1
|
Kawakami C, Naoi T, Sakaguchi M. Spaced conditioned stimulus presentation facilitates the extinction of strong fear memory in mice. Biochem Biophys Res Commun 2024; 718:150071. [PMID: 38735136 DOI: 10.1016/j.bbrc.2024.150071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Inducing fear memory extinction by re-presenting a conditioned stimulus (CS) is the foundation of exposure therapy for post-traumatic stress disorder (PTSD). Investigating differences in the ability of different CS presentation patterns to induce extinction learning is crucial for improving this type of therapy. Using a trace fear conditioning paradigm in mice, we demonstrate that spaced presentation of the CS facilitated the extinction of a strong fear memory to a greater extent than continuous CS presentation. These results lay the groundwork for developing more effective exposure therapy techniques for PTSD.
Collapse
Affiliation(s)
- Chinatsu Kawakami
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan; Ph.D. Program in Humanics, Graduate School, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshie Naoi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan; Ph.D. Program in Humanics, Graduate School, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
4
|
McGlade AL, Treanor M, Kim R, Craske MG. Does fear reduction predict treatment response to exposure for social anxiety disorder? J Behav Ther Exp Psychiatry 2023; 79:101833. [PMID: 36563534 DOI: 10.1016/j.jbtep.2022.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 06/21/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Fear activation and reduction have traditionally been considered important mechanisms of exposure therapy. Evidence to date is mixed and impeded by inadequate methodology. This study examined the extent to which fear activation and reduction within and across exposures predicted treatment outcomes for social anxiety disorder within a paradigm suitable for their measurement. METHODS Sixty-eight adults with social anxiety disorder and fear of public speaking completed seven exposure sessions, each consisting of seven speeches conducted in virtual reality. Exposures were identical in duration, task requirements, and virtual public speaking situation. Fear was measured with skin conductance and subjective distress ratings. At baseline and post-treatment, participants completed a public speaking behavioral approach test with a panel of confederate judges; subjective fear was measured. A standardized questionnaire of anxiety symptoms was administered at baseline, post-treatment, and one-month follow-up. RESULTS No indices of within- or between-session fear reduction, measured by subjective distress and skin conductance response, predicted treatment outcome. One measure of fear activation was associated with outcomes such that less activation predicted greater symptom reduction; remaining indices did not predict outcomes. LIMITATIONS Data were collected in the context of a randomized controlled trial of scopolamine; drug group was included in analytic models to account for drug influence. VR exposures elicited mild levels of distress that may underestimate levels of distress in clinical settings. CONCLUSIONS Findings failed to support fear activation or reduction within or across exposure sessions as significant predictors of treatment outcome for social anxiety. Treatment implications are discussed.
Collapse
Affiliation(s)
- Anastasia L McGlade
- University of California Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA, 90095, USA.
| | - Michael Treanor
- University of California Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA, 90095, USA.
| | - Richard Kim
- Southern Methodist University, Department of Psychology, P.O. Box 750442, Dallas, TX, 75275, USA.
| | - Michelle G Craske
- University of California Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Babb JA, Zuberer A, Heinrichs S, Rumbika KK, Alfiler L, Lakis GA, Leite-Morris KA, Kaplan GB. Disturbances in fear extinction learning after mild traumatic brain injury in mice are accompanied by alterations in dendritic plasticity in the medial prefrontal cortex and basolateral nucleus of the amygdala. Brain Res Bull 2023; 198:15-26. [PMID: 37031792 DOI: 10.1016/j.brainresbull.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) have emerged as the signature injuries of the U.S. veterans who served in Iraq and Afghanistan, and frequently co-occur in both military and civilian and populations. To better understand how fear learning and underlying neural systems might be altered after mTBI we examined the acquisition of cued fear conditioning and its extinction along with brain morphology and dendritic plasticity in a mouse model of mTBI. To induce mTBI in adult male C57BL/6J mice, a lateral fluid percussive injury (LFP 1.7) was produced using a fluid pulse of 1.7 atmosphere force to the right parietal lobe. Behavior in LFP 1.7 mice was compared to behavior in mice from two separate control groups: mice subjected to craniotomy without LFP injury (Sham) and mice that did not undergo surgery (Unoperated). Following behavioral testing, neural endpoints (dendritic structural plasticity and neuronal volume) were assessed in the basolateral nucleus of the amygdala (BLA), which plays a critical sensory role in fear learning, and medial prefrontal cortex (mPFC), responsible for executive functions and inhibition of fear behaviors. No gross motor abnormalities or increased anxiety-like behaviors were observed in LFP or Sham mice after surgery compared to Unoperated mice. We found that all mice acquired fear behavior, assessed as conditioned freezing to auditory cue in a single session of 6 trials, and acquisition was similar across treatment groups. Using a linear mixed effects analysis, we showed that fear behavior decreased overall over 6 days of extinction training with no effect of treatment group across extinction days. However, a significant interaction was demonstrated between the treatment groups during within-session freezing behavior (5 trials per day) during extinction training. Specifically, freezing behavior increased across within-session extinction trials in LFP 1.7 mice, whereas freezing behavior in control groups did not change on extinction test days, reflecting a dissociation between within-trial and between-trial fear extinction. Additionally, LFP mice demonstrated bilateral increases in dendritic spine density in the BLA and decreases in dendritic complexity in the PFC. The translational implications are that individuals with TBI undergoing fear extinction therapy may demonstrate within-session aberrant learning that could be targeted for more effective treatment interventions.
Collapse
Affiliation(s)
- Jessica A Babb
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Harvard Medical School, Boston, MA, 02115 USA.
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany.
| | - Stephen Heinrichs
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Kendra K Rumbika
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Lauren Alfiler
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02218 USA.
| | - Kimberly A Leite-Morris
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| | - Gary B Kaplan
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology & Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118 USA.
| |
Collapse
|
6
|
LaBar KS. Neuroimaging of Fear Extinction. Curr Top Behav Neurosci 2023; 64:79-101. [PMID: 37455302 DOI: 10.1007/7854_2023_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Extinguishing fear and defensive responses to environmental threats when they are no longer warranted is a critical learning ability that can promote healthy self-regulation and, ultimately, reduce susceptibility to or maintenance of affective-, trauma-, stressor-,and anxiety-related disorders. Neuroimaging tools provide an important means to uncover the neural mechanisms of effective extinction learning that, in turn, can abate the return of fear. Here I review the promises and pitfalls of functional neuroimaging as a method to investigate fear extinction circuitry in the healthy human brain. I discuss the extent to which neuroimaging has validated the core circuits implicated in rodent models and has expanded the scope of the brain regions implicated in extinction processes. Finally, I present new advances made possible by multivariate data analysis tools that yield more refined insights into the brain-behavior relationships involved.
