1
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
2
|
Liu SX, Harris AC, Gewirtz JC. How life events may confer vulnerability to addiction: the role of epigenetics. Front Mol Neurosci 2024; 17:1462769. [PMID: 39359689 PMCID: PMC11446245 DOI: 10.3389/fnmol.2024.1462769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Substance use disorder (SUD) represents a large and growing global health problem. Despite the strong addictive potency of drugs of abuse, only a minority of those exposed develop SUDs. While certain life experiences (e.g., childhood trauma) may increase subsequent vulnerability to SUDs, mechanisms underlying these effects are not yet well understood. Given the chronic and relapsing nature of SUDs, and the length of time that can elapse between prior life events and subsequent drug exposure, changes in SUD vulnerability almost certainly involve long-term epigenetic dysregulation. To validate this idea, functional effects of specific epigenetic modifications in brain regions mediating reinforcement learning (e.g., nucleus accumbens, prefrontal cortex) have been investigated in a variety of animal models of SUDs. In addition, the effects of epigenetic modifications produced by prior life experiences on subsequent SUD vulnerability have been studied, but mostly in a correlational manner. Here, we review how epigenetic mechanisms impact SUD-related behavior in animal models and summarize our understanding of the relationships among life experiences, epigenetic regulation, and future vulnerability to SUDs. Despite variations in study design, epigenetic modifications that most consistently affect SUD-related behavior are those that produce predominantly unidirectional effects on gene regulation, such as DNA methylation and histone phosphorylation. Evidence explicitly linking environmentally induced epigenetic modifications to subsequent SUD-related behavior is surprisingly sparse. We conclude by offering several directions for future research to begin to address this critical research gap.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Yuan S, Jiang SC, Zhang ZW, Li ZL, Hu J. Substance Addiction Rehabilitation Drugs. Pharmaceuticals (Basel) 2024; 17:615. [PMID: 38794185 PMCID: PMC11124501 DOI: 10.3390/ph17050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce the neuron's sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural synaptic plasticity are also discussed.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Si-Cong Jiang
- Haisco Pharmaceutical Group Comp. Ltd., Chengdu 611138, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi’an 710032, China;
| | - Jing Hu
- School of Medicine, Northwest University, Xi’an 710069, China;
| |
Collapse
|
5
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. Neurotoxicol Teratol 2024; 102:107337. [PMID: 38423398 DOI: 10.1016/j.ntt.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (GD 3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning.
Collapse
Affiliation(s)
- Shanna L Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
7
|
Rich MT, Swinford-Jackson SE, Pierce RC. Epigenetic inheritance of phenotypes associated with parental exposure to cocaine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:169-216. [PMID: 38467481 DOI: 10.1016/bs.apha.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Parental exposure to drugs of abuse induces changes in the germline that can be transmitted across subsequent generations, resulting in enduring effects on gene expression and behavior. This transgenerational inheritance involves a dynamic interplay of environmental, genetic, and epigenetic factors that impact an individual's vulnerability to neuropsychiatric disorders. This chapter aims to summarize recent research into the mechanisms underlying the inheritance of gene expression and phenotypic patterns associated with exposure to drugs of abuse, with an emphasis on cocaine. We will first define the epigenetic modifications such as DNA methylation, histone post-translational modifications, and expression of non-coding RNAs that are impacted by parental cocaine use. We will then explore how parental cocaine use induces heritable epigenetic changes that are linked to alterations in neural circuitry and synaptic plasticity within reward-related circuits, ultimately giving rise to potential behavioral vulnerabilities. This discussion will consider phenotypic differences associated with gestational as well as both maternal and paternal preconception drug exposure and will emphasize differences based on offspring sex. In this context, we explore the complex interactions between genetics, epigenetics, environment, and biological sex. Overall, this chapter consolidates the latest developments in the multigenerational effects and long-term consequences of parental substance abuse.
Collapse
Affiliation(s)
- Matthew T Rich
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States.
| | - Sarah E Swinford-Jackson
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546356. [PMID: 37425833 PMCID: PMC10327095 DOI: 10.1101/2023.06.23.546356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (G3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning. Highlights Developmental Mn exposure causes lasting dysfunction consistent with ADHD symptomology.Maternal choline supplementation (MCS) protects against Mn-induced deficits in attention and behavioral reactivity.MCS in control animals produces lasting benefits to offspring in learning, attention, and error reactivity.These data support efforts to increase choline intake during pregnancy, particularly for individuals at risk of neurotoxicant exposure.
Collapse
|
9
|
Wang Y, Yang L, Zhou H, Zhang K, Zhao M. Identification of miRNA-mediated gene regulatory networks in L-methionine exposure counteracts cocaine-conditioned place preference in mice. Front Genet 2023; 13:1076156. [PMID: 36744178 PMCID: PMC9893020 DOI: 10.3389/fgene.2022.1076156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aims: Methionine has been proven to inhibit addictive behaviors of cocaine dependence. This study aimed to identify the potential mechanisms of MET relating to its inhibitory effects on cocaine induced cellular and behavioral changes. Methods: MRNA and miRNA high-throughput sequencing of the prefrontal cortex in a mouse model of cocaine conditioned place preference (CPP) combined with L-methionine was performed. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) regulated by cocaine and inhibited by L-methionine were identified. DEGs were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then, the identified DEGs were subjected to the DAVID webserver for functional annotation. Finally, miRNA-mRNA regulatory network and miRNA-mRNA-TF regulatory networks were established to screen key DE-miRNAs and coregulation network in Cytoscape. Results: Sequencing data analysis showed that L-methionine reversely regulated genes and miRNAs affected by cocaine. Pathways associated with drug addiction only enriched in CS-down with MC-up genes targeted by DE-miRNAs including GABAergic synapse, Glutamatergic synapse, Circadian entrainment, Axon guidance and Calcium signaling pathway. Drug addiction associated network was formed of 22 DEGs including calcium channel (Cacna1c, Cacna1e, Cacna1g and Cacng8), ephrin receptor genes (Ephb6 and Epha8) and ryanodine receptor genes (Ryr1 and Ryr2). Calcium channel gene network were identified as a core gene network modulated by L-methionine in response to cocaine dependence. Moreover, it was predicted that Grin1 and Fosb presented in TF-miRNA-mRNA coregulation network with a high degree of interaction as hub genes and interacted calcium channels. Conclusion: These identified key genes, miRNA and coregulation network demonstrated the efficacy of L-methionine in counteracting the effects of cocaine CPP. To a certain degree, it may provide some hints to better understand the underlying mechanism on L-methionine in response to cocaine abuse.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lvyu Yang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hansheng Zhou
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Kunlin Zhang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China
| | - Mei Zhao
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Mei Zhao,
| |
Collapse
|
10
|
Poisel E, Zillich L, Streit F, Frank J, Friske MM, Foo JC, Mechawar N, Turecki G, Hansson AC, Nöthen MM, Rietschel M, Spanagel R, Witt SH. DNA methylation in cocaine use disorder-An epigenome-wide approach in the human prefrontal cortex. Front Psychiatry 2023; 14:1075250. [PMID: 36865068 PMCID: PMC9970996 DOI: 10.3389/fpsyt.2023.1075250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Cocaine use disorder (CUD) is characterized by a loss of control over cocaine intake and is associated with structural, functional, and molecular alterations in the human brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. METHODS We investigated epigenome-wide DNA methylation (DNAm) signatures of CUD in human post-mortem brain tissue of Brodmann area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study (EWAS) and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology (GO) enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. RESULTS While no cytosine-phosphate-guanine (CpG) site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified Neuropeptide FF Receptor 2 (NPFFR2) and Kalirin RhoGEF Kinase (KALRN) for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction (PPI) networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN). In BA9, we observed a trend toward epigenetic age acceleration (EAA) in individuals with CUD remaining stable even after adjustment for covariates. CONCLUSION Results from our study highlight that CUD is associated with epigenome-wide differences in DNAm levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex (PFC). Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.
