1
|
Chang C, Sell LB, Shi Q, Bhat MA. Mouse models of human CNTNAP1-associated congenital hypomyelinating neuropathy and genetic restoration of murine neurological deficits. Cell Rep 2023; 42:113274. [PMID: 37862170 PMCID: PMC10873044 DOI: 10.1016/j.celrep.2023.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
The Contactin-associated protein 1 (Cntnap1) mouse mutants fail to establish proper axonal domains in myelinated axons. Human CNTNAP1 mutations are linked to hypomyelinating neuropathy-3, which causes severe neurological deficits. To understand the human neuropathology and to model human CNTNAP1C323R and CNTNAP1R764C mutations, we generated Cntnap1C324R and Cntnap1R765C mouse mutants, respectively. Both Cntnap1 mutants show weight loss, reduced nerve conduction, and progressive motor dysfunction. The paranodal ultrastructure shows everted myelin loops and the absence of axo-glial junctions. Biochemical analysis reveals that these Cntnap1 mutant proteins are nearly undetectable in the paranodes, have reduced surface expression and stability, and are retained in the neuronal soma. Postnatal transgenic expression of Cntnap1 in the mutant backgrounds rescues the phenotypes and restores the organization of axonal domains with improved motor function. This study uncovers the mechanistic impact of two human CNTNAP1 mutations in a mouse model and provides proof of concept for gene therapy for CNTNAP1 patients.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Cellular and Integrative Physiology University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lacey B Sell
- Department of Cellular and Integrative Physiology University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; IBMS Neuroscience Graduate Program, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Qian Shi
- Department of Cellular and Integrative Physiology University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; IBMS Neuroscience Graduate Program, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; IBMS Neuroscience Graduate Program, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
McKie SJ, Nicholson AS, Smith E, Fawke S, Caroe ER, Williamson JC, Butt BG, Kolářová D, Peterka O, Holčapek M, Lehner PJ, Graham SC, Deane JE. Altered plasma membrane abundance of the sulfatide-binding protein NF155 links glycosphingolipid imbalances to demyelination. Proc Natl Acad Sci U S A 2023; 120:e2218823120. [PMID: 36996106 PMCID: PMC10083573 DOI: 10.1073/pnas.2218823120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023] Open
Abstract
Myelin is a multilayered membrane that tightly wraps neuronal axons, enabling efficient, high-speed signal propagation. The axon and myelin sheath form tight contacts, mediated by specific plasma membrane proteins and lipids, and disruption of these contacts causes devastating demyelinating diseases. Using two cell-based models of demyelinating sphingolipidoses, we demonstrate that altered lipid metabolism changes the abundance of specific plasma membrane proteins. These altered membrane proteins have known roles in cell adhesion and signaling, with several implicated in neurological diseases. The cell surface abundance of the adhesion molecule neurofascin (NFASC), a protein critical for the maintenance of myelin-axon contacts, changes following disruption to sphingolipid metabolism. This provides a direct molecular link between altered lipid abundance and myelin stability. We show that the NFASC isoform NF155, but not NF186, interacts directly and specifically with the sphingolipid sulfatide via multiple binding sites and that this interaction requires the full-length extracellular domain of NF155. We demonstrate that NF155 adopts an S-shaped conformation and preferentially binds sulfatide-containing membranes in cis, with important implications for protein arrangement in the tight axon-myelin space. Our work links glycosphingolipid imbalances to disturbance of membrane protein abundance and demonstrates how this may be driven by direct protein-lipid interactions, providing a mechanistic framework to understand the pathogenesis of galactosphingolipidoses.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| | - Alex S. Nicholson
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| | - Emily Smith
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| | - Stuart Fawke
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| | - Eve R. Caroe
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| | - James C. Williamson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, CambridgeCB2 0AW, UK
| | - Benjamin G. Butt
- Department of Pathology, University of Cambridge, CambridgeCB2 1QP, UK
| | - Denisa Kolářová
- Department of Analytical Chemistry, University of Pardubice, Pardubice53210, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, University of Pardubice, Pardubice53210, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, University of Pardubice, Pardubice53210, Czech Republic
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, CambridgeCB2 0AW, UK
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, CambridgeCB2 1QP, UK
| | - Janet E. Deane
- Department of Clinical Neuroscience, Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, UK
| |
Collapse
|
3
|
Chataigner LMP, Gogou C, den Boer MA, Frias CP, Thies-Weesie DME, Granneman JCM, Heck AJR, Meijer DH, Janssen BJC. Structural insights into the contactin 1 - neurofascin 155 adhesion complex. Nat Commun 2022; 13:6607. [PMID: 36329006 PMCID: PMC9633819 DOI: 10.1038/s41467-022-34302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christos Gogou
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maurits A. den Boer
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cátia P. Frias
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dominique M. E. Thies-Weesie
- grid.5477.10000000120346234Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joke C. M. Granneman
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dimphna H. Meijer
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bert J. C. Janssen
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
5
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
6
|
Lan YX, Yang P, Zeng Z, Yadav N, Zhang LJ, Wang LB, Xia HC. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen Res 2022; 17:440-449. [PMID: 34269221 PMCID: PMC8463967 DOI: 10.4103/1673-5374.317986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques. The results revealed that both OB-derived OECs and OM-derived OECs highly expressed genes and proteins that regulate cell growth, proliferation, apoptosis and vascular endothelial cell regeneration. The differentially expressed genes and proteins of OB-derived OECs play a key role in regulation of nerve regeneration and axon regeneration and extension, transmission of nerve impulses and response to axon injury. The differentially expressed genes and proteins of OM-derived OECs mainly participate in the positive regulation of inflammatory response, defense response, cytokine binding, cell migration and wound healing. These findings suggest that differentially expressed genes and proteins may explain why OB-derived OECs and OM-derived OECs exhibit different therapeutic roles. This study was approved by the Animal Ethics Committee of the General Hospital of Ningxia Medical University (approval No. 2017-073) on February 13, 2017.
Collapse
Affiliation(s)
- Yuan-Xiang Lan
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ping Yang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Neeraj Yadav
- Department of Neurosurgery, General Hospital of Ningxia Medical University; School of International Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Jian Zhang
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Bin Wang
- Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - He-Chun Xia
- Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Wang Z, Zhou X, Zhao N, Xie C, Zhu D, Guan Y. Neurofascin antibodies in chronic inflammatory demyelinating polyradiculoneuropathy: from intrinsic genetic background to clinical manifestations. Neurol Sci 2021; 42:2223-2233. [PMID: 33782779 DOI: 10.1007/s10072-021-05220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
There are bunch of autoantibodies, particularly autoantibodies against proteins located at the node of Ranvier, have been discovered and transformed the clinical management of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Neurofascin (NF) plays an important role in both the nodal and paranodal regions of the node of Ranvier. In this review, we focus on the two characteristic forms of neurofascin: NF186 and NF155, comparing the similarities and differences between them, reviewing the current knowledge on genetic backgrounds, pathogenesis, clinical manifestations, and management of patients with anti-neurofascin positive CIDP. Autoantibodies against neurofascin were mainly IgG4 isotype. Mutation of NFASC gene in human causes severe neurodevelopment disorders, and HLA DRB1*15 may be a strong risk factor for the development of anti-NF155 antibodies. Motor impairment, sensory ataxia, and tremor were the typical presentations of patients with anti-NF155+ CIDP, while tetraplegia and cranial nerve involvement were more common in patients with anti-NF186+ CIDP. Recent studies have depicted a relatively clear picture of anti-NF155+ CIDP, and the strong clinical correlation of NF186 with CIDP remains unclear. The genetic background of neurofascin will assist in future explorations.
