1
|
Teralı K, Türkyılmaz A, Sağer SG, Çebi AH. Prediction of molecular phenotypes for novel SCN1A variants from a Turkish genetic epilepsy syndromes cohort and report of two new patients with recessive Dravet syndrome. Clin Transl Sci 2024; 17:e13679. [PMID: 37955180 PMCID: PMC10772300 DOI: 10.1111/cts.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore-forming α-subunit of the NaV 1.1 voltage-gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A-positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV 1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.
Collapse
Affiliation(s)
- Kerem Teralı
- Department of Medical Biochemistry, Faculty of MedicineCyprus International UniversityNicosiaCyprus
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| | - Safiye Güneş Sağer
- Department of Pediatric NeurologyKartal Dr. Lütfi Kırdar City HospitalİstanbulTurkey
| | - Alper Han Çebi
- Department of Medical Genetics, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
2
|
Stajković N, Liu Y, Arsić A, Meng N, Lyu H, Zhang N, Grimm D, Lerche H, Nikić-Spiegel I. Direct fluorescent labeling of NF186 and NaV1.6 in living primary neurons using bioorthogonal click chemistry. J Cell Sci 2023; 136:jcs260600. [PMID: 37288813 PMCID: PMC10323244 DOI: 10.1242/jcs.260600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
The axon initial segment (AIS) is a highly specialized neuronal compartment that regulates the generation of action potentials and maintenance of neuronal polarity. Live imaging of the AIS is challenging due to the limited number of suitable labeling methods. To overcome this limitation, we established a novel approach for live labeling of the AIS using unnatural amino acids (UAAs) and click chemistry. The small size of UAAs and the possibility of introducing them virtually anywhere into target proteins make this method particularly suitable for labeling of complex and spatially restricted proteins. Using this approach, we labeled two large AIS components, the 186 kDa isoform of neurofascin (NF186; encoded by Nfasc) and the 260 kDa voltage-gated Na+ channel (NaV1.6, encoded by Scn8a) in primary neurons and performed conventional and super-resolution microscopy. We also studied the localization of epilepsy-causing NaV1.6 variants with a loss-of-function effect. Finally, to improve the efficiency of UAA incorporation, we developed adeno-associated viral (AAV) vectors for click labeling in neurons, an achievement that could be transferred to more complex systems such as organotypic slice cultures, organoids, and animal models.
Collapse
Affiliation(s)
- Nevena Stajković
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Aleksandra Arsić
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Ning Meng
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Cluster of Excellence CellNetworks, BioQuant, 69120 Heidelberg, Germany
| | - Hang Lyu
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Cluster of Excellence CellNetworks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research and German Center for Cardiovascular Research, partner site Heidelberg, 69120 Heidelberg, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Pathological changes of the sural nerve in patients with familial episodic pain syndrome. Neurol Sci 2022; 43:5605-5614. [PMID: 35524925 DOI: 10.1007/s10072-022-06107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Familial episodic pain syndrome type 3 (FEPS3) is an inherited disorder characterized by the early-childhood onset of severe episodic pain that primarily affects the distal extremities. As skin biopsy has revealed a reduction in intraepidermal nerve fiber density and degeneration of the unmyelinated axons, it remains unclear whether FEPS3 patients have pathological changes in the peripheral nerve. METHODS The clinical features of patients with FEPS3 were summarized in a large autosomal dominant family. Sural nerve biopsies were conducted in two patients. Whole exome sequencing (WES) was performed in the index patient. Sanger sequencing was used to analyze family co-segregation. RESULTS Fourteen members exhibited typical and uniform clinical phenotypes characterized by length-dependent and age-dependent severe episodic pain affecting the distal extremities, which can be relieved with anti-inflammatory medicine. The WES revealed a heterozygous mutation c.665G > A (p.R222H) in the SCN11A gene, which was co-segregated with the clinical phenotype in this family. A sural biopsy in patient V:1, who was experiencing episodic pain at 16 years old, showed normal structure, while the sural nerve in patient IV:1, whose pain attack had completely diminished at 42 years old, displayed a decrease of the density of unmyelinated axons with the axonal degeneration. CONCLUSIONS The clinical phenotype of FEPS3 showed distinctive characteristics that likely arise from dysfunctional nociceptive neurons that lack detectable pathological alterations in the nerve fibers. Nevertheless, long-term dysfunction of the Nav1.9 channel may cause degeneration of the unmyelinated fibers in FEPS3 patient with pain remission.
Collapse
|
4
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Malek M, Wawrzyniak AM, Koch P, Lüchtenborg C, Hessenberger M, Sachsenheimer T, Jang W, Brügger B, Haucke V. Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat Commun 2021; 12:2673. [PMID: 33976123 PMCID: PMC8113574 DOI: 10.1038/s41467-021-22882-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.
Collapse
Affiliation(s)
- Mouhannad Malek
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Anna M. Wawrzyniak
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Peter Koch
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Lüchtenborg
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Manuel Hessenberger
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Timo Sachsenheimer
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Wonyul Jang
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Britta Brügger
- grid.7700.00000 0001 2190 4373Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Volker Haucke
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany ,grid.14095.390000 0000 9116 4836Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Inter-Regulation of K v4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies. Int J Mol Sci 2020; 21:ijms21145057. [PMID: 32709127 PMCID: PMC7404392 DOI: 10.3390/ijms21145057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other’s function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. Results: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navβ1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. Conclusion: Nav and Kv4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.