Collapse
Affiliation(s)
- Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Calderon-Garcia AA, Perez-Fernandez M, Curto-Aguilera D, Rodriguez-Martin I, Sánchez-Barba M, Gonzalez-Nunez V. Exposure to Morphine and Cocaine Modify the Transcriptomic Landscape in Zebrafish Embryos. Neuroscience 2022; 507:14-27. [PMID: 36404518 DOI: 10.1016/j.neuroscience.2022.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Morphine and other opioid analgesics are the drugs of election to treat moderate-to-severe pain, and they elicit their actions by binding to the opioid receptors. Cocaine is a potent inhibitor of dopamine, serotonin, and noradrenaline reuptake, as it blocks DAT, the dopamine transporter, causing an increase in the local concentration of these neurotransmitters in the synaptic cleft. The molecular effects of these drugs have been studied in specific brain areas or nuclei, but the systemic effects in the whole organism have not been comprehensively analyzed. This study aims to analyze the transcriptomic changes elicited by morphine (10 uM) and cocaine (15 uM) in zebrafish embryos. An RNAseq assay was performed with tissues extracts from zebrafish embryos treated from 5 hpf (hours post fertilization) to 72 hpf, and the most representative deregulated genes were experimentally validated by qPCR. We have found changes in the expression of genes related to lipid metabolism, chemokine receptor ligands, visual system, hemoglobins, and metabolic detoxification pathways. Besides, morphine and cocaine modified the global DNA methylation pattern in zebrafish embryos, which would explain the changes in gene expression elicited by these two drugs of abuse.
Collapse
Affiliation(s)
- Andrés Angel Calderon-Garcia
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain
| | - Maria Perez-Fernandez
- Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain
| | - Daniel Curto-Aguilera
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain
| | - Ivan Rodriguez-Martin
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Mercedes Sánchez-Barba
- Institute of Biomedical Research of Salamanca (IBSAL), Spain; Dept. Statistics. Faculty of Medicine, University of Salamanca, Spain
| | - Veronica Gonzalez-Nunez
- Dept. Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Spain.
| |
Collapse
|
12
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
13
|
Genomic and Personalized Medicine Approaches for Substance Use Disorders (SUDs) Looking at Genome-Wide Association Studies. Biomedicines 2021; 9:biomedicines9121799. [PMID: 34944615 PMCID: PMC8698472 DOI: 10.3390/biomedicines9121799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.
Collapse
|
14
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
15
|
Vaillancourt K, Chen GG, Fiori L, Maussion G, Yerko V, Théroux JF, Ernst C, Labonté B, Calipari E, Nestler EJ, Nagy C, Mechawar N, Mash DC, Turecki G. Methylation of the tyrosine hydroxylase gene is dysregulated by cocaine dependence in the human striatum. iScience 2021; 24:103169. [PMID: 34693223 PMCID: PMC8517202 DOI: 10.1016/j.isci.2021.103169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 09/21/2021] [Indexed: 02/01/2023] Open
Abstract
Cocaine dependence is a chronic, relapsing disorder caused by lasting changes in the brain. Animal studies have identified cocaine-related alterations in striatal DNA methylation; however, it is unclear how methylation is related to cocaine dependence in humans. We generated methylomic profiles of the nucleus accumbens using human postmortem brains from a cohort of individuals with cocaine dependence and healthy controls (n = 25 per group). We found hypermethylation in a cluster of CpGs within the gene body of tyrosine hydroxylase (TH), containing a putative binding site for the early growth response 1 (EGR1) transcription factor, which is hypermethylated in the caudate nucleus of cocaine-dependent individuals. We replicated this finding and found it to be specific to striatal neuronal nuclei. Furthermore, this locus demonstrates enhancer activity which is attenuated by methylation and enhanced by EGR1 overexpression. These results suggest that cocaine dependence alters the epigenetic regulation of dopaminergic signaling genes.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gang G. Chen
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Laura Fiori
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Gilles Maussion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, QC, Canada
| | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Jean-François Théroux
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Carl Ernst
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Benoit Labonté
- Centre de Recherche Cervo, Université Laval, Québec, QC, Canada
| | - Erin Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Deborah C. Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
17
|
Zhang K, Ji G, Zhao M, Wang Y. Candidate l-methionine target piRNA regulatory networks analysis response to cocaine-conditioned place preference in mice. Brain Behav 2021; 11:e2272. [PMID: 34196487 PMCID: PMC8413732 DOI: 10.1002/brb3.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Methionine has been proven to inhibit addictive behaviors of cocaine dependence. However, the mechanism of methionine response to cocaine CPP is unknown. Recent evidence highlights piRNAs to regulate genes via a miRNA-like mechanism. Here, next-generation sequencing is used to study mechanism on methionine response to drug-induced behaviors though piRNA. METHODS l-methionine treatment cocaine CPP animal model was used to do non-coding RNA sequencing. There were four groups to sequence: saline+saline (SS), MET+saline (MS), MET+cocaine (MC), and cocaine+saline. Combining mRNA sequencing data, the network and regulation of piRNA were analyzed with their corresponding mRNA and miRNA. RESULTS Analysis of the piRNAome reveals that piRNAs inversely regulated their target mRNA genes. KEGG analysis of DE-piRNA target mRNA genes were enriched in Morphine addiction, GABAergic synapse and Cholinergic synapse pathway. Furthermore, four significantly differential expressed genes Cacna2d3, Epha6, Nedd4l, and Vav2 were identified and regulated by piRNAs in the process of l-methionine inhibits cocaine CPP. Thereinto, Vav2 was regulated by multiple DE piRNAs by sharing the common sequence: GTCTCTCCAGCCACCTT. Meanwhile, it was found that piRNA positively regulates miRNA and three genes Bcl3, Il20ra, and Insrr were identified and regulated by piRNA through miRNA. CONCLUSION The results showed that piRNA negatively regulated target mRNA genes and positively regulated target miRNA genes. Genes located in substance dependence, signal transduction and also nervous functions pathways were identified. When taken together, these data may explain the roles of l-methionine in counteracting the effects of cocaine CPP via piRNAs.
Collapse
Affiliation(s)
- Kunlin Zhang
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China
| | - Guanyu Ji
- ShenZhen Gendo Health Technology Co., Ltd, ShenZhen, China
| | - Mei Zhao
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Institute of Psychology, CAS Key Lab of Mental Health, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
19
|
Faillace MP, Bernabeu RO. Epigenetic Mechanisms Mediate Nicotine-Induced Reward and Behaviour in Zebrafish. Curr Neuropharmacol 2021; 20:510-523. [PMID: 34279203 PMCID: PMC9608226 DOI: 10.2174/1570159x19666210716112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nicotine induces long-term changes in the neural activity of the mesocorticolimbic reward pathway structures. The mechanisms involved in this process have not been fully characterized. The hypothesis discussed here proposed that epigenetic regulation participates in the installation of persistent adaptations and long-lasting synaptic plasticity generated by nicotine action on the mesolimbic dopamine neurons of zebrafish. The epigenetic mechanisms induced by nicotine entail histone and DNA chemical modifications, which have been described to lead to changes in gene expression. Among the enzymes that catalyze epigenetic chemical modifications, histone deacetylases (HDACs) remove acetyl groups from histones, thereby facilitating DNA relaxation and making DNA more accessible to gene transcription. DNA methylation, which is dependent on DNA methyltransferase (DNMTs) activity, inhibits gene expression by recruiting several methyl binding proteins that prevent RNA polymerase binding to DNA. In zebrafish, phenylbutyrate (PhB), an HDAC inhibitor, abolishes nicotine rewarding properties together with a series of typical reward-associated behaviors. Furthermore, PhB and nicotine alter long- and short-term object recognition memory in zebrafish, respectively. Regarding DNA methylation effects, a methyl group donor L-methionine (L-met) was found to dramatically reduce nicotine-induced conditioned place preference (CPP) in zebrafish. Simultaneous treatment with DNMT inhibitor 5-aza-2’-deoxycytidine (AZA) was found to reverse the L-met effect on nicotine-induced CPP as well as nicotine reward-specific effects on genetic expression in zebrafish. Therefore, pharmacological interventions that modulate epigenetic regulation of gene expression should be considered as a potential therapeutic method to treat nicotine addiction.