Collapse
Affiliation(s)
- Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Klingelhöfer-Jens M, Ehlers MR, Kuhn M, Keyaniyan V, Lonsdorf TB. Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear. eLife 2022; 11:e78717. [PMID: 36098500 PMCID: PMC9691022 DOI: 10.7554/elife.78717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Here, we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating (1) longitudinal reliability at the individual and (2) group level, (3) internal consistency and (4) response predictability across experimental phases. One hundred and twenty individuals performed a fear conditioning paradigm twice 6 months apart. Analyses of skin conductance responses, fear ratings and blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.
Collapse
Affiliation(s)
- Maren Klingelhöfer-Jens
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Mana R Ehlers
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Manuel Kuhn
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychiatry, Harvard Medical School, and Center for Depression, Anxiety and Stress Research, McLean HospitalBelmontUnited States
| | - Vincent Keyaniyan
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| |
Collapse
|
8
|
Hoppe JM, Holmes EA, Agren T. Imaginal extinction and the vividness of mental imagery: Exploring the reduction of fear within the mind's eye. Behav Brain Res 2022; 418:113632. [PMID: 34695540 DOI: 10.1016/j.bbr.2021.113632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Patients are encouraged to produce vivid mental imagery during imaginal exposure, as it is assumed to promote fear reduction. Nevertheless, the link between fear reduction and imagery vividness is unclear. We investigated the impact of vividness on fear responses using an experimental analogue of imaginal exposure - imaginal extinction - in which conditioned fear, measured with skin conductance, is reduced through exposure to mental imagery of the conditioned stimulus. We examined (1) if task-specific vividness (high vs low) of the conditioned stimulus during imaginal extinction moderated the reduction of fear responses, and (2) if task-specific vividness influenced remaining fear responses 24 h later. Findings suggest that high vividness may be advantageous for fear reduction during imaginal extinction, but it may not influence fear responses in the longer term. A possible clinical implication is that high imagery vividness during imaginal exposure may not be vital for overall treatment outcome. As high vividness is associated with increased levels of distress, a future direction would be to explore whether similar fear reduction can be obtained with less vivid imaginal exposure and thereby make treatment tolerable for more patients.
Collapse
Affiliation(s)
- Johanna M Hoppe
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Agren
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
10
|
Bautista CL, Teng EJ. Merging Our Understanding of Anxiety and Exposure: Using Inhibitory Learning to Target Anxiety Sensitivity in Exposure Therapy. Behav Modif 2021; 46:819-833. [PMID: 33825494 DOI: 10.1177/01454455211005073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure-based therapies are the gold standard treatment for anxiety disorders, and recent advancements in basic and clinical research point to the need to update the implementation of exposure. Recent research has highlighted the importance of transdiagnostic factors such as anxiety sensitivity (AS), or fear of anxiety-related sensations. Elevated AS is common among all anxiety disorders and contains three dimensions, or expectancies, that can be used to guide treatment. Recently, treatments directly targeting AS have shown potential in reducing symptoms of anxiety. In addition, inhibitory learning theory (ILT) provides an alternative explanation of exposure processes based on basic learning research. ILT extends the current framework by accounting for renewal of fear, which is important given the substantial number of individuals who experience a return of symptoms following treatment. The current paper will provide an overview of ILT and discuss several ILT techniques that can be used to target AS. These two converging bodies of research hold strong potential for optimizing treatment for anxiety.
Collapse
Affiliation(s)
- Chandra L Bautista
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,The Center for Innovative Treatment of Anxiety and Stress, Houston, TX, USA
| | - Ellen J Teng
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,The Center for Innovative Treatment of Anxiety and Stress, Houston, TX, USA.,VA South Central Mental Illness Research, Education, and Clinical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Portêlo A, Shiban Y, Maia TV. Mathematical Characterization of Changes in Fear During Exposure Therapy. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1090-1099. [PMID: 33508496 DOI: 10.1016/j.bpsc.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND During exposure therapy, patients report increases in fear that generally decrease within and across exposure sessions. Our main aim was to characterize these changes in fear ratings mathematically; a secondary aim was to test whether the resulting model would help to predict treatment outcome. METHODS We applied tools of computational psychiatry to a previously published dataset in which 30 women with spider phobia were randomly assigned to virtual-reality exposures in a single context or in multiple contexts (n = 15 each). Patients provided fear ratings every minute during exposures. We characterized fear decrease within exposures and return of fear between exposures using a set of mathematical models; we selected the best model using Bayesian techniques. In the multiple-contexts group, we tested the predictions of the best model in a separate, test exposure, and we investigated the ability of model parameters to predict treatment outcome. RESULTS The best model characterized fear decrease within exposures in both groups as an exponential decay with constant decay rate across exposures. The best model for each group had only two parameters but captured with remarkable accuracy the patterns of fear change, both at the group level and for individual subjects. The best model also made remarkably accurate predictions for the test exposure. One of the model's parameters helped predict treatment outcome. CONCLUSIONS Individual patterns of fear change during exposure therapy can be characterized mathematically. This mathematical characterization helps predict treatment outcome.
Collapse
Affiliation(s)
- Ana Portêlo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy Research), PFH Private University of Applied Sciences, Göttingen, Germany
| | - Tiago V Maia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Krasne FB, Zinn R, Vissel B, Fanselow MS. Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX). Hippocampus 2021; 31:790-814. [PMID: 33452843 PMCID: PMC8359206 DOI: 10.1002/hipo.23298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
The extinction of contextual fear is commonly an essential requirement for successful exposure therapy for fear disorders. However, experimental work on extinction of contextual fear is limited, and there little or no directly relevant theoretical work. Here, we extend BACON, a neurocomputational model of context fear conditioning that provides plausible explanations for a number of aspects of context fear conditioning, to deal with extinction (calling the model BaconX). In this model, contextual representations are formed in the hippocampus and association of fear to them occurs in the amygdala. Representation creation, conditionability, and development of between‐session extinction are controlled by degree of confidence (assessed by the Bayesian weight of evidence) that an active contextual representation is in fact that of the current context (i.e., is “valid”). The model predicts that: (1) extinction which persists between sessions will occur only if at a sessions end there is high confidence that the active representation is valid. It follows that the shorter the context placement‐to‐US (shock) interval (“PSI”) and the less is therefore learned about context, the longer extinction sessions must be for enduring extinction to occur, while too short PSIs will preclude successful extinction. (2) Short‐PSI deficits can be rescued by contextual exposure even after conditioning has occurred. (3) Learning to discriminate well between a conditioned and similar safe context requires representations of each to form, which may not occur if PSI was too short. (4) Extinction‐causing inhibition must be applied downstream of the conditioning locus for reasonable generalization properties to be generated. (5) Context change tends to cause return of extinguished contextual fear. (6). Extinction carried out in the conditioning context generalizes better than extinction executed in contexts to which fear has generalized (as done in exposure therapy). (7) BaconX suggests novel approaches to exposure therapy.