Collapse
Affiliation(s)
- Ze Wang
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
8
|
Dutta DJ, Fields RD. Deletion of the Thrombin Proteolytic Site in Neurofascin 155 Causes Disruption of Nodal and Paranodal Organization. Front Cell Neurosci 2021; 15:576609. [PMID: 33815060 PMCID: PMC8010152 DOI: 10.3389/fncel.2021.576609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the central nervous system, myelin is attached to the axon in the paranodal region by a trimolecular complex of Neurofascin155 (NF155) in the myelin membrane, interacting with Caspr1 and Contactin1 on the axolemma. Alternative splicing of a single Neurofascin transcript generates several different Neurofascins expressed by several cell types, but NF155, which is expressed by oligodendrocytes, contains a domain in the third fibronectinIII-like region of the molecule that is unique. The immunoglobulin 5–6 domain of NF155 is essential for binding to Contactin1, but less is known about the functions of the NF155-unique third fibronectinIII-like domain. Mutations and autoantibodies to this region are associated with several neurodevelopmental and demyelinating nervous system disorders. Here we used Crispr-Cas9 gene editing to delete a 9 bp sequence of NF155 in this unique domain, which has recently been identified as a thrombin binding site and implicated in plasticity of the myelin sheath. This small deletion results in dysmyelination, eversion of paranodal loops of myelin, substantial enlargement of the nodal gap, a complete loss of paranodal septate junctions, and mislocalization of Caspr1 and nodal sodium channels. The animals exhibit tremor and ataxia, and biochemical and mass spectrometric analysis indicates that while NF155 is transcribed and spliced normally, the NF155 protein is subsequently degraded, resulting in loss of the full length 155 kDa native protein. These findings reveal that this 9 bp region of NF155 in its unique third fibronectinIII-like domain is essential for stability of the protein.
Collapse
Affiliation(s)
- Dipankar J Dutta
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - R Douglas Fields
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Xie C, Wang Z, Zhao N, Zhu D, Zhou X, Ding J, Wu Y, Yu H, Guan Y. From PNS to CNS: characteristics of anti-neurofascin 186 neuropathy in 16 cases. Neurol Sci 2021; 42:4673-4681. [PMID: 33723708 DOI: 10.1007/s10072-021-05101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Neurofascin (NF) is critical for the formation and maintenance of Ranvier nodes. NF186, the neuronal form of NF, localizes in the initial segment of axon and Ranvier node. NF186 antibody has been detected in demyelinating diseases of both central nervous system (CNS) and peripheral nervous system (PNS). AIMS To evaluate the clinical features of patients with anti-NF186 IgG neuropathy. METHODS Sixteen patients (16/138) with serum-positive anti-NF186 IgG were included and divided into groups of either CNS or PNS-involved according to their clinical manifestations. Anti-NF186 IgG was detected by cell-based assays. RESULTS In 7 patients who were confirmed to have CNS involvement, the most frequent symptoms were dizziness (57%) and vision impairment (43%); lesions in centrum semiovale, cerebellum, and meninges were shown by magnetic resonance imaging (MRI). In comparison, limb weakness (78%) and numbness (78%) were the most common symptoms in PNS-involved patients; axonal loss and demyelination were confirmed by nerve conduction examinations. Elevated level of cerebrospinal fluid (CSF) protein was found in 12 cases without statistically significant difference between the CNS and PNS groups. Meanwhile, CSF white blood cell counts were found significantly elevated in CNS-involved patients compared with patients of PNS group. Thirteen patients received immunomodulating treatments, and patients with chronic onset and progressive course showed poor response to the therapies. CONCLUSIONS Patients with anti-NF186 IgG neuropathy showed no specific symptoms or signs. It is worth noting that quite a few patients show CNS-impaired signs only, and cranial MRI is essential for the screening of CNS involvement.
Collapse
Affiliation(s)
- Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Jie Ding
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yifan Wu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
10
|
Kunisawa K, Hatanaka N, Shimizu T, Kobayashi K, Osanai Y, Mouri A, Shi Q, Bhat MA, Nambu A, Ikenaka K. Focal loss of the paranodal domain protein Neurofascin155 in the internal capsule impairs cortically induced muscle activity in vivo. Mol Brain 2020; 13:159. [PMID: 33228720 PMCID: PMC7685608 DOI: 10.1186/s13041-020-00698-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 11/12/2022] Open
Abstract
Paranodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.
Collapse
Affiliation(s)
- Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Nobuhiko Hatanaka
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yasuyuki Osanai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Atsushi Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| |
Collapse
|
11
|
Tang L, Huang Q, Qin Z, Tang X. Distinguish CIDP with autoantibody from that without autoantibody: pathogenesis, histopathology, and clinical features. J Neurol 2020; 268:2757-2768. [PMID: 32266541 DOI: 10.1007/s00415-020-09823-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is considered to be an immune-mediated heterogeneous disease involving cellular and humoral immunity. In recent years, autoantibodies against nodal/paranodal protein neurofascin155 (NF155), neurofascin186 (NF186), contactin-1 (CNTN1), and contactin-associated protein 1 (CASPR1) have been identified in a small subset of patients with CIDP, which disrupt axo-glial interactions at nodes/paranodes. Although CIDP electrodiagnosis was made in patients with anti-nodal/paranodal component autoantibodies, macrophage-induced demyelination, the characteristic of typical CIDP, was not observed. Apart from specific histopathology, the pathogenic mechanisms and clinical manifestations of CIDP with autoantibody are also distinct. We herein compared pathogenesis, histopathology, clinical manifestations, and therapeutic response in CIDP with autoantibody vs. CIDP without autoantibody. CIDP with autoantibodies should be considered as an independent disease entity, not a subtype of CIDP due to many differences. They possibly should be classified as CIDP-like chronic nodo-paranodopathy, which can better characterize these disorders, help diagnose and make the most effective therapeutic decisions.
Collapse
Affiliation(s)
- Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhen Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Molecular organization and function of vertebrate septate-like junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183211. [PMID: 32032590 DOI: 10.1016/j.bbamem.2020.183211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper distribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described. This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like junctions, their formation and stabilization during development, and how they are involved in demyelinating diseases.
Collapse
|
13
|
Xu H, Dzhashiashvili Y, Shah A, Kunjamma RB, Weng YL, Elbaz B, Fei Q, Jones JS, Li YI, Zhuang X, Ming GL, He C, Popko B. m 6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron 2019; 105:293-309.e5. [PMID: 31901304 DOI: 10.1016/j.neuron.2019.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.