Collapse
Affiliation(s)
- Maria Paula Faillace
- Departamento de Fisiología, Facultad de Medicina e Instituto de Fisiología y Biofísica Profesor Bernardo Houssay (IFIBIO-Houssay, CONICET-UBA), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ramón O Bernabeu
- Departamento de Fisiología, Facultad de Medicina e Instituto de Fisiología y Biofísica Profesor Bernardo Houssay (IFIBIO-Houssay, CONICET-UBA), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Epigenetics of addiction. Neurochem Int 2021; 147:105069. [PMID: 33992741 DOI: 10.1016/j.neuint.2021.105069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Substance use disorders are complex biopsychosocial disorders that have substantial negative neurocognitive impact in various patient populations. These diseases involve the compulsive use of licit or illicit substances despite adverse medicolegal consequences and appear to be secondary to long-lasting epigenetic and transcriptional adaptations in brain reward and non-reward circuits. The accumulated evidence supports the notion that repeated drug use causes changes in post-translational histone modifications and in DNA methylation/hydroxymethylation processes in several brain regions. This review provides an overview of epigenetic changes reported in models of cocaine, methamphetamine, and opioid use disorders. The accumulated data suggest that future therapeutic interventions should focus on the development of epigenetic drugs against addictive diseases.
Collapse
|
21
|
Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on opiate-induced synaptic and behavioral plasticity. Mol Psychiatry 2021; 26:1162-1177. [PMID: 31576007 DOI: 10.1038/s41380-019-0533-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023]
Abstract
Compelling evidence suggests that synaptic structural plasticity, driven by remodeling of the actin cytoskeleton, underlies addictive drugs-induced long-lasting behavioral plasticity. However, the signaling mechanisms leading to actin cytoskeleton remodeling remain poorly defined. DNA methylation is a critical mechanism used to control activity-dependent gene expression essential for long-lasting synaptic plasticity. Here, we provide evidence that DNA methyltransferase DNMT3a is degraded by the E2 ubiquitin-conjugating enzyme Ube2b-mediated ubiquitination in dorsal hippocampus (DH) of rats that repeatedly self-administrated heroin. DNMT3a degradation leads to demethylation in CaMKK1 gene promotor, thereby facilitating CaMKK1 expression and consequent activation of its downstream target CaMKIα, an essential regulator of spinogenesis. CaMKK1/CaMKIα signaling regulates actin cytoskeleton remodeling in the DH and behavioral plasticity by activation of Rac1 via acting Rac guanine-nucleotide-exchange factor βPIX. These data suggest that Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on CaMKK1 gene and thus activates CaMKK1/CaMKIα/βPIX/Rac1 cascade, leading to drug use-induced actin polymerization and behavior plasticity.
Collapse
|
22
|
Zipperly ME, Sultan FA, Graham GE, Brane AC, Simpkins NA, Carullo NVN, Ianov L, Day JJ. Regulation of dopamine-dependent transcription and cocaine action by Gadd45b. Neuropsychopharmacology 2021; 46:709-720. [PMID: 32927466 PMCID: PMC8027017 DOI: 10.1038/s41386-020-00828-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Exposure to drugs of abuse produces robust transcriptional and epigenetic reorganization within brain reward circuits that outlives the direct effects of the drug and may contribute to addiction. DNA methylation is a covalent epigenetic modification that is altered following stimulant exposure and is critical for behavioral and physiological adaptations to drugs of abuse. Although activity-related loss of DNA methylation requires the Gadd45 (Growth arrest and DNA-damage-inducible) gene family, very little is known about how this family regulates activity within the nucleus accumbens or behavioral responses to drugs of abuse. Here, we combined genome-wide transcriptional profiling, pharmacological manipulations, electrophysiological measurements, and CRISPR tools with traditional knockout and behavioral approaches in rodent model systems to dissect the role of Gadd45b in dopamine-dependent epigenetic regulation and cocaine reward. We show that acute cocaine administration induces rapid upregulation of Gadd45b mRNA in the rat nucleus accumbens, and that knockout or site-specific CRISPR/Cas9 gene knockdown of Gadd45b blocks cocaine conditioned place preference. In vitro, dopamine treatment in primary striatal neurons increases Gadd45b mRNA expression through a dopamine receptor type 1 (DRD1)-dependent mechanism. Moreover, shRNA-induced Gadd45b knockdown decreases expression of genes involved in psychostimulant addiction, blocks induction of immediate early genes by DRD1 stimulation, and prevents DRD1-mediated changes in DNA methylation. Finally, we demonstrate that Gadd45b knockdown decreases striatal neuron action potential burst duration in vitro, without altering other electrophysiological characteristics. These results suggest that striatal Gadd45b functions as a dopamine-induced gene that is necessary for cocaine reward memory and DRD1-mediated transcriptional activity.
Collapse
Affiliation(s)
- Morgan E. Zipperly
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Faraz A. Sultan
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Guan-En Graham
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Andrew C. Brane
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Natalie A. Simpkins
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nancy V. N. Carullo
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Lara Ianov
- grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Jeremy J. Day
- grid.265892.20000000106344187Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA ,grid.265892.20000000106344187Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
23
|
Abstract
A growing body of evidence from the past 15 years implicates epigenetic mechanisms in the behavioral effects of addictive drugs. The main focus of these studies has been epigenetic mechanisms of psychomotor sensitization and drug reinforcement, as assessed by the conditioned place preference and drug self-administration procedures. Some of these studies have documented long-lasting changes in the expression of epigenetic enzymes and molecules that persist for weeks after the last drug exposure. These observations have inspired more recent investigations on the epigenetic mechanisms of relapse to drug seeking after prolonged abstinence. Here, we review studies that have examined epigenetic mechanisms (e.g., histone modifications, chromatin remodeler-associated modifications, and DNA methylation) that contribute to relapse to cocaine, amphetamine, methamphetamine, morphine, heroin, nicotine, or alcohol seeking, as assessed in rodent models. We first provide a brief overview of studies that have examined persistent epigenetic changes in the brain after prolonged abstinence from noncontingent drug exposure or drug self-administration. Next, we review studies on the effect of either systemic or brain site-specific epigenetic manipulations on the reinstatement of drug-conditioned place preference after extinction of the learned preference, the reinstatement of drug seeking after operant drug self-administration and extinction of the drug-reinforced responding, and the incubation of drug craving (the time-dependent increase in drug seeking after cessation of drug self-administration). We conclude by discussing the implications of these studies for understanding mechanisms contributing to persistent relapse vulnerability after prolonged abstinence. We also discuss the implications of these results for translational research on the potential use of systemically administered epigenetic enzyme inhibitors for relapse prevention in human drug users.