Collapse
Affiliation(s)
- Franklin B Krasne
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Raphael Zinn
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Health Network Sydney, Darlinghurst, New South Wales, Australia
| | - Michael S Fanselow
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Gazendam FJ, Krypotos AM, Kamphuis JH, van der Leij AR, Huizenga HM, Eigenhuis A, Kindt M. From adaptive to maladaptive fear: Heterogeneity in threat and safety learning across response systems in a representative sample. Int J Psychophysiol 2020; 158:271-287. [DOI: 10.1016/j.ijpsycho.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022]
|
14
|
Mattera A, Pagani M, Baldassarre G. A Computational Model Integrating Multiple Phenomena on Cued Fear Conditioning, Extinction, and Reinstatement. Front Syst Neurosci 2020; 14:569108. [PMID: 33132856 PMCID: PMC7550679 DOI: 10.3389/fnsys.2020.569108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Conditioning, extinction, and reinstatement are fundamental learning processes of animal adaptation, also strongly involved in human pathologies such as post-traumatic stress disorder, anxiety, depression, and dependencies. Cued fear conditioning, extinction, restatement, and systematic manipulations of the underlying brain amygdala and medial prefrontal cortex, represent key experimental paradigms to study such processes. Numerous empirical studies have revealed several aspects and the neural systems and plasticity underlying them, but at the moment we lack a comprehensive view. Here we propose a computational model based on firing rate leaky units that contributes to such integration by accounting for 25 different experiments on fear conditioning, extinction, and restatement, on the basis of a single neural architecture having a structure and plasticity grounded in known brain biology. This allows the model to furnish three novel contributions to understand these open issues: (a) the functioning of the central and lateral amygdala system supporting conditioning; (b) the role played by the endocannabinoids system in within- and between-session extinction; (c) the formation of three important types of neurons underlying fear processing, namely fear, extinction, and persistent neurons. The model integration of the results on fear conditioning goes substantially beyond what was done in previous models.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
15
|
Pan Y, Olsson A, Golkar A. Social safety learning: Shared safety abolishes the recovery of learned threat. Behav Res Ther 2020; 135:103733. [PMID: 33011485 DOI: 10.1016/j.brat.2020.103733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Humans, like other social animals, learn about threats and safety in the environment through social cues. Yet, the processes that contribute to the efficacy of social safety learning during threat transmission remain unknown. Here, we developed a novel dyadic model of associative threat and extinction learning. In three separate social groups, we manipulated whether safety information during extinction was acquired via direct exposure to the conditioned stimulus (CS) in the presence of another individual (Direct exposure), via observation of other's safety behavior (Vicarious exposure), or via the combination of both (Shared exposure).These groups were contrasted against a fourth group receiving direct CS exposure alone (Asocial exposure). Based on skin conductance responses, we observed that all social groups outperformed asocial learning in inhibiting the recovery of threat, but only Shared exposure abolished threat recovery. These results suggest that social safety learning is optimized by a combination of direct exposure and vicariously transmitted safety signals. This work might help develop exposure therapies used to treat symptoms of threat and anxiety-related disorders to counteract maladaptive fears in humans.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Armita Golkar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
16
|
Bisby MA, Baker KD, Richardson R. Deficits in opioid receptor-mediated prediction error contribute to impaired fear extinction during adolescence. Behav Res Ther 2020; 133:103713. [PMID: 32841761 DOI: 10.1016/j.brat.2020.103713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Adolescent-onset anxiety disorders are more common and costly than those that emerge later in life. Unfortunately, nearly half of adolescents undergoing cognitive behavioural therapies, including exposure therapies, show significant symptom relapse. Such poor treatment outcomes are consistent with preclinical work examining fear extinction, in which adolescents show persistent fear to extinguished cues. Both extinction and exposure are dependent on the generation of prediction error (i.e., the difference between the expected and actual outcome of a cue presentation), a process which involves the opioid system. We investigated the contribution of prediction error signalling to extinction during adolescence using the opioid receptor antagonist naloxone. We demonstrated that unlike in juvenile and adult rats, fear expression during extinction training and test in adolescent rats was unaffected by naloxone, suggesting that adolescent rats are impaired in using prediction error signalling to extinguish fear under typical conditions. However, in two circumstances where adolescents exhibit good extinction retention, opioid receptor blockade impaired extinction retention, suggesting that the recruitment of prediction error signalling mechanisms promotes extinction in this age group, just as it does in adults. Importantly, additional extinction training may be required to enable prediction error mechanisms to be recruited during adolescence.
Collapse
Affiliation(s)
- Madelyne A Bisby
- School of Psychology, UNSW Sydney, NSW, Australia; eCentreClinic, Department of Psychology, Macquarie University, NSW, Australia.