Collapse
Affiliation(s)
- Huan Xu
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yulia Dzhashiashvili
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ankeeta Shah
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Rejani B Kunjamma
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yi-Lan Weng
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benayahu Elbaz
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Joshua S Jones
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Brian Popko
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Manso C, Querol L, Lleixà C, Poncelet M, Mekaouche M, Vallat JM, Illa I, Devaux JJ. Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. J Clin Invest 2019; 129:2222-2236. [PMID: 30869655 DOI: 10.1172/jci124694] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurofascin-155 (Nfasc155) is an essential glial cell adhesion molecule expressed in paranodal septate-like junctions of peripheral and central myelinated axons. The genetic deletion of Nfasc155 results in the loss of septate-like junctions and in conduction slowing. In humans, IgG4 antibodies against Nfasc155 are implicated in the pathogenesis of chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies are associated with an aggressive onset, a refractoriness to intravenous immunoglobulin, and tremor of possible cerebellar origin. Here, we examined the pathogenic effects of patient-derived anti-Nfasc155 IgG4. These antibodies did not inhibit the ability of Nfasc155 to complex with its axonal partners contactin-1/CASPR1 or induce target internalization. Passive transfer experiments revealed that IgG4 antibodies target Nfasc155 on Schwann cell surface, and diminished Nfasc155 protein levels and prevented paranodal complex formation in neonatal animals. In adult animals, chronic intrathecal infusions of antibodies also induced the loss of Nfasc155 and of paranodal specialization and resulted in conduction alterations in motor nerves. These results indicate that anti-Nfasc155 IgG4 perturb conduction in absence of demyelination, validating the existence of paranodopathy. These results also shed light on the mechanisms regulating protein insertion at paranodes.
Collapse
Affiliation(s)
- Constance Manso
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, Bordeaux, France
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mallory Poncelet
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier University, Hopital Gui de Chauliac, Montpellier, France
| | - Mourad Mekaouche
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Aix Marseille Université, CNRS, INP UMR7051, Marseille, France
| | - Jean-Michel Vallat
- National Reference Center for "rare peripheral neuropathies" and Department of Neurology, University Hospital, Limoges, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jérôme J Devaux
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier University, Hopital Gui de Chauliac, Montpellier, France
| |
Collapse
|
15
|
Monfrini E, Straniero L, Bonato S, Monzio Compagnoni G, Bordoni A, Dilena R, Rinchetti P, Silipigni R, Ronchi D, Corti S, Comi GP, Bresolin N, Duga S, Di Fonzo A. Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Parkinsonism Relat Disord 2019; 63:66-72. [PMID: 30850329 DOI: 10.1016/j.parkreldis.2019.02.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Neurofascin, encoded by NFASC, is a transmembrane protein that plays an essential role in nervous system development and node of Ranvier function. Anti-Neurofascin autoantibodies cause a specific type of chronic inflammatory demyelinating polyneuropathy (CIDP) often characterized by cerebellar ataxia and tremor. Recently, homozygous NFASC mutations were recently associated with a neurodevelopmental disorder in two families. METHODS A combined approach of linkage analysis and whole-exome sequencing was performed to find the genetic cause of early-onset cerebellar ataxia and demyelinating neuropathy in two siblings from a consanguineous Italian family. Functional studies were conducted on neurons from induced pluripotent stem cells (iPSCs) generated from the patients. RESULTS Genetic analysis revealed a homozygous p.V1122E mutation in NFASC. This mutation, affecting a highly conserved hydrophobic transmembrane domain residue, led to significant loss of Neurofascin protein in the iPSC-derived neurons of affected siblings. CONCLUSIONS The identification of NFASC mutations paves the way for genetic research in the developing field of nodopathies, an emerging pathological entity involving the nodes of Ranvier, which are associated for the first time with a hereditary ataxia syndrome with neuropathy.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sara Bonato
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Monzio Compagnoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andreina Bordoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurofisiopatologia Pediatrica, UOC Neurofisiopatologia, Milan, Italy
| | - Paola Rinchetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rosamaria Silipigni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Laboratory of Medical Genetics, Milan, Italy
| | - Dario Ronchi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
16
|
Abstract
The speed of impulse transmission is critical for optimal neural circuit function, but it is unclear how the appropriate conduction velocity is established in individual axons. The velocity of impulse transmission is influenced by the thickness of the myelin sheath and the morphology of electrogenic nodes of Ranvier along axons. Here we show that myelin thickness and nodal gap length are reversibly altered by astrocytes, glial cells that contact nodes of Ranvier. Thrombin-dependent proteolysis of a cell adhesion molecule that attaches myelin to the axon (neurofascin 155) is inhibited by vesicular release of thrombin protease inhibitors from perinodal astrocytes. Transgenic mice expressing a dominant-negative fragment of VAMP2 in astrocytes, to reduce exocytosis by 50%, exhibited detachment of adjacent paranodal loops of myelin from the axon, increased nodal gap length, and thinning of the myelin sheath in the optic nerve. These morphological changes alter the passive cable properties of axons to reduce conduction velocity and spike-time arrival in the CNS in parallel with a decrease in visual acuity. All effects were reversed by the thrombin inhibitor Fondaparinux. Similar results were obtained by viral transfection of tetanus toxin into astrocytes of rat corpus callosum. Previously, it was unknown how the myelin sheath could be thinned and the functions of perinodal astrocytes were not well understood. These findings describe a form of nervous system plasticity in which myelin structure and conduction velocity are adjusted by astrocytes. The thrombin-dependent cleavage of neurofascin 155 may also have relevance to myelin disruption and repair.
Collapse
|
17
|
Ferguson A, Lyall LM, Ward J, Strawbridge RJ, Cullen B, Graham N, Niedzwiedz CL, Johnston KJA, MacKay D, Biello SM, Pell JP, Cavanagh J, McIntosh AM, Doherty A, Bailey MES, Lyall DM, Wyse CA, Smith DJ. Genome-Wide Association Study of Circadian Rhythmicity in 71,500 UK Biobank Participants and Polygenic Association with Mood Instability. EBioMedicine 2018; 35:279-287. [PMID: 30120083 PMCID: PMC6154782 DOI: 10.1016/j.ebiom.2018.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circadian rhythms are fundamental to health and are particularly important for mental wellbeing. Disrupted rhythms of rest and activity are recognised as risk factors for major depressive disorder and bipolar disorder. METHODS We conducted a genome-wide association study (GWAS) of low relative amplitude (RA), an objective measure of rest-activity cycles derived from the accelerometer data of 71,500 UK Biobank participants. Polygenic risk scores (PRS) for low RA were used to investigate potential associations with psychiatric phenotypes. OUTCOMES Two independent genetic loci were associated with low RA, within genomic regions for Neurofascin (NFASC) and Solute Carrier Family 25 Member 17 (SLC25A17). A secondary GWAS of RA as a continuous measure identified a locus within Meis Homeobox 1 (MEIS1). There were no significant genetic correlations between low RA and any of the psychiatric phenotypes assessed. However, PRS for low RA was significantly associated with mood instability across multiple PRS thresholds (at PRS threshold 0·05: OR = 1·02, 95% CI = 1·01-1·02, p = 9·6 × 10-5), and with major depressive disorder (at PRS threshold 0·1: OR = 1·03, 95% CI = 1·01-1·05, p = 0·025) and neuroticism (at PRS threshold 0·5: Beta = 0·02, 95% CI = 0·007-0·04, p = 0·021). INTERPRETATION Overall, our findings contribute new knowledge on the complex genetic architecture of circadian rhythmicity and suggest a putative biological link between disrupted circadian function and mood disorder phenotypes, particularly mood instability, but also major depressive disorder and neuroticism. FUNDING Medical Research Council (MR/K501335/1).