Collapse
|
24
|
Hong Q, Xu W, Lin Z, Liu J, Chen W, Zhu H, Lai M, Zhuang D, Xu Z, Fu D, Zhou W, Liu H. Role of GABRD Gene Methylation in the Nucleus Accumbens in Heroin-Seeking Behavior in Rats. Front Pharmacol 2021; 11:612200. [PMID: 33551813 PMCID: PMC7859445 DOI: 10.3389/fphar.2020.612200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play important roles in regulating gene expression and may mediate neuroplasticity and lead to drug-induced aberrant behaviors. Although several brain regions and neurobiological mechanisms have been suggested to be involved in these processes, there is remarkably little known about the effects of DNA methylation on heroin-seeking behavior. Using a Sprague-Dawley rat model, we show that heroin self-administration resulted in gamma-aminobutyric acid type A receptor subunit delta (GABRD) gene hypomethylation, which was associated with transcriptional upregulation of GABRD in the nucleus accumbens (NAc). Systemic l-methionine (MET) administration significantly strengthened the reinstatement of heroin-seeking behavior induced by heroin priming, whereas intra-NAc injections of the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza-dC) had the opposite effect on heroin-seeking. Meanwhile, 5-Aza-dC treatment decreased DNA methylation and upregulated the expression of GABRD in the NAc, whereas MET had the opposite effect. Our results also reveal that 5-Aza-dC might alter the methylation landscape of the GABRD gene by directly repressing DNMT1 and DNMT3A expression. Furthermore, reinstatement of heroin-seeking behavior was significantly inhibited by directly overexpressing GABRD and remarkably reinforced by GABRD gene silencing in the NAc. Collectively, these results suggest that targeting the GABRD gene and its methylation might represent a novel pharmacological strategy for treating heroin addiction and relapse.
Collapse
Affiliation(s)
- Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Zi Lin
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
| | - Jing Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
| | - Weisheng Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Huaqiang Zhu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Zemin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Dan Fu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, China
| |
Collapse
|
25
|
Pisera-Fuster A, Zwiller J, Bernabeu R. Methionine Supplementation Abolishes Nicotine-Induced Place Preference in Zebrafish: a Behavioral and Molecular Analysis. Mol Neurobiol 2021; 58:2590-2607. [PMID: 33475949 DOI: 10.1007/s12035-020-02260-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
In zebrafish, nicotine is known to regulate sensitivity to psychostimulants via epigenetic mechanisms. Little however is known about the regulation of addictive-like behavior by DNA methylation processes. To evaluate the influence of DNA methylation on nicotine-induced conditioned place preference (CPP), zebrafish were exposed to methyl supplementation through oral L-methionine (Met) administration. Met was found to reduce dramatically nicotine-induced CPP as well as behaviors associated with drug reward. The reduction was associated with the upregulation of DNA methyltransferases (DNMT1 and 3) as well as with the downregulation of methyl-cytosine dioxygenase-1 (TET1) and of nicotinic receptor subunits. Met also increased the expression of histone methyltransferases in nicotine-induced CPP groups. It reversed the nicotine-induced reduction in the methylation at α7 and NMDAR1 gene promoters. Treatment with the DNMT inhibitor 5-aza-2'-deoxycytidine (AZA) was found to reverse the effects of Met in structures of the reward pathway. Interestingly, Met did not modify the amount of the phospho-form of CREB (pCREB), a key factor establishing nicotine conditioning, whereas AZA increased pCREB levels. Our data suggest that nicotine-seeking behavior is partially dependent on DNA methylation occurring probably at specific gene loci, such as α7 and NMDAR1 receptor gene promoters. Overall, they suggest that Met should be considered as a potential therapeutic drug to treat nicotine addiction.
Collapse
Affiliation(s)
- Antonella Pisera-Fuster
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Paraguay 2155 7thfloor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg, France
| | - Ramon Bernabeu
- Department of Physiology and Institute of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Paraguay 2155 7thfloor (C1121ABG), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
26
|
Abstract
This review explores how different classes of drugs, including those with therapeutic and abuse potential, alter brain functions and behavior via the epigenome. Epigenetics, in its simplest interpretation, is the study of the regulation of a genes' transcriptional potential. The epigenome is established during development but is malleable throughout life by a wide variety of drugs, with both clinical utility and abuse potential. An epigenetic effect can be central to the drug's therapeutic or abuse potential, or it can be independent from the main effect but nevertheless produce beneficial or adverse side effects. Here, I discuss the various epigenetic effects of main pharmacological drug classes, including antidepressants, antiepileptics, and drugs of abuse.
Collapse
Affiliation(s)
- Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA;
| |
Collapse
|
27
|
Jiang F, Zheng W, Wu C, Li Y, Shen F, Liang J, Li M, Zhang J, Sui N. Double dissociation of inhibitory effects between the hippocampal TET1 and TET3 in the acquisition of morphine self-administration in rats. Addict Biol 2021; 26:e12875. [PMID: 32031744 DOI: 10.1111/adb.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The development of opioid addiction involves DNA methylation. Accordingly, the DNA demethylation, induced by ten-eleven translocation (Tet) enzymes, may represent a novel approach to prevent opioid addiction. The present study examined the role of TET1 and TET3 in the development of morphine-seeking behavior in rats. We showed that 1 day of morphine self-administration (SA) training upregulated TET3 but not TET1 expression in the hippocampal CA1. With 7 days of morphine SA training, the expression of TET3 in the CA1 returned to the baseline level, while the TET1 expression was downregulated. No change of TET1 and TET3 in the nucleus accumbens shell was observed in morphine SA trained rats, or in the yoked morphine rats, or in rats trained for saccharin SA. Furthermore, we found that knocking down TET3 expression in the CA1 accelerated the acquisition of morphine SA, while overexpression of the catalytic domain of TET1 in the CA1 attenuated the acquisition. Together, these findings suggest that TET1 and TET3 in the CA1 are important epigenetic modulators involved in the morphine-seeking behavior and provide a new strategy in the treatment of opioid addiction.
Collapse
Affiliation(s)
- Feng‐Ze Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wei Zheng
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Chao Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of Psychology University of Nebraska—Lincoln Lincoln Nebraska USA
| | - Jian‐Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
28
|
Methionine mediates resilience to chronic social defeat stress by epigenetic regulation of NMDA receptor subunit expression. Psychopharmacology (Berl) 2020; 237:3007-3020. [PMID: 32564114 DOI: 10.1007/s00213-020-05588-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Previous studies suggested that methionine (Met) levels are decreased in depressed patients. However, whether the decrease in this amino acid is important for phenotypic behaviors associated with depression has not been deciphered. OBJECTIVE The response of individuals to chronic stress is variable, with some individuals developing depression and others becoming resilient to stress. In this study, our objective was to examine the effect of Met on susceptibility to stress. METHODS Male C57BL/6J mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day 11, the behavior of mice was assessed using social interaction and open-field tests. Mice received Met 4 h before each defeat session. Epigenetic targets were assessed either through real-rime RTPCR or through Western Blots. RESULTS Met did not modulate anxiety-like behaviors, but rather promoted resilience to chronic stress, rescued social avoidance behaviors and reversed the increase in the cortical expression levels of N-methyl-D-aspartate receptor (NMDAR) subunits. Activating NMDAR activity abolished the ability of Met to promote resilience to stress and to rescue social avoidance behavior, whereas inhibiting NMDAR did not show any synergistic or additive protective effects. Indeed, Met increased the cortical levels of the histone methyltransferase SETDB1, and in turn, the levels of the repressive histone H3 lysine (K9) trimethylation (me3). CONCLUSIONS Our data indicate that Met rescues susceptibility to stress by inactivating cortical NMDAR activity through an epigenetic mechanism involving histone methylation.