Collapse
|
9
|
Angus M, Peters CH, Poburko D, Brimble E, Spelbrink EM, Ruben PC. Case studies in neuroscience: a novel amino acid duplication in the NH 2-terminus of the brain sodium channel Na V1.1 underlying Dravet syndrome. J Neurophysiol 2019; 122:1975-1980. [PMID: 31533007 DOI: 10.1152/jn.00491.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dravet syndrome is a severe form of childhood epilepsy characterized by frequent temperature-sensitive seizures and delays in cognitive development. In the majority (80%) of cases, Dravet syndrome is caused by mutations in the SCN1A gene, encoding the voltage-gated sodium channel NaV1.1, which is abundant in the central nervous system. Dravet syndrome can be caused by either gain-of-function mutation or loss of function in NaV1.1, making it necessary to characterize each novel mutation. Here we use a combination of patch-clamp recordings and immunocytochemistry to characterize the first known NH2-terminal amino acid duplication mutation found in a patient with Dravet syndrome, M72dup. M72dup does not significantly alter rate of fast inactivation recovery or rate of fast inactivation onset at any measured membrane potential. M72dup significantly shifts the midpoint of the conductance voltage relationship to more hyperpolarized potentials. Most interestingly, M72dup significantly reduces peak current of NaV1.1 and reduces membrane expression. This suggests that M72dup acts as a loss-of-function mutation primarily by impacting the ability of the channel to localize to the plasma membrane.NEW & NOTEWORTHY Genetic screening of a patient with Dravet syndrome revealed a novel mutation in SCN1A. Of over 700 SCN1A mutations known to cause Dravet syndrome, M72dup is the first to be identified in the NH2-terminus of NaV1.1. We studied M72dup using patch-clamp electrophysiology and immunocytochemistry. M72dup causes a decrease in membrane expression of NaV1.1 and overall loss of function, consistent with the role of the NH2-terminal region in membrane trafficking of NaV1.1.
Collapse
Affiliation(s)
- Madeline Angus
- Department of Biomedical Physiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Colin H Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Damon Poburko
- Department of Biomedical Physiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford Medicine, Palo Alto, California
| | - Emily M Spelbrink
- Department of Neurology and Neurological Sciences, Stanford Medicine, Palo Alto, California
| | - Peter C Ruben
- Department of Biomedical Physiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
10
|
The MAP1B Binding Domain of Na v1.6 Is Required for Stable Expression at the Axon Initial Segment. J Neurosci 2019; 39:4238-4251. [PMID: 30914445 DOI: 10.1523/jneurosci.2771-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/22/2022] Open
Abstract
Nav1.6 (SCN8A) is a major voltage-gated sodium channel in the mammalian CNS, and is highly concentrated at the axon initial segment (AIS). As previously demonstrated, the microtubule associated protein MAP1B binds the cytoplasmic N terminus of Nav1.6, and this interaction is disrupted by the mutation p.VAVP(77-80)AAAA. We now demonstrate that this mutation results in WT expression levels on the somatic surface but reduced surface expression at the AIS of cultured rat embryonic hippocampal neurons from both sexes. The mutation of the MAP1B binding domain did not impair vesicular trafficking and preferential delivery of Nav1.6 to the AIS; nor was the diffusion of AIS inserted channels altered relative to WT. However, the reduced AIS surface expression of the MAP1B mutant was restored to WT levels by inhibiting endocytosis with Dynasore, indicating that compartment-specific endocytosis was responsible for the lack of AIS accumulation. Interestingly, the lack of AIS targeting resulted in an elevated percentage of persistent current, suggesting that this late current originates predominantly in the soma. No differences in the voltage dependence of activation or inactivation were detected in the MAP1B binding mutant relative to WT channel. We hypothesize that MAP1B binding to the WT Nav1.6 masks an endocytic motif, thus allowing long-term stability on the AIS surface. This work identifies a critical and important new role for MAP1B in the regulation of neuronal excitability and adds to our understanding of AIS maintenance and plasticity, in addition to identifying new target residues for pathogenic mutations of SCN8A SIGNIFICANCE STATEMENT Nav1.6 is a major voltage-gated sodium channel in human brain, where it regulates neuronal activity due to its localization at the axon initial segment (AIS). Nav1.6 mutations cause epilepsy, intellectual disability, and movement disorders. In the present work, we show that loss of interaction with MAP1B within the Nav1.6 N terminus reduces the steady-state abundance of Nav1.6 at the AIS. The effect is due to increased Nav1.6 endocytosis at this neuronal compartment rather than a failure of forward trafficking to the AIS. This work confirms a new biological role of MAP1B in the regulation of sodium channel localization and will contribute to future analysis of patient mutations in the cytoplasmic N terminus of Nav1.6.
Collapse
|
11
|
Familial episodic limb pain in kindreds with novel Nav1.9 mutations. PLoS One 2018; 13:e0208516. [PMID: 30557356 PMCID: PMC6296736 DOI: 10.1371/journal.pone.0208516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
We previously performed genetic analysis in six unrelated families with infantile limb pain episodes, characterized by cold-induced deterioration and mitigation in adolescence, and reported two new mutations p.R222H/S in SCN11A responsible for these episodes. As no term described this syndrome (familial episodic pain: FEP) in Japanese, we named it as”小児四肢疼痛発作症”. In the current study, we recruited an additional 42 new unrelated Japanese FEP families, between March 2016 and March 2018, and identified a total of 11 mutations in SCN11A: p.R222H in seven families, and p.R225C, p.F814C, p.F1146S, or p.V1184A, in independent families. A founder mutation, SCN11A p.R222H was confirmed to be frequently observed in patients with FEP in the Tohoku region of Japan. We also identified two novel missense variants of SCN11A, p.F814C and p.F1146S. To evaluate the effects of these latter two mutations, we generated knock-in mouse models harboring p.F802C (F802C) and p.F1125S (F1125S), orthologues of the human p.F814C and p.F1146S, respectively. We then performed electrophysiological investigations using dorsal root ganglion neurons dissected from the 6–8 week-old mice. Dissected neurons of F802C and F1125S mice showed increased resting membrane potentials and firing frequency of the action potentials (APs) by high input–current stimulus compared with WT mice. Furthermore, the firing probability of evoked APs increased in low stimulus input in F1125S mice, whereas several AP parameters and current threshold did not differ significantly between either of the mutations and WT mice. These results suggest a higher level of excitability in the F802C or F1125S mice than in WT, and indicate that these novel mutations are gain of function mutations. It can be expected that a considerable number of potential patients with FEP may be the result of gain of function SCN11A mutations.