Collapse
Affiliation(s)
- Amy Ferguson
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| | - Laura M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Joey Ward
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Rona J Strawbridge
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK; Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Breda Cullen
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Nicholas Graham
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | | | | | - Daniel MacKay
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Stephany M Biello
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK
| | - Jill P Pell
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Jonathan Cavanagh
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, UK
| | - Aiden Doherty
- Big Data Institute, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Donald M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Cathy A Wyse
- Department of Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Daniel J Smith
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Vural A, Doppler K, Meinl E. Autoantibodies Against the Node of Ranvier in Seropositive Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic, Pathogenic, and Therapeutic Relevance. Front Immunol 2018; 9:1029. [PMID: 29867996 PMCID: PMC5960694 DOI: 10.3389/fimmu.2018.01029] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
Discovery of disease-associated autoantibodies has transformed the clinical management of a variety of neurological disorders. Detection of autoantibodies aids diagnosis and allows patient stratification resulting in treatment optimization. In the last years, a set of autoantibodies against proteins located at the node of Ranvier has been identified in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies target neurofascin, contactin1, or contactin-associated protein 1, and we propose to name CIDP patients with these antibodies collectively as seropositive. They have unique clinical characteristics that differ from seronegative CIDP. Moreover, there is compelling evidence that autoantibodies are relevant for the pathogenesis. In this article, we review the current knowledge on the characteristics of autoantibodies against the node of Ranvier proteins and their clinical relevance in CIDP. We start with a description of the structure of the node of Ranvier followed by a summary of assays used to identify seropositive patients; and then, we describe clinical features and characteristics linked to seropositivity. We review knowledge on the role of these autoantibodies for the pathogenesis with relevance for the emerging concept of nodopathy/paranodopathy and summarize the treatment implications.
Collapse
Affiliation(s)
- Atay Vural
- Institute of Clinical Neuroimmunology, Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center, University Hospitals, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N, Abdulwahab FM, Hashem M, Alhashmi N, Al Murshedi F, Al Kindy A, Alshaer A, Rumayyan A, Al Tala S, Kurdi W, Alsaman A, Alasmari A, Banu S, Sultan T, Saleh MM, Alkuraya H, Salih MA, Aldhalaan H, Ben-Omran T, Al Musafri F, Ali R, Suleiman J, Tabarki B, El-Hattab AW, Bupp C, Alfadhel M, Al Tassan N, Monies D, Arold ST, Abouelhoda M, Lashley T, Houlden H, Faqeih E, Alkuraya FS. Expanding the genetic heterogeneity of intellectual disability. Hum Genet 2017; 136:1419-1429. [PMID: 28940097 DOI: 10.1007/s00439-017-1843-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema AlZahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadia Alhashmi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Fathiya Al Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Adila Al Kindy
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahmad Alshaer
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Rumayyan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics and Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health and The Children's Hospital Lahore, 381-D/2, Lahore, Pakistan
| | - Mohammed M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Musafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Rehab Ali
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Caleb Bupp
- Spectrum Health Genetics, Grand Rapids, MI, USA
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Spectrum Health Genetics, Grand Rapids, MI, USA. .,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals Its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons. J Neurosci 2017; 37:2524-2538. [PMID: 28148727 DOI: 10.1523/jneurosci.2661-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/15/2016] [Accepted: 01/25/2017] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (NaV) channel and βIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV spectrin, followed by NaV channels, with modest impact on neurofascin 186. We also show that ankyrin R and βI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner.SIGNIFICANCE STATEMENT Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.
Collapse
|
21
|
Shimizu M, Koda T, Nakatsuji Y, Ogata H, Kira JI, Mochizuki H. A case of anti-neurofascin 155 antibody-positive combined central and peripheral demyelination successfully treated with plasma exchange. Rinsho Shinkeigaku 2016; 57:41-44. [PMID: 28025411 DOI: 10.5692/clinicalneurol.cn-000964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 21-year-old man was admitted to our hospital in June 2015. He felt paresthesia of toes in April 2015, which had been spreading upward, and he became difficult to walk in June. Nerve conduction study showed peripheral demyelinating neuropathy that met the diagnostic criteria for chronic inflammatory demyelinating polyneuropathy (CIDP), and the cerebrospinal fluid (CSF) examination revealed the remarkably increased protein level. In addition, magnetic resonance imaging of his brain showed a few plaques in white matter, so he was finally diagnosed with combined central and peripheral demyelination (CCPD). Moreover, anti-neurofascin155 (NF155) antibodies assayed in his serum and CSF turned out to be positive. Although he was treated with intravenous immunoglobulin and intravenous methylprednisolone, his symptoms were not ameliorated. However, plasma exchange therapy was apparently effective, and the titer of anti-NF155 antibody was reduced. Recently, the number of case reports of CIDP with CNS lesions has gradually been increasing, while the information about the diagnosis and the treatment responses are not enough. Thus, we reported our case with CCPD who was successfully treated with plasma exchange.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Osaka University Graduate School of Medicine
| | | | | | | | | | | |
Collapse
|
22
|
Itaya K, Inoue M, Iizuka N, Shimizu Y, Yuki N, Ichikawa H. A case of a 17-year-old male with neurofascin-155 antibody-positive chronic inflammatory demyelinating polyradiculoneuropathy presenting with tremor and ataxia. Rinsho Shinkeigaku 2016; 56:633-6. [PMID: 27580761 DOI: 10.5692/clinicalneurol.cn-000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 17-year-old male with no medical history noticed weakness of his limbs with imbalance and subsequent finger tremors. Physical examination revealed features of polyneuropathy, including diffuse weakness, distal symmetrical numbness with impaired deep sensation and areflexia in all limbs. Postural tremor was present in fingers. Ataxia was apparent in both lower limbs, causing a wide-based gait with a positive Romberg sign. Cerebrospinal fluid contained elevated total protein without pleocytosis. A nerve conduction study disclosed demyelinating features with prolonged terminal latencies, slow velocities with delayed F-wave latencies, and prominent temporal dispersion. These findings led to diagnosis of typical chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) with notable feature of postural finger tremor and ataxia of unknown cause. These atypical features prompted us to examine neurofascin-155 (NF155) antibodies, which were positive. No significant improvement occurred after initial administration of intravenous immunoglobulin and subsequent plasma exchange. However, corticosteroids with intravenous pulse therapy followed by oral prednisolone significantly improved the symptoms. Patients with CIDP with anti-NF155 antibodies may have similar clinical features and constitute a CIDP subgroup. In such patients, corticosteroids may be more effective than intravenous immunoglobulin. Further studies are needed to define the features of this subgroup and determine effective therapy for CIDP.