| | | | | |
Collapse
|
17
|
Papalini S, Beckers T, Vervliet B. Dopamine: from prediction error to psychotherapy. Transl Psychiatry 2020; 10:164. [PMID: 32451377 PMCID: PMC7248121 DOI: 10.1038/s41398-020-0814-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine, one of the main neurotransmitters in the mammalian brain, has been implicated in the coding of prediction errors that govern reward learning as well as fear extinction learning. Psychotherapy too can be viewed as a form of error-based learning, because it challenges erroneous beliefs and behavioral patterns in order to induce long-term changes in emotions, cognitions, and behaviors. Exposure therapy, for example, relies in part on fear extinction principles to violate erroneous expectancies of danger and induce novel safety learning that inhibits and therefore reduces fear in the long term. As most forms of psychotherapy, however, exposure therapy suffers from non-response, dropout, and relapse. This narrative review focuses on the role of midbrain and prefrontal dopamine in novel safety learning and investigates possible pathways through which dopamine-based interventions could be used as an adjunct to improve both the response and the long-term effects of the therapy. Convincing evidence exists for an involvement of the midbrain dopamine system in the acquisition of new, safe memories. Additionally, prefrontal dopamine is emerging as a key ingredient for the consolidation of fear extinction. We propose that applying a dopamine prediction error perspective to psychotherapy can inspire both pharmacological and non-pharmacological studies aimed at discovering innovative ways to enhance the acquisition of safety memories. Additionally, we call for further empirical investigations on dopamine-oriented drugs that might be able to maximize consolidation of successful fear extinction and its long-term retention after therapy, and we propose to also include investigations on non-pharmacological interventions with putative prefrontal dopaminergic effects, like working memory training.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Centre for the Psychology of Learning and Experimental Psychopathology (CLEP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Sohn JMB, de Souza STF, Raymundi AM, Bonato J, de Oliveira RMW, Prickaerts J, Stern CA. Persistence of the extinction of fear memory requires late-phase cAMP/PKA signaling in the infralimbic cortex. Neurobiol Learn Mem 2020; 172:107244. [PMID: 32376452 DOI: 10.1016/j.nlm.2020.107244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Fear extinction is a form of new learning that inhibits expression of the original fear memory without erasing the conditioned stimulus-unconditioned stimulus association. Much is known about the mechanisms that underlie the acquisition of extinction, but the way in which fear extinction is maintained has been scarcely explored. Evidence suggests that protein kinase A (PKA) in the frontal cortex might be related to the persistence of extinction. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP). The present study evaluated the effect of the selective PDE4 inhibitor roflumilast (ROF; 0.01, 0.03, and 0.1 mg/kg given i.p.) on acquisition and consolidation of the extinction of fear memory in male Wistar rats in a contextual fear conditioning paradigm. When administered before acquisition, 0.1 mg/kg ROF disrupted short-term (1 day) extinction recall. In contrast, 0.03 mg/kg ROF administration in the late consolidation phase (3 h after extinction learning) but not in the early phase immediately after learning improved long-term extinction recall at 11 days, suggesting potentiation of the persistence of extinction. This effect of ROF requires the first (day 1) exposure to the context. A similar effect was observed when 9 ng ROF or 30 µM 8-bromoadenosine 3',5'-cAMP (PKA activator) was directly infused in the infralimbic cortex (IL), a brain region necessary for memory extinction. The PKA activity-dependent ROF-induced effect in the IL was correlated with an increase in its brain-derived neurotrophic factor (BDNF) protein expression, while blockade of PKA with 10 µM H89 in the IL abolished the ROF-induced increase in BDNF expression and prevented the effect of ROF on extinction recall. These effects were not associated with changes in anxiety-like behavior or general exploratory behavior. Altogether, these findings suggest that cAMP-PKA activity in the IL during the late consolidation phase after extinction learning underlies the persistence of extinction.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jéssica Bonato
- Department of Pharmacology and Therapeutics, University of Maringá, Maringá, PR, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, the Netherlands
| | | |
Collapse
|
19
|
Grella SL, Fortin AH, McKissick O, Leblanc H, Ramirez S. Odor modulates the temporal dynamics of fear memory consolidation. ACTA ACUST UNITED AC 2020; 27:150-163. [PMID: 32179657 PMCID: PMC7079569 DOI: 10.1101/lm.050690.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/31/2019] [Indexed: 01/14/2023]
Abstract
Systems consolidation (SC) theory proposes that recent, contextually rich memories are stored in the hippocampus (HPC). As these memories become remote, they are believed to rely more heavily on cortical structures within the prefrontal cortex (PFC), where they lose much of their contextual detail and become schematized. Odor is a particularly evocative cue for intense remote memory recall and despite these memories being remote, they are highly contextual. In instances such as posttraumatic stress disorder (PTSD), intense remote memory recall can occur years after trauma, which seemingly contradicts SC. We hypothesized that odor may shift the organization of salient or fearful memories such that when paired with an odor at the time of encoding, they are delayed in the de-contextualization process that occurs across time, and retrieval may still rely on the HPC, where memories are imbued with contextually rich information, even at remote time points. We investigated this by tagging odor- and non-odor-associated fear memories in male c57BL/6 mice and assessed recall and c-Fos expression in the dorsal CA1 (dCA1) and prelimbic cortex (PL) 1 or 21 d later. In support of SC, our data showed that recent memories were more dCA1-dependent whereas remote memories were more PL-dependent. However, we also found that odor influenced this temporal dynamic, biasing the memory system from the PL to the dCA1 when odor cues were present. Behaviorally, inhibiting the dCA1 with activity-dependent DREADDs had no effect on recall at 1 d and unexpectedly caused an increase in freezing at 21 d. Together, these findings demonstrate that odor can shift the organization of fear memories at the systems level.
Collapse
Affiliation(s)
- Stephanie L Grella
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Amanda H Fortin
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Olivia McKissick
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Heloise Leblanc
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
20
|
Huang F, Zou G, Li C, Meng H, Liu X, Yang Z. A novelty-retrieval-extinction paradigm leads to persistent attenuation of remote fear memories. Sci Rep 2020; 10:3319. [PMID: 32094477 PMCID: PMC7039928 DOI: 10.1038/s41598-020-60176-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to a novel environment can enhance the extinction of recent contextual fear in mice. This has been explained by a tagging and capture hypothesis. Consistently, we show in mice that exposure to a novel environment before extinction training promoted the extinction of recent auditory fear. However, such a promoting effect of novelty was absent for remote memories. In the present study, we replaced the regular extinction training with a retrieval-extinction session which capitalized on a reconsolidation window. When novelty exposure was followed by a retrieval-extinction session, remote fear was distinguished more easily and permanently. We have termed it as a “novelty-retrieval-extinction” paradigm. This paradigm played a greater role in the extinction of remote fear when fear conditioning and retrieval-extinction occurred in two different contexts other than in one identical context. The mechanism underlying the facilitating effect of this paradigm might involve up-regulation of histone acetylation in the hippocampus, which has been reported to increase functional and structural neuroplasticity. The present work proposes an effective, drug-free paradigm for the extinction of remote fear, which could be easily adapted in humans with least side effects.