Collapse
|
12
|
Akin EJ, Solé L, Johnson B, Beheiry ME, Masson JB, Krapf D, Tamkun MM. Single-Molecule Imaging of Nav1.6 on the Surface of Hippocampal Neurons Reveals Somatic Nanoclusters. Biophys J 2017; 111:1235-1247. [PMID: 27653482 DOI: 10.1016/j.bpj.2016.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are responsible for the depolarizing phase of the action potential in most nerve cells, and Nav channel localization to the axon initial segment is vital to action potential initiation. Nav channels in the soma play a role in the transfer of axonal output information to the rest of the neuron and in synaptic plasticity, although little is known about Nav channel localization and dynamics within this neuronal compartment. This study uses single-particle tracking and photoactivation localization microscopy to analyze cell-surface Nav1.6 within the soma of cultured hippocampal neurons. Mean-square displacement analysis of individual trajectories indicated that half of the somatic Nav1.6 channels localized to stable nanoclusters ∼230 nm in diameter. Strikingly, these domains were stabilized at specific sites on the cell membrane for >30 min, notably via an ankyrin-independent mechanism, indicating that the means by which Nav1.6 nanoclusters are maintained in the soma is biologically different from axonal localization. Nonclustered Nav1.6 channels showed anomalous diffusion, as determined by mean-square-displacement analysis. High-density single-particle tracking of Nav channels labeled with photoactivatable fluorophores in combination with Bayesian inference analysis was employed to characterize the surface nanoclusters. A subpopulation of mobile Nav1.6 was observed to be transiently trapped in the nanoclusters. Somatic Nav1.6 nanoclusters represent a new, to our knowledge, type of Nav channel localization, and are hypothesized to be sites of localized channel regulation.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laura Solé
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Ben Johnson
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mohamed El Beheiry
- Physico-Chimie Curie, Institut Curie, Paris Sciences Lettres, CNRS UMR 168, Université Pierre et Marie Curie, Paris, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Decision and Bayesian Computation, Centre National de la Recherche Scientifique (CNRS) UMR 3525, Paris, France; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado.
| | - Michael M Tamkun
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado.
| |
Collapse
|
13
|
Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M. Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 2017; 132:31-42. [PMID: 28571716 DOI: 10.1016/j.neuropharm.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Channelopathies comprise various diseases caused by defects of ion channels. Modifications of their biophysical properties are common and have been widely studied. However, ion channels are heterogeneous multi-molecular complexes that are extensively modulated and undergo a maturation process comprising numerous steps of structural modifications and intracellular trafficking. Perturbations of these processes can give rise to aberrant channels that cause pathologies. Here we review channelopathies of the nervous system associated with dysfunctions at the post-translational level (folding, trafficking, degradation, subcellular localization, interactions with associated proteins and structural post-translational modifications). We briefly outline the physiology of ion channels' maturation and discuss examples of defective mechanisms, focusing in particular on voltage-gated sodium channels, which are implicated in numerous neurological disorders. We also shortly introduce possible strategies to develop therapeutic approaches that target these processes. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Benedetta Terragni
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
14
|
Abstract
Voltage-gated sodium channels (VGSC) are critical determinants of cellular electrical activity through the control of initiation and propagation of action potential. To ensure this role, these proteins are not consistently delivered to the plasma membrane but undergo drastic quality controls throughout various adaptive processes such as biosynthesis, anterograde and retrograde trafficking, and membrane targeting. In pathological conditions, this quality control could lead to the retention of functional VGSC and is therefore the target of different pharmacological approaches. The present chapter gives an overview of the current understanding of the facets of VGSC life cycle in the context of both cardiac and neuronal cell types.
Collapse
Affiliation(s)
- A Mercier
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - P Bois
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - A Chatelier
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
15
|
Rogers M, Zidar N, Kikelj D, Kirby RW. Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening. Assay Drug Dev Technol 2016; 14:109-30. [PMID: 26991361 PMCID: PMC4800267 DOI: 10.1089/adt.2016.704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rodent neuroblastoma cell line, ND7-23, is used to express voltage-dependent sodium (Nav) and other neuronal ion channels resistant to heterologous expression in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. Their advantage is that they provide endogenous factors and signaling pathways to promote ion channel peptide folding, expression, and function at the cell surface and are also amenable to automated patch clamping. However, ND7-23 cells exhibit endogenous tetrodotoxin (TTX)-sensitive Nav currents, and molecular profiling has revealed the presence of Nav1.2, Nav1.3, Nav1.6, and Nav1.7 transcripts, but no study has determined which subtypes contribute to functional channels at the cell surface. We profiled the repertoire of functional Nav channels endogenously expressed in ND7-23 cells using the QPatch automated patch clamp platform and selective toxins and small molecules. The potency and subtype selectivity of the ligands (Icagen compound 68 from patent US-20060025415-A1-20060202, 4,9 anhydro TTX, and Protoxin-II) were established in human Nav1.3, Nav1.6, and Nav1.7 channel cell lines before application of selective concentrations to ND7-23 cells. Our data confirm previous studies that >97% of macroscopic Nav current in ND7-23 cells is carried by TTX-sensitive channels (300 nM TTX) and that Nav1.7 is the predominant channel contributing to this response (65% of peak inward current), followed by Nav1.6 (∼20%) and negligible Nav1.3 currents (∼2%). In addition, our data are the first to assess the Nav1.6 potency (50% inhibitory concentration [IC50] of 33 nM) and selectivity (50-fold over Nav1.7) of 4,9 anhydro TTX in human Nav channels expressed in mammalian cells, confirming previous studies of rodent Nav channels expressed in oocytes and HEK cells.