Collapse
Affiliation(s)
- Kazuhiro Itaya
- Department of Neurology, Showa University Fujigaoka Hospital
| | | | | | | | | | | |
Collapse
|
23
|
Quaking Regulates Neurofascin 155 Expression for Myelin and Axoglial Junction Maintenance. J Neurosci 2016; 36:4106-20. [PMID: 27053216 DOI: 10.1523/jneurosci.3529-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RNA binding proteins required for the maintenance of myelin and axoglial junctions are unknown. Herein, we report that deletion of the Quaking (QKI) RNA binding proteins in oligodendrocytes (OLs) using Olig2-Cre results in mice displaying rapid tremors at postnatal day 10, followed by death at postnatal week 3. Extensive CNS hypomyelination was observed as a result of OL differentiation defects during development. The QKI proteins were also required for adult myelin maintenance, because their ablation using PLP-CreERT resulted in hindlimb paralysis with immobility at ∼30 d after 4-hydroxytamoxifen injection. Moreover, deterioration of axoglial junctions of the spinal cord was observed and is consistent with a loss of Neurofascin 155 (Nfasc155) isoform that we confirmed as an alternative splice target of the QKI proteins. Our findings define roles for the QKI RNA binding proteins in myelin development and maintenance, as well as in the generation of Nfasc155 to maintain healthy axoglial junctions. SIGNIFICANCE STATEMENT Neurofascin 155 is responsible for axoglial junction formation and maintenance. Using a genetic mouse model to delete Quaking (QKI) RNA-binding proteins in oligodendrocytes, we identify QKI as the long-sought regulator of Neurofascin alternative splicing, further establishing the role of QKI in oligodendrocyte development and myelination. We establish a new role for QKI in myelin and axoglial junction maintenance using an inducible genetic mouse model that deletes QKI in mature oligodendrocytes. Loss of QKI in adult oligodendrocytes leads to phenotypes reminiscent of the experimental autoimmune encephalomyelitis mouse model with complete hindlimb paralysis and death by 30 d after induction of QKI deletion.
Collapse
|
24
|
Devaux JJ, Miura Y, Fukami Y, Inoue T, Manso C, Belghazi M, Sekiguchi K, Kokubun N, Ichikawa H, Wong AHY, Yuki N. Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. Neurology 2016; 86:800-7. [PMID: 26843559 PMCID: PMC4793783 DOI: 10.1212/wnl.0000000000002418] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/01/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We report the clinical and serologic features of Japanese patients with chronic inflammatory demyelinating polyneuropathy (CIDP) displaying anti-neurofascin-155 (NF155) immunoglobulin G4 (IgG4) antibodies. METHODS In sera from 533 patients with CIDP, anti-NF155 IgG4 antibodies were detected by ELISA. Binding of IgG antibodies to central and peripheral nerves was tested. RESULTS Anti-NF155 IgG4 antibodies were identified in 38 patients (7%) with CIDP, but not in disease controls or normal participants. These patients were younger at onset as compared to 100 anti-NF155-negative patients with CIDP. Twenty-eight patients (74%) presented with sensory ataxia, 16 (42%) showed tremor, 5 (13%) presented with cerebellar ataxia associated with nystagmus, 3 (8%) had demyelinating lesions in the CNS, and 20 of 25 (80%) had poor response to IV immunoglobulin. The clinical features of the antibody-positive patients were statistically more frequent as compared to negative patients with CIDP (n = 100). Anti-NF155 IgG antibodies targeted similarly central and peripheral paranodes. CONCLUSION Anti-NF155 IgG4 antibodies were associated with a subgroup of patients with CIDP showing a younger age at onset, ataxia, tremor, CNS demyelination, and a poor response to IV immunoglobulin. The autoantibodies may serve as a biomarker to improve patients' diagnosis and guide treatments.
Collapse
Affiliation(s)
- Jérôme J Devaux
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Yumako Miura
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Yuki Fukami
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Takayuki Inoue
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Constance Manso
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Maya Belghazi
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Kenji Sekiguchi
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Norito Kokubun
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Hiroo Ichikawa
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Anna Hiu Yi Wong
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan
| | - Nobuhiro Yuki
- From Aix-Marseille Université (J.J.D., C.M., M.B.), CNRS, CRN2M-UMR 7286, Marseille, France; Departments of Medicine (Y.M., Y.F., T.I., A.H.Y.W., N.Y.) and Physiology (N.Y.), Yong Loo Lin School of Medicine, National University of Singapore; Brain and Mind Centre (N.Y.), University of Sydney, Australia; Division of Neurology (K.S.), Kobe University Graduate School of Medicine; Department of Neurology (N.K.), Dokkyo Medical University, Tochigi; and Department of Neurology (H.I.), Brain Nerve Center, Showa University Fujigaoka Hospital, Tokyo, Japan.
| |
Collapse
|
25
|
Olmos-Serrano JL, Kang HJ, Tyler WA, Silbereis JC, Cheng F, Zhu Y, Pletikos M, Jankovic-Rapan L, Cramer NP, Galdzicki Z, Goodliffe J, Peters A, Sethares C, Delalle I, Golden JA, Haydar TF, Sestan N. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016; 89:1208-1222. [PMID: 26924435 DOI: 10.1016/j.neuron.2016.01.042] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/24/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.
Collapse
Affiliation(s)
- Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hyo Jung Kang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - William A Tyler
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John C Silbereis
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Feng Cheng
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, USA
| | - Ying Zhu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lucija Jankovic-Rapan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nathan P Cramer
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph Goodliffe
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alan Peters
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Claire Sethares
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
- Departments of Genetic and Psychiatry, Program in Cellular Neuroscience, Neurodegeneration and Repair, Section of Comparative Medicine and Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Mathey EK, Park SB, Hughes RAC, Pollard JD, Armati PJ, Barnett MH, Taylor BV, Dyck PJB, Kiernan MC, Lin CSY. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 2015; 86:973-85. [PMID: 25677463 PMCID: PMC4552934 DOI: 10.1136/jnnp-2014-309697] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/04/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP.
Collapse
Affiliation(s)
- Emily K Mathey
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Susanna B Park
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia Neuroscience Research Australia & Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Richard A C Hughes
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - John D Pollard
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Patricia J Armati
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, Sydney, New South Wales, Australia
| | - P James B Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew C Kiernan
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Cindy S-Y Lin
- Faculty of Medicine, Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
27
|
Neurofascin 140 is an embryonic neuronal neurofascin isoform that promotes the assembly of the node of Ranvier. J Neurosci 2015; 35:2246-54. [PMID: 25653379 DOI: 10.1523/jneurosci.3552-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system.
