominguez-Lopez S, Marron Fernandez de Velasco E, Carlblom N, Sharpe AL, Beckstead MJ, Wickman K. Selective Ablation of GIRK Channels in Dopamine Neurons Alters Behavioral Effects of Cocaine in Mice. Neuropsychopharmacology 2017; 42:707-715. [PMID: 27468917 PMCID: PMC5240170 DOI: 10.1038/npp.2016.138] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate the direct inhibitory effect of GABAB receptor (GABABR) and D2 DA receptor (D2R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D2R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D2R-dependent inhibitory somatodendritic currents and blunted the impact of D2R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.
Collapse
Affiliation(s)
- Nora M McCall
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Lydia Kotecki
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Sergio Dominguez-Lopez
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Nicholas Carlblom
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Amanda L Sharpe
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, USA
| | - Michael J Beckstead
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA,Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA, Tel: +1 612 624 5966, Fax: +1 612 625 8408, E-mail:
| |
Collapse
|
25
|
Xin W, Edwards N, Bonci A. VTA dopamine neuron plasticity - the unusual suspects. Eur J Neurosci 2016; 44:2975-2983. [PMID: 27711998 PMCID: PMC11466316 DOI: 10.1111/ejn.13425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) are involved in a variety of physiological and pathological conditions, ranging from motivated behaviours to substance use disorders. While many studies have shown that these neurons can express plasticity at excitatory and inhibitory synapses, little is known about how inhibitory inputs and glial activity shape the output of DA neurons and therefore, merit greater discussion. In this review, we will attempt to fill in a bit more of the puzzle, with a focus on inhibitory transmission and astrocyte function. We summarize the findings within the VTA as well as observations made in other brain regions that have important implications for plasticity in general and should be considered in the context of DA neuron plasticity.
Collapse
Affiliation(s)
- Wendy Xin
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Edwards
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
A Role for the GIRK3 Subunit in Methamphetamine-Induced Attenuation of GABAB Receptor-Activated GIRK Currents in VTA Dopamine Neurons. J Neurosci 2016; 36:3106-14. [PMID: 26985023 DOI: 10.1523/jneurosci.1327-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Repeated exposure to psychostimulants induces locomotor sensitization and leads to persistent changes in the circuitry of the mesocorticolimbic dopamine (DA) system. G-protein-gated inwardly rectifying potassium (GIRK; also known as Kir3) channels mediate a slow IPSC and control the excitability of DA neurons. Repeated 5 d exposure to psychostimulants decreases the size of the GABAB receptor (GABABR)-activated GIRK currents (IBaclofen) in ventral tegmental area (VTA) DA neurons of mice, but the mechanism underlying this plasticity is poorly understood. Here, we show that methamphetamine-dependent attenuation of GABABR-GIRK currents in VTA DA neurons required activation of both D1R-like and D2R-like receptors. The methamphetamine-dependent decrease in GABABR-GIRK currents in VTA DA neurons did not depend on a mechanism of dephosphorylation of the GABAB R2 subunit found previously for other neurons in the reward pathway. Rather, the presence of the GIRK3 subunit appeared critical for the methamphetamine-dependent decrease of GABABR-GIRK current in VTA DA neurons. Together, these results highlight different regulatory mechanisms in the learning-evoked changes that occur in the VTA with repeated exposure to psychostimulants. SIGNIFICANCE STATEMENT Exposure to addictive drugs such as psychostimulants produces persistent adaptations in inhibitory circuits within the mesolimbic dopamine system, suggesting that addictive behaviors are encoded by changes in the reward neural circuitry. One form of neuroadaptation that occurs with repeated exposure to psychostimulants is a decrease in slow inhibition, mediated by a GABAB receptor and a potassium channel. Here, we examine the subcellular mechanism that links psychostimulant exposure with changes in slow inhibition and reveal that one type of potassium channel subunit is important for mediating the effect of repeated psychostimulant exposure. Dissecting out the components of drug-dependent plasticity and uncovering novel protein targets in the reward circuit may lead to the development of new therapeutics for treating addiction.