Collapse
Affiliation(s)
- Marc Rogers
- 1 Xention Limited , Cambridge, United Kingdom
| | - Nace Zidar
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | - Danijel Kikelj
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | | |
Collapse
|
16
|
Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 2016; 139:2164-81. [PMID: 27267376 DOI: 10.1093/brain/aww129] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/15/2016] [Indexed: 11/12/2022] Open
Abstract
Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment. Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies. In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels. We first determined the biophysical consequences of epilepsy-associated missense mutations in both Nav1.1 (arginine 1648 to histidine and asparagine 1788 to lysine) and Nav1.6 (asparagine 1768 to aspartic acid and leucine 1331 to valine) by obtaining whole-cell patch clamp recordings in human embryonic kidney 293T cells with 200 μM Navβ4 peptide in the pipette solution to induce resurgent sodium currents. Resurgent sodium current is an atypical near threshold current predicted to increase neuronal excitability and has been implicated in multiple disorders of excitability. We found that both mutations in Nav1.6 dramatically increased resurgent currents while mutations in Nav1.1 did not. We then examined the effects of anandamide and cannabidiol on peak transient and resurgent currents from wild-type and mutant channels. Interestingly, we found that cannabidiol can preferentially target resurgent sodium currents over peak transient currents generated by wild-type Nav1.6 as well as the aberrant resurgent and persistent current generated by Nav1.6 mutant channels. To further validate our findings, we examined the effects of cannabidiol on endogenous sodium currents from striatal neurons, and similarly we found an inhibition of resurgent and persistent current by cannabidiol. Moreover, current clamp recordings show that cannabidiol reduces overall action potential firing of striatal neurons. These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.
Collapse
Affiliation(s)
- Reesha R Patel
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA
| | - Cindy Barbosa
- 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Tatiana Brustovetsky
- 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Nickolay Brustovetsky
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Theodore R Cummins
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
17
|
Jones JM, Dionne L, Dell'Orco J, Parent R, Krueger JN, Cheng X, Dib-Hajj SD, Bunton-Stasyshyn RK, Sharkey LM, Dowling JJ, Murphy GG, Shakkottai VG, Shrager P, Meisler MH. Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol Dis 2016; 89:36-45. [PMID: 26807988 PMCID: PMC4991781 DOI: 10.1016/j.nbd.2016.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/06/2016] [Accepted: 01/20/2016] [Indexed: 02/08/2023] Open
Abstract
Mutations of the neuronal sodium channel gene SCN8A are associated with lethal movement disorders in the mouse and with human epileptic encephalopathy. We describe a spontaneous mouse mutation, Scn8a(9J), that is associated with a chronic movement disorder with early onset tremor and adult onset dystonia. Scn8a(9J) homozygotes have a shortened lifespan, with only 50% of mutants surviving beyond 6 months of age. The 3 bp in-frame deletion removes 1 of the 3 adjacent isoleucine residues in transmembrane segment DIVS6 of Nav1.6 (p.Ile1750del). The altered helical orientation of the transmembrane segment displaces pore-lining amino acids with important roles in channel activation and inactivation. The predicted impact on channel activity was confirmed by analysis of cerebellar Purkinje neurons from mutant mice, which lack spontaneous and induced repetitive firing. In a heterologous expression system, the activity of the mutant channel was below the threshold for detection. Observations of decreased nerve conduction velocity and impaired behavior in an open field are also consistent with reduced activity of Nav1.6. The Nav1.6Δ1750 protein is only partially glycosylated. The abundance of mutant Nav1.6 is reduced at nodes of Ranvier and is not detectable at the axon initial segment. Despite a severe reduction in channel activity, the lifespan and motor function of Scn8a(9J/9J) mice are significantly better than null mutants lacking channel protein. The clinical phenotype of this severe hypomorphic mutant expands the spectrum of Scn8a disease to include a recessively inherited, chronic and progressive movement disorder.
Collapse
Affiliation(s)
- Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Dionne
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
| | - James Dell'Orco
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel Parent
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jamie N Krueger
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Xiaoyang Cheng
- Department of Neurology and Centre for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06516, United States.
| | - Sulayman D Dib-Hajj
- Department of Neurology and Centre for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06516, United States
| | | | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - James J Dowling
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Geoffrey G Murphy
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter Shrager
- Department of Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
18
|
Bugiardini E, Rivolta I, Binda A, Soriano Caminero A, Cirillo F, Cinti A, Giovannoni R, Botta A, Cardani R, Wicklund M, Meola G. SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype. Neuromuscul Disord 2015; 25:301-7. [DOI: 10.1016/j.nmd.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
|
19
|
Liu C, Tan FCK, Xiao ZC, Dawe GS. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem 2015; 290:12048-57. [PMID: 25767117 DOI: 10.1074/jbc.m114.617092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway.