Collapse
|
28
|
Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 2014; 32:44-62. [PMID: 25246700 DOI: 10.1093/molbev/msu265] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Quai Antoine Premier, Monaco
| |
Collapse
|
29
|
Querol L, Nogales-Gadea G, Rojas-Garcia R, Diaz-Manera J, Pardo J, Ortega-Moreno A, Sedano MJ, Gallardo E, Berciano J, Blesa R, Dalmau J, Illa I. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology 2014; 82:879-86. [PMID: 24523485 DOI: 10.1212/wnl.0000000000000205] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe the frequency of antibodies against neurofascin in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and the associated clinical features. METHODS Immunocytochemistry was used to identify antibodies to neurofascin 155 (NF155) and 186. Serum reactivity with paranodes and brain tissue was tested with immunohistochemistry of teased-nerve fibers and rat brain. Antibody titers and immunoglobulin (Ig) G isotypes were determined using ELISA. Clinical information was obtained retrospectively. RESULTS Two of 53 patients, but none of 204 controls, had antibodies to NF155 (p = 0.041). The 2 patients with NF155 antibodies developed severe polyradiculoneuropathy with predominant distal weakness that was refractory to IVIg. Eight additional patients with IVIg-refractory CIDP were then identified from a national database; 2 of them with the same clinical features also had NF155 antibodies. Overall, 3 of the 4 patients with NF155 antibodies had a disabling and characteristic tremor (high amplitude, low frequency, postural, and intention). Patients' antibodies reacted with the paranodes in teased-nerve fibers and with the neuropil of rat cerebellum, brain, and brainstem. Anti-NF155 antibodies were predominantly of the IgG4 isotype in all patients. CONCLUSION Patients with CIDP positive for IgG4 NF155 antibodies constitute a specific subgroup with a severe phenotype, poor response to IVIg, and disabling tremor. Autoantibodies against paranodal structures associate with distinct clinical features in CIDP and their identification has diagnostic, prognostic, and therapeutic implications. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that autoantibodies to NF155 identify a CIDP subtype characterized by severe neuropathy, poor response to IVIg, and disabling tremor.
Collapse
Affiliation(s)
- Luis Querol
- From the Neuromuscular Diseases Unit (L.Q., G.N.-G., R.R.-G., J.D.-M., E.G., R.B., I.I.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona; Centro para la Investigación Biomédica en Red en Enfermedades Neurodegenerativas (L.Q., G.N.-G., R.R.-G., J.D.-M., M.J.S., E.G., J.B., I.I.), CIBERNED, Madrid; Department of Neurology (J.P.), Hospital Clínico de Santiago, Santiago de Compostela; Department of Neurology (A.O.-M.), Hospital Virgen de las Nieves, Granada; Department of Neurology (M.J.S., J.B.), University Hospital Marqués de Valdecilla (IFIMAV) and University of Cantabria; Department of Neurology (J.D.), Hospital Clinic, Universitat de Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona; and Institució Catalana de Recerca i Estudis Avançats (J.D.), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Labasque M, Hivert B, Nogales-Gadea G, Querol L, Illa I, Faivre-Sarrailh C. Specific contactin N-glycans are implicated in neurofascin binding and autoimmune targeting in peripheral neuropathies. J Biol Chem 2014; 289:7907-18. [PMID: 24497634 DOI: 10.1074/jbc.m113.528489] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell adhesion molecules (CAMs) play a crucial role in the formation of the nodes of Ranvier and in the rapid propagation of the nerve impulses along myelinated axons. These CAMs are the targets of autoimmunity in inflammatory neuropathies. We recently showed that a subgroup of patients with aggressive chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) shows autoantibodies to contactin (1). The complex of contactin·Caspr·neurofascin-155 (NF155) enables the formation of paranodal junctions, suggesting that antibody attack against paranodes may participate in the severity of CIDP. In the present study, we mapped the molecular determinants of contactin targeted by the autoantibodies. In three patients, immunoreactivity was directed against the Ig domains of contactin and was dependent on N-glycans. The serum of one patient was selectively directed against contactin bearing mannose-rich N-glycans. Strikingly, the oligomannose type sugars of contactin are required for association with its glial partner NF155 (2). To investigate precisely the role of contactin N-glycans, we have mutated each of the nine consensus N-glycosylation sites independently. We found that the mutation of three sites (N467Q/N473Q/N494Q) in Ig domain 5 of contactin prevented soluble NF155-Fc binding. In contrast, these mutations did not abolish cis-association with Caspr. Next, we showed that the cluster of N-glycosylation sites (Asn-467, Asn-473, and Asn-494) was required for immunoreactivity in one patient. Using cell aggregation assays, we showed that the IgGs from the four CIDP patients prevented adhesive interaction between contactin·Caspr and NF155. Importantly, we showed that the anti-contactin autoantibodies induced alteration of paranodal junctions in myelinated neuronal culture. These results strongly suggest that antibodies to CAMs may be pathogenic and induce demyelination via functional blocking activity.
Collapse
Affiliation(s)
- Marilyne Labasque
- From Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, 13344 Marseille, France
| | | | | | | | | | | |
Collapse
|
31
|
Ebel J, Beuter S, Wuchter J, Kriebel M, Volkmer H. Organisation and Control of Neuronal Connectivity and Myelination by Cell Adhesion Molecule Neurofascin. ADVANCES IN NEUROBIOLOGY 2014; 8:231-47. [DOI: 10.1007/978-1-4614-8090-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Yamasaki R. Anti-neurofascin antibody in combined central and peripheral demyelination. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ryo Yamasaki
- Department of Neurological Therapeutics; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
34
|
Faivre-Sarrailh C, Devaux JJ. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. Front Cell Neurosci 2013; 7:196. [PMID: 24194699 PMCID: PMC3810605 DOI: 10.3389/fncel.2013.00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and saltatory propagation of the action potentials (APs). The mechanisms regulating node formation are distinct in the central and peripheral nervous systems, and recent studies have highlighted the relative contribution of paranodal junctions and nodal extracellular matrix. In addition, CAMs at the juxtaparanodal domains mediate the clustering of voltage-gated potassium channels which regulate the axonal excitability. In several human pathologies, the axo-glial contacts are altered leading to disruption of the nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases.
Collapse
|
35
|
Pomicter AD, Deloyht JM, Hackett AR, Purdie N, Sato-Bigbee C, Henderson SC, Dupree JL. Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide. Neurochem Res 2013; 38:2490-502. [PMID: 24081651 DOI: 10.1007/s11064-013-1162-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/17/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022]
Abstract
Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity. Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associated glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis.