Collapse
|
27
|
Lecca S, Pelosi A, Tchenio A, Moutkine I, Lujan R, Hervé D, Mameli M. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat Med 2016; 22:254-61. [PMID: 26808347 DOI: 10.1038/nm.4037] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
The lateral habenula (LHb) encodes aversive signals, and its aberrant activity contributes to depression-like symptoms. However, a limited understanding of the cellular mechanisms underlying LHb hyperactivity has precluded the development of pharmacological strategies to ameliorate depression-like phenotypes. Here we report that an aversive experience in mice, such as foot-shock exposure (FsE), induces LHb neuronal hyperactivity and depression-like symptoms. This occurs along with increased protein phosphatase 2A (PP2A) activity, a known regulator of GABAB receptor (GABABR) and G protein-gated inwardly rectifying potassium (GIRK) channel surface expression. Accordingly, FsE triggers GABAB1 and GIRK2 internalization, leading to rapid and persistent weakening of GABAB-activated GIRK-mediated (GABAB-GIRK) currents. Pharmacological inhibition of PP2A restores both GABAB-GIRK function and neuronal excitability. As a consequence, PP2A inhibition ameliorates depression-like symptoms after FsE and in a learned-helplessness model of depression. Thus, GABAB-GIRK plasticity in the LHb represents a cellular substrate for aversive experience. Furthermore, its reversal by PP2A inhibition may provide a novel therapeutic approach to alleviate symptoms of depression in disorders that are characterized by LHb hyperactivity.
Collapse
Affiliation(s)
- Salvatore Lecca
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Assunta Pelosi
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Anna Tchenio
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Imane Moutkine
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas, Albacete, Spain.,Universidad Castilla-La Mancha, Facultad de Medicina, Departamento de Ciencias Médicas, Campus Biosanitario, Albacete, Spain
| | - Denis Hervé
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S839, Paris, France.,Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
28
|
Ghosh S, Reuveni I, Barkai E, Lamprecht R. Calcium/calmodulin-dependent kinase II activity is required for maintaining learning-induced enhancement of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic excitation. J Neurochem 2016; 136:1168-1176. [DOI: 10.1111/jnc.13505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Sourav Ghosh
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Iris Reuveni
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Edi Barkai
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
29
|
Stuhrman K, Roseberry AG. Neurotensin inhibits both dopamine- and GABA-mediated inhibition of ventral tegmental area dopamine neurons. J Neurophysiol 2015; 114:1734-45. [PMID: 26180119 DOI: 10.1152/jn.00279.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine neuron activity by examining the effect of neurotensin on the inhibitory postsynaptic current generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) dopamine neurons. Neurotensin inhibited the D2R IPSC and activated an inward current in VTA dopamine neurons that appeared to be at least partially mediated by activation of a transient receptor potential C-type channel. Neither the inward current nor the inhibition of the D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the inhibition of the D2R IPSC was greater with neurotensin compared with activation of other Gq-coupled receptors. Interestingly, the effects of neurotensin were not specific to D2R signaling as neurotensin also inhibited GABAB inhibitory postsynaptic currents in VTA dopamine neurons. Finally, the effects of neurotensin were significantly larger when intracellular Ca(2+) was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects. Overall these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs downstream of receptor activation, potentially through regulation of G protein-coupled inwardly rectifying potassium channels. These studies provide an important advance in our understanding of dopamine neuron activity and how it is controlled by neurotensin.
Collapse
Affiliation(s)
- Katherine Stuhrman
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
30
|
de Velasco EMF, McCall N, Wickman K. GIRK Channel Plasticity and Implications for Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:201-38. [DOI: 10.1016/bs.irn.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
GIRK Channels: A Potential Link Between Learning and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:239-77. [PMID: 26422987 DOI: 10.1016/bs.irn.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability of drug-associated cues to reinitiate drug craving and seeking, even after long periods of abstinence, has led to the hypothesis that addiction represents a form of pathological learning, in which drugs of abuse hijack normal learning and memory processes to support long-term addictive behaviors. In this chapter, we review evidence suggesting that G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels are one mechanism through which numerous drugs of abuse can modulate learning and memory processes. We will examine the role of GIRK channels in two forms of experience-dependent long-term changes in neuronal function: homeostatic plasticity and synaptic plasticity. We will also discuss how drug-induced changes in GIRK-mediated signaling can lead to changes that support the development and maintenance of addiction.
Collapse
|
32
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|