Collapse
Affiliation(s)
- Chao Liu
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Zhi-Cheng Xiao
- the Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031, China, and the Shunxi-Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Gavin S Dawe
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456,
| |
Collapse
|
20
|
Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, Murphy GG, Parent JM, Meisler MH. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet 2014; 24:506-15. [PMID: 25227913 PMCID: PMC4275076 DOI: 10.1093/hmg/ddu470] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
De novo mutations of the voltage-gated sodium channel gene SCN8A have recently been recognized as a cause of epileptic encephalopathy, which is characterized by refractory seizures with developmental delay and cognitive disability. We previously described the heterozygous SCN8A missense mutation p.Asn1768Asp in a child with epileptic encephalopathy that included seizures, ataxia, and sudden unexpected death in epilepsy (SUDEP). The mutation results in increased persistent sodium current and hyperactivity of transfected neurons. We have characterized a knock-in mouse model expressing this dominant gain-of-function mutation to investigate the pathology of the altered channel in vivo. The mutant channel protein is stable in vivo. Heterozygous Scn8aN1768D/+ mice exhibit seizures and SUDEP, confirming the causality of the de novo mutation in the proband. Using video/EEG analysis, we detect ictal discharges that coincide with convulsive seizures and myoclonic jerks. Prior to seizure onset, heterozygous mutants are not defective in motor learning or fear conditioning, but do exhibit mild impairment of motor coordination and social discrimination. Homozygous mutant mice exhibit earlier seizure onset than heterozygotes and more rapid progression to death. Analysis of the intermediate phenotype of functionally hemizygous Scn8aN1768D/− mice indicates that severity is increased by a double dose of mutant protein and reduced by the presence of wild-type protein. Scn8aN1768D mutant mice provide a model of epileptic encephalopathy that will be valuable for studying the in vivo effects of hyperactive Nav1.6 and the response to therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Rachel Parent
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor A Tarpey
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA and
| | - Jack M Parent
- Department of Neurology VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | |
Collapse
|
21
|
de Kovel CGF, Meisler MH, Brilstra EH, van Berkestijn FMC, van 't Slot R, van Lieshout S, Nijman IJ, O'Brien JE, Hammer MF, Estacion M, Waxman SG, Dib-Hajj SD, Koeleman BPC. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res 2014; 108:1511-8. [PMID: 25239001 DOI: 10.1016/j.eplepsyres.2014.08.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies (EIEE13). Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. DESIGN Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. RESULTS The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. CONCLUSION The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Eva H Brilstra
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ruben van 't Slot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stef van Lieshout
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isaac J Nijman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janelle E O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Mark Estacion
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Estacion M, O'Brien JE, Conravey A, Hammer MF, Waxman SG, Dib-Hajj SD, Meisler MH. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 2014; 69:117-23. [PMID: 24874546 DOI: 10.1016/j.nbd.2014.05.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/21/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022] Open
Abstract
Rare de novo mutations of sodium channels are thought to be an important cause of sporadic epilepsy. The well established role of de novo mutations of sodium channel SCN1A in Dravet Syndrome supports this view, but the etiology of many cases of epileptic encephalopathy remains unknown. We sought to identify the genetic cause in a patient with early onset epileptic encephalopathy by whole exome sequencing of genomic DNA. The heterozygous mutation c. 2003C>T in SCN8A, the gene encoding sodium channel Nav1.6, was detected in the patient but was not present in either parent. The resulting missense substitution, p.Thr767Ile, alters an evolutionarily conserved residue in the first transmembrane segment of channel domain II. The electrophysiological effects of this mutation were assessed in neuronal cells transfected with mutant or wildtype cDNA. The mutation causes enhanced channel activation, with a 10mV depolarizing shift in voltage dependence of activation as well as increased ramp current. In addition, pyramidal hippocampal neurons expressing the mutant channel exhibit increased spontaneous firing with PDS-like complexes as well as increased frequency of evoked action potentials. The identification of this new gain-of-function mutation of Nav1.6 supports the inclusion of SCN8A as a causative gene in infantile epilepsy, demonstrates a novel mechanism for hyperactivity of Nav1.6, and further expands the role of de novo mutations in severe epilepsy.
Collapse
Affiliation(s)
- Mark Estacion
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Janelle E O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | | | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen G Waxman
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
23
|
Teo I, Schulten K. A computational kinetic model of diffusion for molecular systems. J Chem Phys 2014; 139:121929. [PMID: 24089741 DOI: 10.1063/1.4820876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.
Collapse
Affiliation(s)
- Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
24
|
González C, Couve A. The axonal endoplasmic reticulum and protein trafficking: Cellular bootlegging south of the soma. Semin Cell Dev Biol 2013; 27:23-31. [PMID: 24361785 DOI: 10.1016/j.semcdb.2013.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 12/26/2022]
Abstract
Neurons are responsible for the generation and propagation of electrical impulses, which constitute the central mechanism of information transfer between the nervous system and internal or external environments. Neurons are large and polarized cells with dendrites and axons constituting their major functional domains. Axons are thin and extremely long specializations that mediate the conduction of these electrical impulses. Regulation of the axonal proteome is fundamental to generate and maintain neural function. Although classical mechanisms of protein transport have been around for decades, a variety newly identified mechanisms to control the abundance of axonal proteins have appeared in recent years. Here we briefly describe the classical models of axonal transport and compare them to the emerging concepts of axonal biosynthesis centered on the endoplasmic reticulum. We review the structure of the axonal endoplasmic reticulum, and its role in diffusion and trafficking of axonal proteins. We also analyze the contribution of other secretory organelles to axonal trafficking and evaluate the potential consequences of axonal endoplasmic reticulum malfunction in neuropathology.
Collapse
Affiliation(s)
- Carolina González
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM) and Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM) and Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4:213. [PMID: 24194747 PMCID: PMC3809569 DOI: 10.3389/fgene.2013.00213] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment (AIS) and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med) mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the four domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, University of Michigan Ann Arbor, MI, USA
| | | |
Collapse
|
26
|
Lin YC, Chen BM, Lu WC, Su CI, Prijovich ZM, Chung WC, Wu PY, Chen KC, Lee IC, Juan TY, Roffler SR. The B7-1 cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif. PLoS One 2013; 8:e75084. [PMID: 24073236 PMCID: PMC3779271 DOI: 10.1371/journal.pone.0075084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells.