Collapse
|
29
|
Sivalingam K, Samikkannu T. Neuroprotective Effect of Piracetam against Cocaine-Induced Neuro Epigenetic Modification of DNA Methylation in Astrocytes. Brain Sci 2020; 10:E611. [PMID: 32899583 PMCID: PMC7565945 DOI: 10.3390/brainsci10090611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Cocaine abuse is known to alter mitochondrial biogenesis and induce epigenetic modification linked with neuronal dysfunction. Cocaine-induced epigenetic modification of DNA methylation and the mitochondrial genome may affect mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), as epigenetic DNA methylation is key to maintaining genomic integrity in the central nervous system (CNS). However, the impact of cocaine-mediated epigenetic changes in astrocytes has not yet been elucidated. In this study, we explored the neuroprotective effect of piracetam against cocaine-induced epigenetic changes in DNA methylation in astrocytes. To study our hypothesis, we exposed human astrocytes to cocaine alone or in combination with the nootropic drug piracetam. We examined the expression of the DNA methyltransferases (DNMTs) DNMT-1, DNMT-3A, and DNMT-3B; global DNA methylation levels of 5-methycytosine (5-mC); and induction of ten-eleven translocation (TET) enzymes in astrocytes. In addition, we analyzed mtDNA methylation by targeted next-generation bisulfite sequencing. Our data provide evidence that cocaine impairs DNMT activity and thereby has impacts on mtDNA, which might contribute to the neurodegeneration observed in cocaine users. These effects might be at least partially prevented by piracetam, allowing neuronal function to be maintained.
Collapse
Affiliation(s)
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX 78363, USA;
| |
Collapse
|
30
|
Forget B, Icick R, Robert J, Correia C, Prevost MS, Gielen M, Corringer PJ, Bellivier F, Vorspan F, Besson M, Maskos U. Alterations in nicotinic receptor alpha5 subunit gene differentially impact early and later stages of cocaine addiction: a translational study in transgenic rats and patients. Prog Neurobiol 2020; 197:101898. [PMID: 32841724 DOI: 10.1016/j.pneurobio.2020.101898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Cocaine addiction is a chronic and relapsing disorder with an important genetic component. Human candidate gene association studies showed that the single nucleotide polymorphism (SNP) rs16969968 in the α5 subunit (α5SNP) of nicotinic acetylcholine receptors (nAChRs), previously associated with increased tobacco dependence, was linked to a lower prevalence of cocaine use disorder (CUD). Three additional SNPs in the α5 subunit, previously shown to modify α5 mRNA levels, were also associated with CUD, suggesting an important role of the subunit in this pathology. To investigate the link between this subunit and CUD, we submitted rats knockout for the α5 subunit gene (α5KO), or carrying the α5SNP, to cocaine self-administration (SA) and showed that the acquisition of cocaine-SA was impaired in α5SNP rats while α5KO rats exhibited enhanced cocaine-induced relapse associated with altered neuronal activity in the nucleus accumbens. In addition, we observed in a human cohort of patients with CUD that the α5SNP was associated with a slower transition from first cocaine use to CUD. We also identified a novel SNP in the β4 nAChR subunit, part of the same gene cluster in the human genome and potentially altering CHRNA5 expression, associated with shorter time to relapse to cocaine use in patients. In conclusion, the α5SNP is protective against CUD by influencing early stages of cocaine exposure while CHRNA5 expression levels may represent a biomarker for the risk to relapse to cocaine use. Drugs modulating α5 containing nAChR activity may thus represent a novel therapeutic strategy against CUD.
Collapse
Affiliation(s)
- Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Jonathan Robert
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Caroline Correia
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Marie S Prevost
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marc Gielen
- Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; Université Sorbonne - Paris - Cité, Paris, France; Unité Récepteurs-Canaux, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis - Lariboisière - Fernand Widal, Assistance-Publique Hôpitaux de Paris, 75010, Paris, France; INSERM UMR_S1144, 4 avenue de l'Observatoire, 75006, Paris, France; Université Sorbonne - Paris - Cité, Paris, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
31
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
32
|
Vaher K, Anier K, Jürgenson M, Harro J, Kalda A. Cocaine-induced changes in behaviour and DNA methylation in rats are influenced by inter-individual differences in spontaneous exploratory activity. J Psychopharmacol 2020; 34:680-692. [PMID: 32338111 DOI: 10.1177/0269881120916137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Individual differences in behavioural traits influence susceptibility to addictive disorders. Drug addiction involves changes in gene expression, proposed to occur via DNA methylation (DNAm). AIMS To investigate DNAm changes in reward-related brain structures (nucleus accumbens (NAc), lateral habenula (LHb)) in response to cocaine exposure in rats differing in spontaneous exploratory activity. METHODS Rats were observed in the exploration box and categorised as high- (HE) or low explorers (LE). Rats were administered vehicle or cocaine (12 mg/kg, i.p.) for 7 days, followed by a 14-day withdrawal period and cocaine challenge (7 mg/kg); horizontal locomotor activity was recorded. Brain tissue was dissected after 24 h; we analysed messenger RNA (mRNA) and activity levels of epigenetic DNA modifiers (DNMTs and TETs) as well as mRNA and promoter methylation levels at selected genes previously linked to addictive behaviours. RESULTS The cocaine challenge dose stimulated locomotor activity in both LE- and HE rats only when administered after a repeated cocaine schedule, suggesting development of behavioural sensitisation. Quantitative polymerase chain reaction analyses demonstrated higher basal expression of Dnmt3a, Tet2 and Tet3 in the LHb of HE- vs. LE rats, and we observed differential effects of cocaine exposure on the expression and activity of epigenetic DNA modifiers in the NAc and LHb of HE- and LE rats. Furthermore, cocaine exposure differentially altered promoter methylation levels of A2AR, Ppp1cc, and Taar7b in the NAc and LHb of HE- and LE rats. CONCLUSIONS DNAm might play a role in the HE- and LE phenotypes as well as mediate behavioural effects of LE- and HE rats in response to drugs of abuse.
Collapse
Affiliation(s)
- Kadi Vaher
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | | | - Jaanus Harro
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
33
|
Zhang J, Jiang F, Zheng W, Duan Y, Jin S, Shen F, Liang J, Li M, Sui N. DNMT3a in the hippocampal CA1 is crucial in the acquisition of morphine self-administration in rats. Addict Biol 2020; 25:e12730. [PMID: 30950138 DOI: 10.1111/adb.12730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Drug-reinforced excessive operant responding is one fundamental feature of long-lasting addiction-like behaviors and relapse in animals. However, the transcriptional regulatory mechanisms responsible for the persistent drug-specific (not natural rewards) operant behavior are not entirely clear. In this study, we demonstrate a key role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of morphine self-administration (SA) in rats. The expression of DNMT3a in the hippocampal CA1 region but not in the nucleus accumbens shell was significantly up-regulated after 1- and 7-day morphine SA (0.3 mg/kg/infusion) but not after the yoked morphine injection. On the other hand, saccharin SA did not affect the expression of DNMT3a or DNMT3b. DNMT inhibitor 5-aza-2-deoxycytidine (5-aza) microinjected into the hippocampal CA1 significantly attenuated the acquisition of morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the morphine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays an important role in the acquisition of morphine SA and may be a valid target to prevent the development of morphine addiction.