Collapse
Affiliation(s)
- Fulian Huang
- Department of Physiology, Yiyang Medical College, Yiyang, Hunan, 413000, China.
| | - Guangjing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Can Li
- Department of Physiology, Yiyang Medical College, Yiyang, Hunan, 413000, China
| | - Hui Meng
- Department of Physiology, Yiyang Medical College, Yiyang, Hunan, 413000, China
| | - Xiaoyan Liu
- Department of Physiology, Yiyang Medical College, Yiyang, Hunan, 413000, China
| | - Zehua Yang
- Department of Physiology, Yiyang Medical College, Yiyang, Hunan, 413000, China.
| |
Collapse
|
21
|
Popik B, Amorim FE, Amaral OB, De Oliveira Alvares L. Shifting from fear to safety through deconditioning-update. eLife 2020; 9:51207. [PMID: 31999254 PMCID: PMC7021486 DOI: 10.7554/elife.51207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Aversive memories are at the heart of psychiatric disorders such as phobias and post-traumatic stress disorder (PTSD). Here, we present a new behavioral approach in rats that robustly attenuates aversive memories. This method consists of ‘deconditioning’ animals previously trained to associate a tone with a strong footshock by replacing it with a much weaker one during memory retrieval. Our results indicate that deconditioning-update is more effective than traditional extinction in reducing fear responses; moreover, such effects are long lasting and resistant to renewal and spontaneous recovery. Remarkably, this strategy overcame important boundary conditions for memory updating, such as remote or very strong traumatic memories. The same beneficial effect was found in other types of fear-related memories. Deconditioning was mediated by L-type voltage-gated calcium channels and is consistent with computational accounts of mismatch-induced memory updating. Our results suggest that shifting from fear to safety through deconditioning-update is a promising approach to attenuate traumatic memories.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felippe Espinelli Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas De Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Lonsdorf TB, Klingelhöfer-Jens M, Andreatta M, Beckers T, Chalkia A, Gerlicher A, Jentsch VL, Meir Drexler S, Mertens G, Richter J, Sjouwerman R, Wendt J, Merz CJ. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 2019; 8:e52465. [PMID: 31841112 PMCID: PMC6989118 DOI: 10.7554/elife.52465] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
In this report, we illustrate the considerable impact of researcher degrees of freedom with respect to exclusion of participants in paradigms with a learning element. We illustrate this empirically through case examples from human fear conditioning research, in which the exclusion of 'non-learners' and 'non-responders' is common - despite a lack of consensus on how to define these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a systematic literature search and highlight the potential problems and pitfalls of different definitions through case examples based on re-analyses of existing data sets. On the basis of these studies, we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and analysis can be avoided, which will benefit the robustness and replicability of research findings and can be expected to be applicable to other fields of research that involve a learning element.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Marta Andreatta
- Department of Psychology, Biological Psychology, Clinical Psychology and PsychotherapyUniversity of WürzburgWürzburgGermany
- Instutute of Psychology, Education & Child StudiesErasmus University RotterdamRotterdamNetherlands
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anastasia Chalkia
- Centre for the Psychology of Learning and Experimental Psychopathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Anna Gerlicher
- Faculty of Social and Behavioural Sciences, Programme group Clinical PsychologyUniversity of AmsterdamAmsterdamNetherlands
| | - Valerie L Jentsch
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Shira Meir Drexler
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| | - Gaetan Mertens
- Department of PsychologyUtrecht UniversityUtrechtNetherlands
| | - Jan Richter
- Department of Physiological and Clinical Psychology/PsychotherapyUniversity of GreifswaldGreifswaldGermany
| | - Rachel Sjouwerman
- Department of Systems NeuroscienceUniversity Medical Center Hamburg EppendorfHamburgGermany
| | - Julia Wendt
- Biological Psychology and Affective ScienceUniversity of PotsdamPotsdamGermany
| | - Christian J Merz
- Institute of Cognitive Neuroscience, Department of Cognitive PsychologyRuhr University BochumBochumGermany
| |
Collapse
|
23
|
The effects of aversive-to-appetitive counterconditioning on implicit and explicit fear memory. ACTA ACUST UNITED AC 2019; 27:12-19. [PMID: 31843978 PMCID: PMC6919193 DOI: 10.1101/lm.050740.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023]
Abstract
Counterconditioning (CC) is a form of retroactive interference that inhibits expression of learned behavior. But similar to extinction, CC can be a fairly weak and impermanent form of interference, and the original behavior is prone to relapse. Research on CC is limited, especially in humans, but prior studies suggest it is more effective than extinction at modifying some behaviors (e.g., preference or valence ratings) than others (e.g., physiological arousal). Here, we used a within-subjects design to compare the effects of aversive-to-appetitive CC versus standard extinction on two separate tests of long-term memory in human adults: implicit physiological arousal and explicit episodic memory. Participants underwent Pavlovian fear conditioning to two semantic categories (animals, tools) paired with an electric shock. Conditioned stimuli (i.e., category exemplars) from one category were then extinguished, while stimuli from the other category were paired with a positive outcome. Participants returned 24-h later for a test of skin conductance responses (SCR) to the conditioned exemplars, as well as a surprise recognition memory test for stimuli encoded the previous day. Results showed reduced SCRs at a test for unique stimuli from a category that had undergone CC, relative to stimuli from a category that had undergone standard extinction. Additionally, participants selectively remembered more stimuli encoded during CC than extinction. These results provide new evidence that aversive-to-appetitive CC, as compared to extinction, strengthens memory for items directly associated with a positive outcome, which may provide stronger retrieval competition against a fear memory at test to help diminish fear relapse.