Collapse
Affiliation(s)
- Yi-Chieh Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Cheng Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-I Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Wen-Chuan Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Chiao Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Yi Juan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Gütter C, Benndorf K, Zimmer T. Characterization of N-terminally mutated cardiac Na(+) channels associated with long QT syndrome 3 and Brugada syndrome. Front Physiol 2013; 4:153. [PMID: 23805106 PMCID: PMC3693076 DOI: 10.3389/fphys.2013.00153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/10/2013] [Indexed: 11/21/2022] Open
Abstract
Mutations in SCN5A, the gene encoding the cardiac voltage-gated Na+ channel hNav1.5, can result in life-threatening arrhythmias including long QT syndrome 3 (LQT3) and Brugada syndrome (BrS). Numerous mutant hNav1.5 channels have been characterized upon heterologous expression and patch-clamp recordings during the last decade. These studies revealed functionally important regions in hNav1.5 and provided insight into gain-of-function or loss-of-function channel defects underlying LQT3 or BrS, respectively. The N-terminal region of hNav1.5, however, has not yet been investigated in detail, although several mutations were reported in the literature. In the present study we investigated three mutant channels, previously associated with LQT3 (G9V, R18W, V125L), and six mutant channels, associated with BrS (R18Q, R27H, G35S, V95I, R104Q, K126E). We applied both the two-microelectrode voltage clamp technique, using cRNA-injected Xenopus oocytes, and the whole-cell patch clamp technique using transfected HEK293 cells. Surprisingly, four out of the nine mutations did not affect channel properties. Gain-of-function, as typically observed in LQT3 mutant channels, was observed only in R18W and V125L, whereas loss-of-function, frequently found in BrS mutants, was found only in R27H, R104Q, and K126E. Our results indicate that the hNav1.5 N-terminus plays an important role for channel kinetics and stability. At the same time, we suggest that additional mechanisms, as e.g., disturbed interactions of the Na+ channel N-terminus with other proteins, contribute to severe clinical phenotypes.
Collapse
Affiliation(s)
- Christian Gütter
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena Jena, Germany
| | | | | |
Collapse
|
28
|
Kim BJ, Zaveri HP, Shchelochkov OA, Yu Z, Hernández-García A, Seymour ML, Oghalai JS, Pereira FA, Stockton DW, Justice MJ, Lee B, Scott DA. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions. PLoS One 2013; 8:e57460. [PMID: 23451234 PMCID: PMC3581587 DOI: 10.1371/journal.pone.0057460] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/24/2013] [Indexed: 01/28/2023] Open
Abstract
Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala), which we identified in an N-ethyl-N-nitrosourea (ENU)-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN)-positive hippocampal neurons, hearing loss, cardiovascular malformations–aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects–spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute–alone or in conjunction with other genetic, environmental, or stochastic factors–to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the proximal region of chromosome 1p36.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hitisha P. Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oleg A. Shchelochkov
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyin Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michelle L. Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John S. Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford School of Medicine, Stanford, California, United State of America
| | - Fred A. Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Stockton
- Departments of Pediatrics and Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Characterization of Highper, an ENU-induced mouse mutant with abnormal psychostimulant and stress responses. Psychopharmacology (Berl) 2013; 225:407-19. [PMID: 22948668 PMCID: PMC3536991 DOI: 10.1007/s00213-012-2827-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 11/05/2022]
Abstract
RATIONALE Chemical mutagenesis in the mouse is a forward genetics approach that introduces random mutations into the genome, thereby providing an opportunity to annotate gene function and characterize phenotypes that have not been previously linked to a given gene. OBJECTIVES We report on the behavioral characterization of Highper, an N-ethyl-N-nitrosourea (ENU)-induced mutant mouse line. METHODS Highper and B6 control mice were assessed for locomotor activity in the open field and home cage environments. Basal and acute restraint stress-induced corticosterone levels were measured. Mice were tested for locomotor response to cocaine (5, 20, 30, and 45 mg/kg), methylphenidate (30 mg/kg), and ethanol (0.75, 1.25, and 1.75 g/kg). The rewarding and reinforcing effects of cocaine were assessed using conditioned place preference and self-administration paradigms. RESULTS Highper mice are hyperactive during behavioral tests but show normal home cage locomotor behavior. Highper mice also exhibit a twofold increase in locomotor response to cocaine, methylphenidate, and ethanol and prolonged activation of the hypothalamic-pituitary-adrenal axis in response to acute stress. Highper mice are more sensitive to the rewarding and reinforcing effects of cocaine, although place preference in Highper mice appears to be significantly influenced by the environment in which the drug is administered. CONCLUSIONS Altogether, our findings indicate that Highper mice may provide important insights into the genetic, molecular, and biological mechanisms underlying stress and the drug reward pathway.
Collapse
|
30
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
31
|
Clatot J, Ziyadeh-Isleem A, Maugenre S, Denjoy I, Liu H, Dilanian G, Hatem SN, Deschênes I, Coulombe A, Guicheney P, Neyroud N. Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Na(v)1.5 α-subunits. Cardiovasc Res 2012; 96:53-63. [PMID: 22739120 DOI: 10.1093/cvr/cvs211] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS Brugada syndrome (BrS) is an autosomal-inherited cardiac arrhythmia characterized by an ST-segment elevation in the right precordial leads of the electrocardiogram and an increased risk of syncope and sudden death. SCN5A, encoding the cardiac sodium channel Na(v)1.5, is the main gene involved in BrS. Despite the fact that several mutations have been reported in the N-terminus of Na(v)1.5, the functional role of this region remains unknown. We aimed to characterize two BrS N-terminal mutations, R104W and R121W, a construct where this region was deleted, ΔNter, and a construct where only this region was present, Nter. METHODS AND RESULTS Patch-clamp recordings in HEK293 cells demonstrated that R104W, R121W, and ΔNter abolished the sodium current I(Na). Moreover, R104W and R121W mutations exerted a strong dominant-negative effect on wild-type (WT) channels. Immunocytochemistry of rat neonatal cardiomyocytes revealed that both mutants were mostly retained in the endoplasmic reticulum and that their co-expression with WT channels led to WT channel retention. Furthermore, co-immunoprecipitation experiments showed that Na(v)1.5-subunits were interacting with each other, even when mutated, deciphering the mutation dominant-negative effect. Both mutants were mostly degraded by the ubiquitin-proteasome system, while ΔNter was addressed to the membrane, and Nter expression induced a two-fold increase in I(Na). In addition, the co-expression of N-terminal mutants with the gating-defective but trafficking-competent R878C-Na(v)1.5 mutant gave rise to a small I(Na). CONCLUSION This study reports for the first time the critical role of the Na(v)1.5 N-terminal region in channel function and the dominant-negative effect of trafficking-defective channels occurring through α-subunit interaction.