Collapse
Affiliation(s)
- A D Pomicter
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Green JA, Yang J, Grati M, Kachar B, Bhat MA. Whirlin, a cytoskeletal scaffolding protein, stabilizes the paranodal region and axonal cytoskeleton in myelinated axons. BMC Neurosci 2013; 14:96. [PMID: 24011083 PMCID: PMC3844453 DOI: 10.1186/1471-2202-14-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
Background Myelinated axons are organized into distinct subcellular and molecular regions. Without proper organization, electrical nerve conduction is delayed, resulting in detrimental physiological outcomes. One such region is the paranode where axo-glial septate junctions act as a molecular fence to separate the sodium (Na+) channel-enriched node from the potassium (K+) channel-enriched juxtaparanode. A significant lack of knowledge remains as to cytoskeletal proteins which stabilize paranodal domains and underlying cytoskeleton. Whirlin (Whrn) is a PDZ domain-containing cytoskeletal scaffold whose absence in humans results in Usher Syndromes or variable deafness-blindness syndromes. Mutant Whirlin (Whrn) mouse model studies have linked such behavioral deficits to improper localization of critical transmembrane protein complexes in the ear and eye. Until now, no reports exist about the function of Whrn in myelinated axons. Results RT-PCR and immunoblot analyses revealed expression of Whrn mRNA and Whrn full-length protein, respectively, in several stages of central and peripheral nervous system development. Comparing wild-type mice to Whrn knockout (Whrn−/−) mice, we observed no significant differences in the expression of standard axonal domain markers by immunoblot analysis but observed and quantified a novel paranodal compaction phenotype in 4 to 8 week-old Whrn−/− nerves. The paranodal compaction phenotype and associated cytoskeletal disruption was observed in Whrn−/− mutant sciatic nerves and spinal cord fibers from early (2 week-old) to late (1 year-old) stages of development. Light and electron microscopic analyses of Whrn knockout mice reveal bead-like swellings in cerebellar Purkinje axons containing mitochondria and vesicles by both. These data suggest that Whrn plays a role in proper cytoskeletal organization in myelinated axons. Conclusions Domain organization in myelinated axons remains a complex developmental process. Here we demonstrate that loss of Whrn disrupts proper axonal domain organization. Whrn likely contributes to the stabilization of paranodal myelin loops and axonal cytoskeleton through yet unconfirmed cytoskeletal proteins. Paranodal abnormalities are consistently observed throughout development (2 wk-1 yr) and similar between central and peripheral nervous systems. In conclusion, our observations suggest that Whrn is not required for the organization of axonal domains, but once organized, Whrn acts as a cytoskeletal linker to ensure proper paranodal compaction and stabilization of the axonal cytoskeleton in myelinated axons.
Collapse
Affiliation(s)
- James A Green
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
37
|
Devaux JJ, Odaka M, Yuki N. Nodal proteins are target antigens in Guillain-Barré syndrome. J Peripher Nerv Syst 2012; 17:62-71. [PMID: 22462667 DOI: 10.1111/j.1529-8027.2012.00372.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofascin-186 (NF186), neuronal cell adhesion molecule (NrCAM), and gliomedin are adhesion molecules playing a central role in the formation of nodes of Ranvier. In Guillain-Barré syndrome (GBS), immune attack toward the nodes may participate in the disabilities. Autoantibodies to NF186 and gliomedin have been detected in a rat model of GBS. Here, we investigated the prevalence of antibodies against nodal adhesion molecules in patients with GBS or chronic inflammatory demyelinating polyneuropathy (CIDP). Sera from 100 GBS patients, 50 CIDP patients, 80 disease controls, and 50 healthy controls were tested for their ability to bind the nodes of Ranvier. To characterize the antigens, we performed cell binding assays against NF186, gliomedin, contactin, and NrCAM. We found that 43% of patients with GBS and 30% of patients with CIDP showed IgG fixation at nodes or paranodes. In eight patients with GBS or CIDP, we identified that IgG antibodies recognized the native extracellular domain of NF186, gliomedin, or contactin. Also, 29 patients showed IgM against nodal adhesion molecules. However, we did not detect IgM fixation at nodes or paranodes. Antibodies to gliomedin or NF186 were mostly detected in demyelinating and axonal GBS, respectively. The adsorption of the antibodies to their soluble antigens abolished IgG deposition at nodes and paranodes in nerves, indicating these were specific to NF186, gliomedin, and contactin. In conclusion, gliomedin, NF186, and contactin are novel target antigens in GBS. At nodes, additional epitopes are also the targets of IgG. These results suggest that antibody attack against nodal antigens participates in the etiology of GBS.
Collapse
Affiliation(s)
- Jérôme J Devaux
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CNRS, Aix-Marseille University, Boulevard Pierre Dramard, Marseille, France.
| | | | | |
Collapse
|
38
|
Cameron DA, Middleton FA, Chenn A, Olson EC. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development. BMC Neurosci 2012; 13:90. [PMID: 22852769 PMCID: PMC3583225 DOI: 10.1186/1471-2202-13-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2) lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP) Gsat embryos were isolated to > 99% purity and profiled. RESULTS We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97%) were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP) across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. CONCLUSIONS This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways), and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.
Collapse
Affiliation(s)
- David A Cameron
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
39
|
Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci 2012; 32:4724-42. [PMID: 22492029 DOI: 10.1523/jneurosci.5602-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basket axon collaterals synapse onto the Purkinje soma/axon initial segment (AIS) area to form specialized structures, the pinceau, which are critical for normal cerebellar function. Mechanistic details of how the pinceau become organized during cerebellar development are poorly understood. Loss of cytoskeletal adaptor protein Ankyrin G (AnkG) results in mislocalization of the cell adhesion molecule Neurofascin (Nfasc) at the Purkinje AIS and abnormal organization of the pinceau. Loss of Nfasc in adult Purkinje neurons leads to slow disorganization of the Purkinje AIS and pinceau morphology. Here, we used mouse conditional knock-out techniques to show that selective loss of Nfasc, specifically in Purkinje neurons during early development, prevented maturation of the AIS and resulted in loss of Purkinje neuron spontaneous activity and pinceau disorganization. Loss of Nfasc in both Purkinje and basket neurons caused abnormal basket axon collateral branching and targeting to Purkinje soma/AIS, leading to extensive pinceau disorganization, Purkinje neuron degeneration, and severe ataxia. Our studies reveal that the Purkinje Nfasc is required for AIS maturation and for maintaining stable contacts between basket axon terminals and the Purkinje AIS during pinceau organization, while the basket neuron Nfasc in combination with Purkinje Nfasc is required for proper basket axon collateral outgrowth and targeting to Purkinje soma/AIS. Thus, cerebellar pinceau organization requires coordinated mechanisms involving specific Nfasc functions in both Purkinje and basket neurons.
Collapse
|
40
|
Kriebel M, Wuchter J, Trinks S, Volkmer H. Neurofascin: a switch between neuronal plasticity and stability. Int J Biochem Cell Biol 2012; 44:694-7. [PMID: 22306302 DOI: 10.1016/j.biocel.2012.01.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/23/2022]
Abstract
Neurofascin (NF) is a cell surface protein belonging to the immunoglobulin superfamily (IgSF). Different polypeptides of 186, 180, 166 and 155 kDa are generated by alternative splicing. Expression of these isoforms is temporally and spatially regulated and can be roughly grouped into embryonic, adult and glial expression. NF interacts with many different interaction partners both extra- and intracellularly. Interactions of NF166 and NF180 selectively regulate mechanisms of plasticity like neurite outgrowth and the formation postsynaptic components. By contrast, NF155 and NF186 confer stabilization of neural structures by interaction with voltage-gated sodium channels and ankyrinG at axon initial segments (AIS) or nodes of Ranvier as well as neuron-glia interactions at the paranodes. Alternatively spliced isoforms of neurofascin may therefore balance dynamic and stabilizing mechanisms of the CNS.