Collapse
|
24
|
Lonsdorf TB, Merz CJ, Fullana MA. Fear Extinction Retention: Is It What We Think It Is? Biol Psychiatry 2019; 85:1074-1082. [PMID: 31005240 DOI: 10.1016/j.biopsych.2019.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
There has been an explosion of research on fear extinction in humans in the past 2 decades. This has not only generated major insights, but also brought a new goal into focus: how to maintain extinction memory over time (i.e., extinction retention). We argue that there are still important conceptual and procedural challenges in human fear extinction research that hamper advancement in the field. We use extinction retention and the extinction retention index to exemplarily illustrate these challenges. Our systematic literature search identified 16 different operationalizations of the extinction retention index. Correlation coefficients among these different operationalizations as well as among measures of fear/anxiety show a wide range of variability in four independent datasets, with similar findings across datasets. Our results suggest that there is an urgent need for standardization in the field. We discuss the conceptual and empirical implications of these results and provide specific recommendations for future work.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Miquel A Fullana
- Institute of Neurosciences, Hospital Clínic, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
25
|
A model of amygdala function following plastic changes at specific synapses during extinction. Neurobiol Stress 2019; 10:100159. [PMID: 31193487 PMCID: PMC6535631 DOI: 10.1016/j.ynstr.2019.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
The synaptic networks in the amygdala have been the subject of intense interest in recent times, primarily because of the role of this structure in emotion. Fear and its extinction depend on the workings of these networks, with particular interest in extinction because of its potential to ameliorate adverse symptoms associated with post-traumatic stress disorder. Here we place emphasis on the extinction networks revealed by recent techniques, and on the probable plasticity properties of their synaptic connections. We use modules of neurons representing each of the principal components identified as involved in extinction. Each of these modules consists of neural networks, containing specific ratios of excitatory and specialized inhibitory neurons as well as synaptic plasticity mechanisms appropriate for the component of the amygdala they represent. While these models can produce dynamic output, here we concentrate on the equilibrium outputs and do not model the details of the plasticity mechanisms. Pavlovian fear conditioning generates a fear memory in the lateral amygdala module that leads to activation of neurons in the basal nucleus fear module but not in the basal nucleus extinction module. Extinction protocols excite infralimbic medial prefrontal cortex neurons (IL) which in turn excite so-called extinction neurons in the amygdala, leading to the release of endocannabinoids from them and an increase in efficacy of synapses formed by lateral amygdala neurons on them. The model simulations show how such a mechanism could explain experimental observations involving the role of IL as well as endocannabinoids in different temporal phases of extinction.
Collapse
|
26
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
27
|
Frank B, McKay D. The Suitability of an Inhibitory Learning Approach in Exposure When Habituation Fails: A Clinical Application to Misophonia. COGNITIVE AND BEHAVIORAL PRACTICE 2019. [DOI: 10.1016/j.cbpra.2018.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Lee JLC, Amorim FE, Cassini LF, Amaral OB. Different temporal windows for CB1 receptor involvement in contextual fear memory destabilisation in the amygdala and hippocampus. PLoS One 2019; 14:e0205781. [PMID: 30645588 PMCID: PMC6333379 DOI: 10.1371/journal.pone.0205781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Reconsolidation is a process in which re-exposure to a reminder causes a previously acquired memory to undergo a process of destabilisation followed by subsequent restabilisation. Different molecular mechanisms have been postulated for destabilisation in the amygdala and hippocampus, including CB1 receptor activation, protein degradation and AMPA receptor exchange; however, most of the amygdala studies have used pre-reexposure interventions, while those in the hippocampus have usually performed them after reexposure. To test whether the temporal window for destabilisation is similar across both structures, we trained Lister Hooded rats in a contextual fear conditioning task, and 1 day later performed memory reexposure followed by injection of either the NMDA antagonist MK-801 (0.1 mg/kg) or saline in order to block reconsolidation. In parallel, we also performed local injections of either the CB1 antagonist SR141716A or its vehicle in the hippocampus or in the amygdala, either immediately before or immediately after reactivation. Infusion of SR141716A in the hippocampus prevented the reconsolidation-blocking effect of MK-801 when performed after reexposure, but not before it. In the amygdala, meanwhile, pre-reexposure infusions of SR141716A impaired reconsolidation blockade by MK-801, although the time-dependency of this effect was not as clear as in the hippocampus. Our results suggest the temporal windows for CB1-receptor-mediated memory destabilisation during reconsolidation vary between brain structures. Whether this reflects different time windows for engagement of these structures or different roles played by CB1 receptors in destabilisation across structures remains an open question for future studies.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cannabinoid Receptor Antagonists/administration & dosage
- Conditioning, Classical/drug effects
- Dizocilpine Maleate/administration & dosage
- Excitatory Amino Acid Antagonists/administration & dosage
- Fear/drug effects
- Fear/physiology
- Hippocampus/drug effects
- Hippocampus/physiology
- Male
- Memory/drug effects
- Memory/physiology
- Models, Animal
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Rimonabant/administration & dosage
- Time Factors
Collapse
Affiliation(s)
- Jonathan L. C. Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Felippe E. Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lindsey F. Cassini
- University of Birmingham, School of Psychology, Edgbaston, Birmingham, United Kingdom
| | - Olavo B. Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Mechanisms of fear learning and extinction: synaptic plasticity-fear memory connection. Psychopharmacology (Berl) 2019; 236:163-182. [PMID: 30415278 PMCID: PMC6374177 DOI: 10.1007/s00213-018-5104-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE The ability to memorize threat-associated cues and subsequently react to them, exhibiting escape or avoidance responses, is an essential, often life-saving behavioral mechanism that can be experimentally studied using the fear (threat) conditioning training paradigm. Presently, there is substantial evidence supporting the Synaptic Plasticity-Memory (SPM) hypothesis in relation to the mechanisms underlying the acquisition, retention, and extinction of conditioned fear memory. OBJECTIVES The purpose of this review article is to summarize findings supporting the SPM hypothesis in the context of conditioned fear control, applying the set of criteria and tests which were proposed as necessary to causally link lasting changes in synaptic transmission in corresponding neural circuits to fear memory acquisition and extinction with an emphasis on their pharmacological diversity. RESULTS The mechanisms of synaptic plasticity in fear circuits exhibit complex pharmacological profiles and satisfy all four SPM criteria-detectability, anterograde alteration, retrograde alteration, and mimicry. CONCLUSION The reviewed findings, accumulated over the last two decades, provide support for both necessity and sufficiency of synaptic plasticity in fear circuits for fear memory acquisition and retention, and, in part, for fear extinction, with the latter requiring additional experimental work.