Collapse
|
32
|
O'Brien JE, Sharkey LM, Vallianatos CN, Han C, Blossom JC, Yu T, Waxman SG, Dib-Hajj SD, Meisler MH. Interaction of voltage-gated sodium channel Nav1.6 (SCN8A) with microtubule-associated protein Map1b. J Biol Chem 2012; 287:18459-66. [PMID: 22474336 DOI: 10.1074/jbc.m111.336024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which voltage-gated sodium channels are trafficked to the surface of neurons is not well understood. Our previous work implicated the cytoplasmic N terminus of the sodium channel Na(v)1.6 in this process. We report that the N terminus plus the first transmembrane segment (residues 1-153) is sufficient to direct a reporter to the cell surface. To identify proteins that interact with the 117-residue N-terminal domain, we carried out a yeast two-hybrid screen of a mouse brain cDNA library. Three clones containing overlapping portions of the light chain of microtubule-associated protein Map1b (Mtap1b) were recovered from the screen. Interaction between endogenous Na(v)1.6 channels and Map1b in mouse brain was confirmed by co-immunoprecipitation. Map1b did not interact with the N terminus of the related channel Na(v)1.1. Alanine-scanning mutagenesis of the Na(v)1.6 N terminus demonstrated that residues 77-80 (VAVP) contribute to interaction with Map1b. Co-expression of Na(v)1.6 with Map1b in neuronal cell line ND7/23 resulted in a 50% increase in current density, demonstrating a functional role for this interaction. Mutation of the Map1b binding site of Na(v)1.6 prevented generation of sodium current in transfected cells. The data indicate that Map1b facilitates trafficking of Na(v)1.6 to the neuronal cell surface.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, the University of Michigan, Ann Arbor, Michigan 48109-5618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Veeramah K, O'Brien J, Meisler M, Cheng X, Dib-Hajj S, Waxman S, Talwar D, Girirajan S, Eichler E, Restifo L, Erickson R, Hammer M. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90:502-10. [PMID: 22365152 PMCID: PMC3309181 DOI: 10.1016/j.ajhg.2012.01.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 12/25/2022] Open
Abstract
Individuals with severe, sporadic disorders of infantile onset represent an important class of disease for which discovery of the underlying genetic architecture is not amenable to traditional genetic analysis. Full-genome sequencing of affected individuals and their parents provides a powerful alternative strategy for gene discovery. We performed whole-genome sequencing (WGS) on a family quartet containing an affected proband and her unaffected parents and sibling. The 15-year-old female proband had a severe epileptic encephalopathy consisting of early-onset seizures, features of autism, intellectual disability, ataxia, and sudden unexplained death in epilepsy. We discovered a de novo heterozygous missense mutation (c.5302A>G [p.Asn1768Asp]) in the voltage-gated sodium-channel gene SCN8A in the proband. This mutation alters an evolutionarily conserved residue in Nav1.6, one of the most abundant sodium channels in the brain. Analysis of the biophysical properties of the mutant channel demonstrated a dramatic increase in persistent sodium current, incomplete channel inactivation, and a depolarizing shift in the voltage dependence of steady-state fast inactivation. Current-clamp analysis in hippocampal neurons transfected with p.Asn1768Asp channels revealed increased spontaneous firing, paroxysmal-depolarizing-shift-like complexes, and an increased firing frequency, consistent with a dominant gain-of-function phenotype in the heterozygous proband. This work identifies SCN8A as the fifth sodium-channel gene to be mutated in epilepsy and demonstrates the value of WGS for the identification of pathogenic mutations causing severe, sporadic neurological disorders.
Collapse
Affiliation(s)
- Krishna R. Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Janelle E. O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520-8018, USA
| | | | - Stephen G. Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520-8018, USA
| | - Dinesh Talwar
- Department of Pediatrics, Arizona Health Science Center, Tucson, AZ 85724, USA
- Department of Neurology, Arizona Health Science Center, Tucson, AZ 85724, USA
- Center for Neurosciences, Tucson, AZ 85718, USA
| | - Santhosh Girirajan
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Linda L. Restifo
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, Arizona Health Science Center, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Robert P. Erickson
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Pediatrics, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Michael F. Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
34
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
35
|
Noujaim SF, Kaur K, Milstein M, Jones JM, Furspan P, Jiang D, Auerbach DS, Herron T, Meisler MH, Jalife J. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart. FASEB J 2011; 26:63-72. [PMID: 21948246 DOI: 10.1096/fj.10-179770] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence supports the expression of brain-type sodium channels in the heart. Their functional role, however, remains controversial. We used global Na(V)1.6-null mice to test the hypothesis that Na(V)1.6 contributes to the maintenance of propagation in the myocardium and to excitation-contraction (EC) coupling. We demonstrated expression of transcripts encoding full-length Na(V)1.6 in isolated ventricular myocytes and confirmed the striated pattern of Na(V)1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca(2+) transients were longer in the null cells. Under patch clamping, at holding potential (HP) = -120 mV, the peak I(Na) was similar in both phenotypes. However, at HP = -70 mV, the peak I(Na) was smaller in the nulls. In optical mapping, at 4 mM [K(+)](o), 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild-type hearts. At 12 mM [K(+)](o), CV was 25% slower in a subset of 9 null vs. 9 wild-type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby Na(V)1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.