Collapse
Affiliation(s)
- Jian‐Jun Zhang
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Feng‐Ze Jiang
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Wei Zheng
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Ying Duan
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Shu‐Bo Jin
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of PsychologyUniversity of Nebraska–Lincoln Lincoln Nebraska USA
| | - Nan Sui
- CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
34
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Sex and Individual Differences in Alcohol Intake Are Associated with Differences in Ketamine Self-Administration Behaviors and Nucleus Accumbens Dendritic Spine Density. eNeuro 2019; 6:ENEURO.0221-19.2019. [PMID: 31740575 PMCID: PMC6893233 DOI: 10.1523/eneuro.0221-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023] Open
Abstract
Clinical and preclinical studies have shown that ketamine, an NMDA receptor antagonist, has promising therapeutic value for the treatment of alcohol use disorder (AUD). However, the maintenance of remission will ultimately require repeated infusions of ketamine, which may lead to abuse potential and may hinder its therapeutic benefits. It is therefore crucial to assess the effects of repeated treatments with ketamine on alcohol intake. Accordingly, this study aimed to examine in both sexes how individual differences in alcohol intake alter ketamine self-administration and how ketamine self-administration will alter subsequent alcohol-drinking behaviors. Male and female rats intermittently drank alcohol or water for 10 weeks and were divided into high- or low-alcohol intake groups prior to ketamine self-administration. Rats self-administered ketamine under fixed and progressive ratio schedules of reinforcement from week 4 to 7, and the incubation of ketamine craving was examined from week 8 to 10. To investigate structural plasticity in a brain region involved in reward, nucleus accumbens dendritic spine morphology was examined. Our results show that high alcohol intake in male rats attenuated ketamine self-administration, whereas in female rats high alcohol intake enhanced motivation to self-administer ketamine. Ketamine reduced alcohol intake in high-alcohol male rats but increased it in low-alcohol female rats. Incubation of ketamine craving developed in all groups except low-alcohol females. Three weeks of abstinence from ketamine was associated with increased mushroom spines in all groups except the high-alcohol male group. Overall, these data suggest that ketamine as a treatment for AUD may benefit male subjects, but not female subjects, and warrants further investigation before use as a therapeutic agent.
Collapse
|
36
|
Camilo C, Maschietto M, Vieira HC, Tahira AC, Gouveia GR, Feio dos Santos AC, Negrão AB, Ribeiro M, Laranjeira R, Vallada H, Brentani H. Genome-wide DNA methylation profile in the peripheral blood of cocaine and crack dependents. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2019; 41:485-493. [PMID: 31116258 PMCID: PMC6899365 DOI: 10.1590/1516-4446-2018-0092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Cocaine use disorders (CUDs) represent a major public health problem in many countries. To better understand the interaction between the environmental modulations and phenotype, the aim of the present study was to investigate the DNA methylation pattern of CUD patients, who had concomitant cocaine and crack dependence, and healthy controls. METHODS We studied DNA methylation profiles in the peripheral blood of 23 CUD patients and 24 healthy control subjects using the Illumina Infinium HumanMethylation450 BeadChip arrays. RESULTS Comparison between CUD patients and controls revealed 186 differentially methylated positions (DMPs; adjusted p-value [adjP] < 10-5) related to 152 genes, with a subset of CpGs confirmed by pyrosequencing. DNA methylation patterns discriminated CUD patients and control groups. A gene network approach showed that the EHMT1, EHMT2, MAPK1, MAPK3, MAP2K1, and HDAC5 genes, which are involved in transcription and chromatin regulation cellular signaling pathways, were also associated with cocaine dependence. CONCLUSION The investigation of DNA methylation patterns may contribute to a better understanding of the biological mechanisms involved in CUD.
Collapse
Affiliation(s)
- Caroline Camilo
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Mariana Maschietto
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Henrique C. Vieira
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Ana C. Tahira
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Gisele R. Gouveia
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Ana C. Feio dos Santos
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - André B. Negrão
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Marcelo Ribeiro
- Unidade de Pesquisa em Álcool e Drogas (UNIAD), Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ronaldo Laranjeira
- Unidade de Pesquisa em Álcool e Drogas (UNIAD), Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Homero Vallada
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Helena Brentani
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
37
|
Saad L, Sartori M, Pol Bodetto S, Romieu P, Kalsbeek A, Zwiller J, Anglard P. Regulation of Brain DNA Methylation Factors and of the Orexinergic System by Cocaine and Food Self-Administration. Mol Neurobiol 2019; 56:5315-5331. [PMID: 30603957 DOI: 10.1007/s12035-018-1453-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
Inhibitors of DNA methylation and orexin type-1 receptor antagonists modulate the neurobiological effects driving drugs of abuse and natural reinforcers by activating common brain structures of the mesolimbic reward system. In this study, we applied a self-administration paradigm to assess the involvement of factors regulating DNA methylation processes and satiety or appetite signals. These factors include Dnmts and Tets, miR-212/132, orexins, and orx-R1 genes. The study focused on dopamine projection areas such as the prefrontal cortex (PFCx) and caudate putamen (CPu) and in the hypothalamus (HP) that is interconnected with the reward system. Striking changes were observed in response to both reinforcers, but differed depending on contingent and non-contingent delivery. Expression also differed in the PFCx and the CPu. Cocaine and food induced opposite effects on Dnmt3a expression in both brain structures, whereas they repressed both miRs to a different extent, without affecting their primary transcript in the CPu. Unexpectedly, orexin mRNAs were found in the CPu, suggesting a transport from their transcription site in the HP. The orexin receptor1 gene was found to be induced by cocaine in the PFCx, consistent with a regulation by DNA methylation. Global levels of 5-methylcytosines in the PFCx were not significantly altered by cocaine, suggesting that it is rather their distribution that contributes to long-lasting behaviors. Together, our data demonstrate that DNA methylation regulating factors are differentially altered by cocaine and food. At the molecular level, they support the idea that neural circuits activated by both reinforcers do not completely overlap.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Maxime Sartori
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
- IGBMC, Inserm U 964, CNRS UMR 7104, University of Strasbourg, Illkirch, France
| | - Sarah Pol Bodetto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France.
- INSERM, Institut National de la Santé et de la Recherche Médicale, Paris, France.
| |
Collapse
|
38
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
39
|
Cadet JL, Patel R, Jayanthi S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol Biochem Behav 2019; 179:98-108. [PMID: 30797763 DOI: 10.1016/j.pbb.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine addiction is characterized by compulsive binges of drug intake despite adverse life consequences. A model of methamphetamine self-administration that includes contingent footshocks to constitute adverse consequences has helped to segregate rats that reduce or stop lever pressing for methamphetamine (sensitive) from those that continue to lever press for the drug (resistant) in the presence of negative outcomes. We have observed differential DNA hydroxymethylation and increased expression of potassium channel mRNAs in the nucleus accumbens of sensitive compared to resistant rats, suggesting a role of these channels in suppressing methamphetamine intake. There were also significant increases in nerve growth factor (NGF) expression and activation of its downstream signaling pathway (NGF-TrkA and p75NTR/MAPK signaling) in only the dorsal striatum of sensitive rats after a month of abstinence. In contrast, oxytocin mRNA expression was increased in only the nucleus accumbens of resistant rats compared to sensitive rats euthanized after that time. These results indicate that footshocks can differentiate two behavioral phenotypes with differential biochemical and epigenetic consequences in the ventral and dorsal striatum.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Ravish Patel
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
40
|
Beayno A, El Hayek S, Noufi P, Tarabay Y, Shamseddeen W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol Biol 2019; 2011:609-631. [PMID: 31273724 DOI: 10.1007/978-1-4939-9554-7_35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction is an international public health problem. It is a polygenic disorder best understood by accounting for the interplay between genetic and environmental factors. A recent way of perceiving this interaction is through epigenetics, which help grasp the neurobiological changes that occur in addiction and explain its relapsing-remitting nature. It is now known that every cell has a different way of expressing its phenotype, despite a universal DNA sequence. This is particularly true in the central nervous system where environmental factors influence this expression. Three major epigenetic processes have been found to participate in the perpetuation of addiction by changing the state of the chromatin and the degree of gene transcription: histone acetylation and methylation, DNA methylation, and noncoding RNAs. In the animal model literature, substantial evidence exists about the role of these epigenetic changes in the different phases of substance use disorders. This book chapter is a non-systematic literature review of the recent publications tackling the topic of epigenetics in addiction. Even though this evidence remains scarce and relatively poorly systematized, it is a promising foundation for future research of molecules that target specific brain regions and their functions to address core behavioral changes seen in addiction.