Collapse
|
30
|
Gerlicher AMV, Tüscher O, Kalisch R. L-DOPA improves extinction memory retrieval after successful fear extinction. Psychopharmacology (Berl) 2019; 236:3401-3412. [PMID: 31243481 PMCID: PMC6892771 DOI: 10.1007/s00213-019-05301-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
RATIONALE A promising strategy to prevent a return of fear after exposure-based therapy in anxiety disorders is to pharmacologically enhance the extinction memory consolidation presumed to occur after exposure. Accumulating evidence suggests that the effect of a number of pharmacological consolidation enhancers depends on a successful fear reduction during exposure. Here, we employed the dopamine precursor L-DOPA to clarify whether its documented potential to enhance extinction memory consolidation is dependent on successful fear extinction. METHODS In two double-blind, randomized and placebo-controlled experiments (experiment 1: N = 79, experiment 2: N = 32) comprising fear conditioning (day 1), extinction followed by administration of 150 mg L-DOPA or placebo (day 2) and a memory test (day 3) in healthy male adults, conditioned responses were assessed as differential skin conductance responses. We tested whether the effect of L-DOPA on conditioned responses at test depended on conditioned responses at the end of extinction in an experiment with a short (10 trials, experiment 1) and long (25 trials, experiment 2) extinction session. RESULTS In both experiments, the effect of L-DOPA was dependent on conditioned responses at the end of extinction. That is, post-extinction L-DOPA compared to placebo administration reduced conditioned responses at test only in participants showing a complete reduction of conditioned fear at the end of extinction. CONCLUSION The results support the potential use of L-DOPA as a pharmacological adjunct to exposure treatment, but point towards a common boundary condition for pharmacological consolidation enhancers: a successful reduction of fear in the exposure session.
Collapse
Affiliation(s)
- A. M. V. Gerlicher
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany ,Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany ,Present Address: Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WS Amsterdam, The Netherlands
| | - O. Tüscher
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany ,Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| | - R. Kalisch
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany ,Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| |
Collapse
|
31
|
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern CAJ, Bertoglio LJ, Resstel LB, Guimaraes FS. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl) 2019; 236:201-226. [PMID: 30604182 DOI: 10.1007/s00213-018-5127-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aversive learning and memory are essential to cope with dangerous and stressful stimuli present in an ever-changing environment. When this process is dysfunctional, however, it is associated with posttraumatic stress disorder (PTSD). The endocannabinoid (eCB) system has been implicated in synaptic plasticity associated with physiological and pathological aversive learning and memory. OBJECTIVE AND METHODS The objective of this study was to review and discuss evidence on how and where in the brain genetic or pharmacological interventions targeting the eCB system would attenuate aversive/traumatic memories through extinction facilitation in laboratory animals and humans. The effect size of the experimental intervention under investigation was also calculated. RESULTS Currently available data indicate that direct or indirect activation of cannabinoid type-1 (CB1) receptor facilitates the extinction of aversive/traumatic memories. Activating CB1 receptors around the formation of aversive/traumatic memories or their reminders can potentiate their subsequent extinction. In most cases, the effect size has been large (Cohen's d ≥ 1.0). The brain areas responsible for the abovementioned effects include the medial prefrontal cortex, amygdala, and/or hippocampus. The potential role of cannabinoid type-2 (CB2) receptors in extinction learning is now under investigation. CONCLUSION Drugs augmenting the brain eCB activity can temper the impact of aversive/traumatic experiences by diverse mechanisms depending on the moment of their administration. Considering the pivotal role the extinction process plays in PTSD, the therapeutic potential of these drugs is evident. The sparse number of clinical trials testing these compounds in stress-related disorders is a gap in the literature that needs to be addressed.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - J Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - C A J Stern
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - L J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - L B Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - F S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
32
|
Wotjak CT. Sound check, stage design and screen plot - how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology (Berl) 2019; 236:33-48. [PMID: 30470861 PMCID: PMC6373201 DOI: 10.1007/s00213-018-5111-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
In the recent decade, fear conditioning has evolved as a standard procedure for testing cognitive abilities such as memory acquisition, consolidation, recall, reconsolidation, and extinction, preferentially in genetically modified mice. The reasons for the popularity of this powerful approach are its ease to perform, the short duration of training and testing, and its well-described neural basis. So why to bother about flaws in standardization of test procedures and analytical routines? Simplicity does not preclude the existence of fallacies. A short survey of the literature revealed an indifferent use of acoustic stimuli in terms of quality (i.e., white noise vs. sine wave), duration, and intensity. The same applies to the shock procedures. In the present article, I will provide evidence for the importance of qualitative and quantitative parameters of conditioned and unconditioned stimuli for the experimental outcome. Moreover, I will challenge frequently applied interpretations of short-term vs. long-term extinction and spontaneous recovery. On the basis of these concerns, I suggest a guideline for standardization of fear conditioning experiments in mice to improve the comparability of the experimental data.
Collapse
Affiliation(s)
- Carsten T. Wotjak
- 0000 0000 9497 5095grid.419548.5Max Planck Institute of Psychiatry, RG “Neuronal Plasticity”, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
33
|
Sevenster D, Visser RM, D'Hooge R. A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiol Learn Mem 2018; 155:113-126. [PMID: 29981423 PMCID: PMC6805216 DOI: 10.1016/j.nlm.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Fear extinction is the well-known process of fear reduction through repeated re-exposure to a feared stimulus without the aversive outcome. The last two decades have witnessed a surge of interest in extinction learning. First, extinction learning is observed across species, and especially research on rodents has made great strides in characterising the physical substrate underlying extinction learning. Second, extinction learning is considered of great clinical significance since it constitutes a crucial component of exposure treatment. While effective in reducing fear responding in the short term, extinction learning can lose its grip, resulting in a return of fear (i.e., laboratory model for relapse of anxiety symptoms in patients). Optimization of extinction learning is, therefore, the subject of intense investigation. It is thought that the success of extinction learning is, at least partly, determined by the mismatch between what is expected and what actually happens (prediction error). However, while much of our knowledge about the neural circuitry of extinction learning and factors that contribute to successful extinction learning comes from animal models, translating these findings to humans has been challenging for a number of reasons. Here, we present an overview of what is known about the animal circuitry underlying extinction of fear, and the role of prediction error. In addition, we conducted a systematic literature search to evaluate the degree to which state-of-the-art neuroimaging methods have contributed to translating these findings to humans. Results show substantial overlap between networks in animals and humans at a macroscale, but current imaging techniques preclude comparisons at a smaller scale, especially in sub-cortical areas that are functionally heterogeneous. Moreover, human neuroimaging shows the involvement of numerous areas that are not typically studied in animals. Results obtained in research aimed to map the extinction circuit are largely dependent on the methods employed, not only across species, but also across human neuroimaging studies. Directions for future research are discussed.