Collapse
Affiliation(s)
- Sami F Noujaim
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ahn HS, Black JA, Zhao P, Tyrrell L, Waxman SG, Dib-Hajj SD. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons. Mol Pain 2011; 7:32. [PMID: 21569247 PMCID: PMC3101130 DOI: 10.1186/1744-8069-7-32] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/10/2011] [Indexed: 12/19/2022] Open
Abstract
Background Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons). Methods We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs. Results We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system. Conclusions Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP.
Collapse
Affiliation(s)
- Hye-Sook Ahn
- Department of Neurology, Yale University School of Medicine, New Haven, 06520, USA
| | | | | | | | | | | |
Collapse
|
37
|
Dib-Hajj SD, Waxman SG. Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neurosci Lett 2010; 486:84-91. [DOI: 10.1016/j.neulet.2010.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
38
|
Abstract
Voltage-gated sodium channels are key to the initiation and propagation of action potentials in electrically excitable cells. Molecular characterization has shown there to be nine functional members of the family, with a high degree of sequence homology between the channels. This homology translates into similar biophysical and pharmacological properties. Confidence in some of the channels as drug targets has been boosted by the discovery of human mutations in the genes encoding a number of them, which give rise to clinical conditions commensurate with the changes predicted from the altered channel biophysics. As a result, they have received much attention for their therapeutic potential. Sodium channels represent well-precedented drug targets as antidysrhythmics, anticonvulsants and local anaesthetics provide good clinical efficacy, driven through pharmacology at these channels. However, electrophysiological characterization of clinically useful compounds in recombinant expression systems shows them to be weak, with poor selectivity between channel types. This has led to the search for subtype-selective modulators, which offer the promise of treatments with improved clinical efficacy and better toleration. Despite developments in high-throughput electrophysiology platforms, this has proven very challenging. Structural biology is beginning to offer us a greater understanding of the three-dimensional structure of voltage-gated ion channels, bringing with it the opportunity to do real structure-based drug design in the future. This discipline is still in its infancy, but developments with the expression and purification of prokaryotic sodium channels offer the promise of structure-based drug design in the not too distant future.
Collapse
Affiliation(s)
- Steve England
- Pfizer Global Research and Development, Sandwich Laboratories, Kent, UK.
| | | |
Collapse
|
39
|
Ferguson CJ, Lenk GM, Meisler MH. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 2009; 18:4868-78. [PMID: 19793721 PMCID: PMC2778378 DOI: 10.1093/hmg/ddp460] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations affecting the conversion of PI3P to the signaling lipid PI(3,5)P2 result in spongiform degeneration of mouse brain and are associated with the human disorders Charcot–Marie–Tooth disease and amyotrophic lateral sclerosis (ALS). We now report accumulation of the proteins LC3-II, p62 and LAMP-2 in neurons and astrocytes of mice with mutations in two components of the PI(3,5)P2 regulatory complex, Fig4 and Vac14. Cytoplasmic inclusion bodies containing p62 and ubiquinated proteins are present in regions of the mutant brain that undergo degeneration. Co-localization of p62 and LAMP-2 in affected cells indicates that formation or recycling of the autolysosome is impaired. These results establish a role for PI(3,5)P2 in autophagy in the mammalian central nervous system (CNS) and demonstrate that mutations affecting PI(3,5)P2 can contribute to inclusion body disease.
Collapse
Affiliation(s)
- Cole J Ferguson
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | | | | |
Collapse
|
40
|
Chen K, Godfrey DA, Ilyas O, Xu J, Preston TW. Cerebellum-related characteristics of Scn8a-mutant mice. THE CEREBELLUM 2009; 8:192-201. [PMID: 19424768 DOI: 10.1007/s12311-009-0110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/19/2022]
Abstract
Among ten sodium channel alpha-subunit genes mapped in human and mouse genomes, the SCN8A gene is primarily expressed in neurons and glia. Mice with two types of Scn8a null mutations--Scn8a ( med ) and Scn8a ( medTg )--live for only 21-24 days, but those with incomplete mutations-Scn8a ( medJ ) and Scn8a ( medJo )--and those with knockout of Scn8a only in cerebellar Purkinje cells live to adult age. We review here previous work on cerebellum and related regions of Scn8a mutant mice and include some newer immunohistochemical and microchemical results. The resurgent sodium current that underlies the repeated firing of Purkinje cells is reduced in Scn8a mutant and knockout mice. Purkinje cells of mutant mice have greatly reduced spontaneous activity, as do the analogous cartwheel cells of the dorsal cochlear nucleus. Up-regulation of GABA(A) receptors in regions to which Purkinje cells project may partially compensate for their decreased activity in the mutant mice. The somata of cerebellar Purkinje cells of Scn8a ( medJ ) and Scn8a ( medJo ) mice, as revealed by PEP-19 immunoreaction, are slightly smaller than normal, and their axons, especially in Scn8a ( medJo ) mice, sometimes show enlargements similar to those in other types of mutant mice. Density of GABA-like immunoreactivity is decreased in Purkinje somata and regions of termination in deep cerebellar and vestibular nuclei of Scn8a ( medJ ) mice, but measured GABA concentration is not significantly reduced in microdissected samples of these regions. The concentrations of taurine and glutamine are significantly increased in cerebellar-related regions of Scn8a ( medJ ) mice, possibly suggesting up-regulation of glial amino acid metabolism.
Collapse
|