Collapse
Affiliation(s)
- Antoine Beayno
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul Noufi
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Tarabay
- Faculty of Pedagogy, Lebanese University, New Rawda, Lebanon.,Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
41
|
López AJ, Siciliano CA, Calipari ES. Activity-Dependent Epigenetic Remodeling in Cocaine Use Disorder. Handb Exp Pharmacol 2019; 258:231-263. [PMID: 31628597 DOI: 10.1007/164_2019_257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substance use disorder (SUD) is a behavioral disorder characterized by cycles of abstinence, drug seeking, and relapse. SUD is characterized by aberrant learning processes which develop after repeated exposure to drugs of abuse. At the core of this phenotype is the persistence of symptoms, such as craving and relapse to drug seeking, long after the cessation of drug use. The neural basis of these behavioral changes has been linked to dysfunction in neural circuits across the brain; however, the molecular drivers that allow for these changes to persist beyond the lifespan of any individual protein remain opaque. Epigenetic adaptations - where DNA is modified to increase or decrease the probability of gene expression at key genes - have been identified as a mechanism underlying the long-lasting nature of drug-seeking behavior. Thus, to understand SUD, it is critical to define the interplay between neuronal activation and longer-term changes in transcription and epigenetic remodeling and define their role in addictive behaviors. In this review, we discuss the current understanding of drug-induced changes to circuit function, recent discoveries in epigenetic mechanisms that mediate these changes, and, ultimately, how these adaptations drive the persistent nature of relapse, with emphasis on adaptations in models of cocaine use disorder. Understanding the complex interplay between epigenetic gene regulation and circuit activity will be critical in elucidating the neural mechanisms underlying SUD. This, with the advent of novel genetic-based techniques, will allow for the generation of novel therapeutic avenues to improve treatment outcomes in SUD.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt Institute for Infection, Immunology, and Infection, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
42
|
Zhang WH, Cao KX, Ding ZB, Yang JL, Pan BX, Xue YX. Role of prefrontal cortex in the extinction of drug memories. Psychopharmacology (Berl) 2019; 236:463-477. [PMID: 30392133 DOI: 10.1007/s00213-018-5069-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022]
Abstract
It has been recognized that drug addiction engages aberrant process of learning and memory, and substantial studies have focused on developing effective treatment to erase the enduring drug memories to reduce the propensity to relapse. Extinction, a behavioral intervention exposing the individuals to the drug-associated cues repeatedly, can weaken the craving and relapse induced by drug-associated cues, but its clinic efficacy is limited. A clear understanding of the neuronal circuitry and molecular mechanism underlying extinction of drug memory will facilitate the successful use of extinction therapy in clinic. As a key component of mesolimbic system, medial prefrontal cortex (mPFC) has received particular attention largely in that PFC stands at the core of neural circuits for memory extinction and manipulating mPFC influences extinction of drug memories and subsequent relapse. Here, we review the recent advances in both animal models of drug abuse and human addicted patients toward the understanding of the mechanistic link between mPFC and drug memory, with particular emphasis on how mPFC contributes to the extinction of drug memory at levels ranging from neuronal architecture, synaptic plasticity to molecular signaling and epigenetic regulation, and discuss the clinic relevance of manipulating the extinction process of drug memory to prevent craving and relapse through enhancing mPFC function.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ke-Xin Cao
- Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China.,National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Jian-Li Yang
- Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yan-Xue Xue
- National Institute on Drug Dependence, and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China. .,Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commision, Peking University, Beijing, 100191, China.
| |
Collapse
|
43
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
44
|
Wright KN, Dossat AM, Strong CE, Sailer LL, Pavlock SM, Kabbaj M. Optogenetic inhibition of medial prefrontal cortex projections to the nucleus accumbens core and methyl supplementation via L-Methionine attenuates cocaine-primed reinstatement. Integr Zool 2018; 13:795-803. [PMID: 30318755 DOI: 10.1111/1749-4877.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methylation has been identified as a powerful and activity-dependent regulator of changes in the brain that may underlie neuroadaptations in response to various types of stimuli, including exposure to drugs of abuse. Indeed, the medial prefrontal cortex (mPFC) projections to the nucleus accumbens (NAc) are critically important for reinstated cocaine-seeking in a rodent model of cocaine relapse. This circuitry undergoes several epigenetic modifications following cocaine exposure, including changes in DNA methylation that are associated with drug-seeking behavior. We have previously shown that methyl supplementation via L-Methionine (MET) administration attenuates cocaine-seeking behavior and reverses expression and methylation patterns of the immediate early gene c-fos, suggesting that MET may act by altering the excitability of this circuitry during cocaine reinstatement. In the current study, male rats were microinjected with an adeno-associated virus overexpressing halorhodopsin in the mPFC, optical fibers were surgically implanted into the NAc, and the rats were given injections of MET daily. Rats underwent acquisition of cocaine self-administration (0.75 mg/kg/infusion, 2-h sessions) followed by extinction training in the absence of drug-paired cues. Two reinstatement tests were conducted: cue-induced reinstatement without optogenetic manipulations and cocaine-primed reinstatement with optogenetic inhibition of mPFC-to-NAc projections. There were no group differences before the cocaine-primed reinstatement session, and all groups showed robust cue-induced reinstatement. Both rats treated with MET and rats that received mPFC-to-NAc inhibition showed an abolishment of cocaine-primed reinstatement, suggesting that systemic methyl supplementation may act through this critical circuity.
Collapse
Affiliation(s)
- Katherine N Wright
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Amanda M Dossat
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.,National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Caroline E Strong
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Lindsay L Sailer
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Samantha M Pavlock
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA.,Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
45
|
Soda K. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism. Int J Mol Sci 2018; 19:E3106. [PMID: 30309036 PMCID: PMC6213949 DOI: 10.3390/ijms19103106] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Cardiovascular Research Institute, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma, Omiya, Saitama-city, Saitama Prefecture 330-8503, Japan.
| |
Collapse
|
46
|
Neuroendocrine aging precedes perimenopause and is regulated by DNA methylation. Neurobiol Aging 2018; 74:213-224. [PMID: 30497015 DOI: 10.1016/j.neurobiolaging.2018.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/22/2022]
Abstract
Perimenopause marks initiation of female reproductive senescence. Age of onset is only 47% heritable suggesting that additional factors other than inheritance regulate this endocrine aging transition. To elucidate these factors, we characterized transcriptional and epigenomic changes across endocrine aging using a rat model that recapitulates characteristics of the human perimenopause. RNA-seq analysis revealed that hypothalamic aging precedes onset of perimenopause. In the hypothalamus, global DNA methylation declined with both age and reproductive senescence. Genome-wide epigentic analysis revealed changes in DNA methylation in genes required for hormone signaling, glutamate signaling, and melatonin and circadian pathways. Specific epignetic changes in these signaling pathways provide insight into the origin of perimenopause-associated neurological symptoms such as insomnia. Treatment with 5-aza-2'-deoxycytidine, a DNA-methyltransferase-1 inhibitor, accelerated transition to reproductive senescence/ whereas supplementation with methionine, a S-adenosylmethionine precursor, delayed onset of perimenopause and endocrine aging. Collectively, these data provide evidence for a critical period of female neuroendocrine aging in brain that precedes ovarian failure and that DNA methylation regulates the transition duration of perimenopause to menopause.