Collapse
Affiliation(s)
- Martin Kriebel
- Dept. Molecular Biology, Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | | | |
Collapse
|
41
|
Shepherd MN, Pomicter AD, Velazco CS, Henderson SC, Dupree JL. Paranodal reorganization results in the depletion of transverse bands in the aged central nervous system. Neurobiol Aging 2012; 33:203.e13-24. [PMID: 20888080 PMCID: PMC3282488 DOI: 10.1016/j.neurobiolaging.2010.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/26/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022]
Abstract
Paranodal axo-glial junctional complexes anchor the myelin sheath to the axon and breakdown of these complexes presumably facilitates demyelination. Myelin deterioration is also prominent in the aging central nervous system (CNS); however, the stability of the paranodal complexes in the aged CNS has not been examined. Here, we show that transverse bands, prominent components of paranodal junctions, are significantly reduced in the aged CNS; however, the number of paired clusters of both myelin and axonal paranodal proteins is not altered. Ultrastructural analyses also reveal that thicker myelin sheaths display a "piling" of paranodal loops, the cytoplasm-containing sacs that demarcate the paranode. Loops involved in piling are observed throughout the paranode and are not limited to loops positioned in either the nodal- or juxtanodal-most regions. Here, we propose that as myelination continues, previously anchored loops lose their transverse bands and recede away from the axolemma. Newly juxtaposed loops then lose their transverse bands, move laterally to fill in the gap left by the receded loops and finally reform their transverse bands. This paranodal reorganization results in conservation of paranodal length, which may be important in maintaining ion channel spacing and axonal function. Furthermore, we propose that transverse band reformation is less efficient in the aged CNS, resulting in the significant reduction of these junctional components. Although demyelination was not observed, we propose that loss of transverse bands facilitates myelin degeneration and may predispose the aged CNS to a poorer prognosis following a secondary insult.
Collapse
Affiliation(s)
- Mark N. Shepherd
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA 23298
- MD Biosciences, 2575 University Avenue W. Suite 100 St Paul, MN, USA 55114 (present address)
| | - Anthony D. Pomicter
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA 23298
| | - Cristine S. Velazco
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA 23298
| | - Scott C. Henderson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA 23298
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA 23298
| |
Collapse
|
42
|
Labasque M, Devaux JJ, Lévêque C, Faivre-Sarrailh C. Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. J Biol Chem 2011; 286:42426-42434. [PMID: 22009740 DOI: 10.1074/jbc.m111.266353] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cell adhesion molecules (CAMs) of the immunoglobulin superfamily (Ig-CAMs) play a crucial role in the organization of the node of Ranvier in myelinated axons. In the peripheral nervous system, Gliomedin (Gldn) secreted by Schwann cell microvilli binds NgCAM-related CAM (NrCAM) and Neurofascin-186 (NF186) and direct the nodal clustering of voltage-gated sodium channels (Nav). NF186 is the single axonal Gldn partner to ensure Nav clustering at nodes, whereas NrCAM is only required in glial cells (Feinberg, K., Eshed-Eisenbach, Y., Frechter, S., Amor, V., Salomon, D., Sabanay, H., Dupree, J. L., Grumet, M., Brophy, P. J., Shrager, P., and Peles, E. (2010) Neuron 65, 490-502). The olfactomedin domain of Gldn is implicated in the interaction with nodal Ig-CAMs. However, the interacting modules of NrCAM or NF186 involved in Gldn association are unknown. Here, we report that fibronectin type III-like (FnIII) domains of both Ig-CAMs mediate their interaction with Gldn in pulldown and cell binding assays. Using surface plasmon resonance assays, we determined that NrCAM and NF186 display similar affinity constant for their association with Gldn (K(D) of 0.9 and 5.7 nm, respectively). We characterized the FnIII domains 1 and 2 of NF186 as interacting modules that ensure association with Gldn. We found that the soluble FnIII domains of NF186 (FnIII-Fc) bind on Schwann cells and inhibit Gldn and Nav clustering at heminodes, the precursors of mature nodes in myelinating cultures. Our study reveals the unexpected importance of FnIII domains of Ig-CAMs in the organization of nodes of Ranvier in peripheral axons. Thus, NF186 utilizes distinct modules to organize the multimeric nodal complex.
Collapse
Affiliation(s)
- Marilyne Labasque
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France
| | - Jérôme J Devaux
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France
| | | | - Catherine Faivre-Sarrailh
- Aix-Marseille Université, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, 13344 Marseille, France; CNRS UMR 6231, 13344 Marseille, France.
| |
Collapse
|
43
|
A Laminin G-EGF-Laminin G module in Neurexin IV is essential for the apico-lateral localization of Contactin and organization of septate junctions. PLoS One 2011; 6:e25926. [PMID: 22022470 PMCID: PMC3195077 DOI: 10.1371/journal.pone.0025926] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023] Open
Abstract
Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.
Collapse
|
44
|
The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J Neurosci 2011; 31:8013-24. [PMID: 21632923 DOI: 10.1523/jneurosci.1015-11.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons.
Collapse
|
45
|
Thaxton C, Pillai AM, Pribisko AL, Dupree JL, Bhat MA. Nodes of Ranvier act as barriers to restrict invasion of flanking paranodal domains in myelinated axons. Neuron 2011; 69:244-57. [PMID: 21262464 DOI: 10.1016/j.neuron.2010.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 11/16/2022]
Abstract
Accumulation of voltage-gated sodium (Na(v)) channels at nodes of Ranvier is paramount for action potential propagation along myelinated fibers, yet the mechanisms governing nodal development, organization, and stabilization remain unresolved. Here, we report that genetic ablation of the neuron-specific isoform of Neurofascin (Nfasc(NF¹⁸⁶)) in vivo results in nodal disorganization, including loss of Na(v) channel and ankyrin-G (AnkG) enrichment at nodes in the peripheral nervous system (PNS) and central nervous system (CNS). Interestingly, the presence of paranodal domains failed to rescue nodal organization in the PNS and the CNS. Most importantly, using ultrastructural analysis, we demonstrate that the paranodal domains invade the nodal space in Nfasc(NF¹⁸⁶) mutant axons and occlude node formation. Our results suggest that Nfasc(NF¹⁸⁶)-dependent assembly of the nodal complex acts as a molecular boundary to restrict the movement of flanking paranodal domains into the nodal area, thereby facilitating the stereotypic axonal domain organization and saltatory conduction along myelinated axons.
Collapse
Affiliation(s)
- Courtney Thaxton
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
47
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|