Collapse
|
47
|
Ploense KL, Li X, Baker-Andresen D, Carr AE, Woodward N, Bagley J, Szumlinski KK, Bredy TW, Kippin TE. Prolonged-access to cocaine induces distinct Homer2 DNA methylation, hydroxymethylation, and transcriptional profiles in the dorsomedial prefrontal cortex of Male Sprague-Dawley rats. Neuropharmacology 2018; 143:299-305. [PMID: 30268522 DOI: 10.1016/j.neuropharm.2018.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Repeated cocaine administration induces many long-term structural and molecular changes in the dorsal medial prefrontal cortex (dmPFC) and are known to underlie aspects of cocaine-seeking behavior. DNA methylation is a key long-lasting epigenetic determinant of gene expression and is implicated in neuroplasticity, however, the extent to which this epigenetic modification is involved in the neuroplasticity associated with drug addiction has received limited attention. Here, we examine the relation between DNA methylation and gene expression within the dorsal medial prefrontal cortex (dmPFC) following limited cocaine self-administration (1 h/day), prolonged cocaine self-administration (6 h/day), and saline self-administration (1 h/day). Rats were fitted with intravenous catheters and allowed to lever press for saline or cocaine (0.25 mg/kg/0.1 mL infusion) in the different access conditions for 20 days. Prolonged-access rats exhibited escalation in cocaine intake over the course of training, while limited-access rats did not escalate cocaine intake. Additionally, limited-access and prolonged-access rats exhibited unique Homer2 epigenetic profiles and mRNA expression. In prolonged-access rats, Homer2 mRNA levels in the dmPFC were increased, which was accompanied by decreased DNA methylation and p300 binding within the Homer2 promoter. Limited-access animals exhibited decreased DNA methylation, decreased DNA hydroxymethylation, and increased p300 binding within the Homer2 promoter. These data indicate that distinct epigenetic profiles are induced by limited-versus prolonged-access self-administration conditions that contribute to transcriptional profiles and lend support to the notion that covalent modification of DNA is implicated in addiction-like changes in cocaine-seeking behavior.
Collapse
Affiliation(s)
- Kyle L Ploense
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnology, University of California, Santa Barbara, CA, USA; Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, USA.
| | - Xiang Li
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | | | - Amanda E Carr
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Nick Woodward
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Jared Bagley
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA; Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Karen K Szumlinski
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, USA; Department of Molecular Cellular Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Tod E Kippin
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, USA; Department of Molecular Cellular Developmental Biology, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
48
|
Lax E, Warhaftig G, Ohana D, Maayan R, Delayahu Y, Roska P, Ponizovsky AM, Weizman A, Yadid G, Szyf M. A DNA Methylation Signature of Addiction in T Cells and Its Reversal With DHEA Intervention. Front Mol Neurosci 2018; 11:322. [PMID: 30250424 PMCID: PMC6139343 DOI: 10.3389/fnmol.2018.00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Previous studies in animal models of cocaine craving have delineated broad changes in DNA methylation profiles in the nucleus accumbens. A crucial factor for progress in behavioral and mental health epigenetics is the discovery of epigenetic markers in peripheral tissues. Several studies in primates and humans have associated differences in behavioral phenotypes with changes in DNA methylation in T cells and brain. Herein, we present a pilot study (n = 27) showing that the T cell DNA methylation profile differentiates persons with a substance use disorder from controls. Intervention with dehydroepiandrosterone (DHEA), previously shown to have a long-term therapeutic effect on human addicts herein resulted in reversal of DNA methylation changes in genes related to pathways associated with the addictive state.
Collapse
Affiliation(s)
- Elad Lax
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gal Warhaftig
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - David Ohana
- Max Wertheimer Minerva Center for Cognitive Processes and Human Performance, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Maayan
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Research Unit and Geha Mental Health Center, Tel Aviv University, Tel Aviv, Israel
| | - Yael Delayahu
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Research Unit and Geha Mental Health Center, Tel Aviv University, Tel Aviv, Israel.,Yehuda Abarbanel Mental Health Center, Bat Yam, Israel
| | - Paola Roska
- Department for the Treatment of Substance Abuse and Mental Health Services, Israeli Ministry of Health, Jerusalem, Israel.,The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Ponizovsky
- Department for the Treatment of Substance Abuse and Mental Health Services, Israeli Ministry of Health, Jerusalem, Israel
| | - Abraham Weizman
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Research Unit and Geha Mental Health Center, Tel Aviv University, Tel Aviv, Israel
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda (Goldschmidt) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Program for Epigenetics and Psychobiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Imperio CG, McFalls AJ, Hadad N, Blanco-Berdugo L, Masser DR, Colechio EM, Coffey AA, Bixler GV, Stanford DR, Vrana KE, Grigson PS, Freeman WM. Exposure to environmental enrichment attenuates addiction-like behavior and alters molecular effects of heroin self-administration in rats. Neuropharmacology 2018; 139:26-40. [PMID: 29964093 PMCID: PMC6067959 DOI: 10.1016/j.neuropharm.2018.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
Environmental factors profoundly affect the addictive potential of drugs of abuse and may also modulate the neuro-anatomical/neuro-chemical impacts of uncontrolled drug use and relapse propensity. This study examined the impact of environmental enrichment on heroin self-administration, addiction-related behaviors, and molecular processes proposed to underlie these behaviors. Male Sprague-Dawley rats in standard and enriched housing conditions intravenously self-administered similar amounts of heroin over 14 days. However, environmental enrichment attenuated progressive ratio, extinction, and reinstatement session responding after 14 days of enforced abstinence. Molecular mechanisms, namely DNA methylation and gene expression, are proposed to underlie abstinence-persistent behaviors. A global reduction in methylation is reported to coincide with addiction, but no differences in total genomic methylation or repeat element methylation were observed in CpG or non-CpG (CH) contexts across the mesolimbic circuitry as assessed by multiple methods including whole genome bisulfite sequencing. Immediate early gene expression associated with drug seeking, taking, and abstinence also were examined. EGR1 and EGR2 were suppressed in mesolimbic regions with heroin-taking and environmental enrichment. Site-specific methylation analysis of EGR1 and EGR2 promoter regions using bisulfite amplicon sequencing (BSAS) revealed hypo-methylation in the EGR2 promoter region and EGR1 intragenic CpG sites with heroin-taking and environmental enrichment that was associated with decreased mRNA expression. Taken together, these findings illuminate the impact of drug taking and environment on the epigenome in a locus and gene-specific manner and highlight the need for positive, alternative rewards in the treatment and prevention of drug addiction.
Collapse
Affiliation(s)
- Caesar G. Imperio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Ashley J. McFalls
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Niran Hadad
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Dustin R. Masser
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Elizabeth M. Colechio
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Alissa A. Coffey
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Georgina V. Bixler
- Genome Sciences Facility, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kent. E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Patricia S. Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Willard M. Freeman
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, Zhang J, Surjono F, Richie CT, Harvey BK, Son H, Cowan CW, Nestler EJ, Shaham Y. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biol Psychiatry 2018; 84:213-222. [PMID: 29397902 PMCID: PMC6026084 DOI: 10.1016/j.biopsych.2017.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. METHODS In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. RESULTS We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). CONCLUSIONS Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation.
Collapse
Affiliation(s)
- Xuan Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland.
| | - Maria B Carreria
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kailyn R Witonsky
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Tamara Zeric
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Olivia M Lofaro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Felicia Surjono
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| |
Collapse
|