Collapse
Affiliation(s)
- Dieuwke Sevenster
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium; Clinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands.
| | - Renée M Visser
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
| |
Collapse
|
34
|
Gerlicher AMV, Tüscher O, Kalisch R. Dopamine-dependent prefrontal reactivations explain long-term benefit of fear extinction. Nat Commun 2018; 9:4294. [PMID: 30327462 PMCID: PMC6191435 DOI: 10.1038/s41467-018-06785-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fear extinction does not prevent post-traumatic stress or have long-term therapeutic benefits in fear-related disorders unless extinction memories are easily retrieved at later encounters with the once-threatening stimulus. Previous research in rodents has pointed towards a role for spontaneous prefrontal activity occurring after extinction learning in stabilizing and consolidating extinction memories. In other memory domains spontaneous post-learning activity has been linked to dopamine. Here, we show that a neural activation pattern - evoked in the ventromedial prefrontal cortex (vmPFC) by the unexpected omission of the feared outcome during extinction learning - spontaneously reappears during postextinction rest. The number of spontaneous vmPFC pattern reactivations predicts extinction memory retrieval and vmPFC activation at test 24 h later. Critically, pharmacologically enhancing dopaminergic activity during extinction consolidation amplifies spontaneous vmPFC reactivations and correspondingly improves extinction memory retrieval at test. Hence, a spontaneous dopamine-dependent memory consolidation-based mechanism may underlie the long-term behavioral effects of fear extinction.
Collapse
Affiliation(s)
- A M V Gerlicher
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany.
- Department of Clinical Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018 WS, Amsterdam, The Netherlands.
| | - O Tüscher
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - R Kalisch
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
- Deutsches Resilienz Zentrum (DRZ), Johannes Gutenberg University Medical Center, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| |
Collapse
|
35
|
Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Sci Rep 2018; 8:7260. [PMID: 29740084 PMCID: PMC5940846 DOI: 10.1038/s41598-018-25648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
In the last decade, several studies have shown that fear memories can be attenuated by interfering with reconsolidation. However, most of the pharmacological agents used in preclinical studies cannot be administered to humans. Caffeine is one of the world’s most popular psychoactive drugs and its effects on cognitive and mood states are well documented. Nevertheless, the influence of caffeine administration on fear memory processing is not as clear. We employed contextual fear conditioning in rats and acute caffeine administration under a standard memory reconsolidation protocol or periodical memory reactivation. Additionally, potential rewarding/aversion and anxiety effects induced by caffeine were evaluated by conditioning place preference or open field, respectively. Caffeine administration was able to attenuate weak fear memories in a standard memory reconsolidation protocol; however, periodical memory reactivation under caffeine effect was necessary to attenuate strong and remote memories. Moreover, caffeine promoted conditioned place preference and anxiolytic-like behavior, suggesting that caffeine weakens the initial learning during reactivation through counterconditioning mechanisms. Thus, our study shows that rewarding and anxiolytic effects of caffeine during fear reactivation can change the emotional valence of fear memory. It brings a new promising pharmacological approach based on drugs widely used such as caffeine to treat fear-related disorders.
Collapse
|
36
|
Drew MR, Walsh C, Balsam PD. Rescaling of temporal expectations during extinction. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-ANIMAL LEARNING AND COGNITION 2018; 43:1-14. [PMID: 28045291 DOI: 10.1037/xan0000127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous research suggests that extinction learning is temporally specific. Changing the conditioned stimulus (CS) duration between training and extinction can facilitate the loss of the conditioned response (CR) within the extinction session but impairs long-term retention of extinction. In 2 experiments using conditioned magazine approach with rats, we examined the relation between temporal specificity of extinction and CR timing. In Experiment 1, rats were trained on a 12-s, fixed CS-unconditional stimulus interval and then extinguished with CS presentations that were 6, 12, or 24 s in duration. The design of Experiment 2 was the same except rats were trained using partial rather than continuous reinforcement. In both experiments, extending the CS duration in extinction facilitated the diminution of CRs during the extinction session, but shortening the CS duration failed to slow extinction. In addition, extending (but not shortening) the CS duration caused temporal rescaling of the CR, in that the peak CR rate migrated later into the trial over the course of extinction training. This migration partially accounted for the faster loss of the CR when the CS duration was extended. Results are incompatible with the hypothesis that extinction is driven by cumulative CS exposure and suggest that temporally extended nonreinforced CS exposure reduces conditioned responding via temporal displacement rather than through extinction per se. (PsycINFO Database Record
Collapse
|
37
|
Craske MG, Hermans D, Vervliet B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170025. [PMID: 29352025 PMCID: PMC5790824 DOI: 10.1098/rstb.2017.0025] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 01/10/2023] Open
Abstract
Through advances in both basic and clinical scientific research, Pavlovian fear conditioning and extinction have become an exemplary translational model for understanding and treating anxiety disorders. Discoveries in associative and neurobiological mechanisms underlying extinction have informed techniques for optimizing exposure therapy that enhance the formation of inhibitory associations and their consolidation and retrieval over time and context. Strategies that enhance formation include maximizing prediction-error correction by violating expectancies, deepened extinction, occasional reinforced extinction, attentional control and removal of safety signals/behaviours. Strategies that enhance consolidation include pharmacological agonists of NMDA (i.e. d-cycloserine) and mental rehearsal. Strategies that enhance retrieval include multiple contexts, retrieval cues, and pharmacological blockade of contextual encoding. Stimulus variability and positive affect are posited to influence the formation and the retrieval of inhibitory associations. Inhibitory regulation through affect labelling is considered a complement to extinction. The translational value of extinction will be increased by more investigation of elements central to extinction itself, such as extinction generalization, and interactions with other learning processes, such as instrumental avoidance reward learning, and with other clinically relevant cognitive-emotional processes, such as self-efficacy, threat appraisal and emotion regulation, will add translational value. Moreover, framing fear extinction and related processes within a developmental context will increase their clinical relevance.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology, University of California, 405 Hilgard Avenue, Los Angeles, CA, USA
| | - Dirk Hermans
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| | - Bram Vervliet
- Center for Excellence on Generalization, University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Abstract
Fear memories are characterized by their permanence and a fierce resistance to unlearning by new experiences. We considered whether this durability involves a process of memory segmentation that separates competing experiences. To address this question, we used an emotional learning task designed to measure recognition memory for category exemplars encoded during competing experiences of fear-conditioning and extinction. Here we show that people recognized more fear-conditioned exemplars encoded during conditioning than conceptually related exemplars encoded immediately after a perceptual event boundary separating conditioning from extinction. Selective episodic memory depended on a period of consolidation, an explicit break between competing experiences, and was unrelated to within-session arousal or the explicit realization of a transition from conditioning to extinction. Collectively, these findings suggest that event boundaries guide selective consolidation to prioritize emotional information in memory—at the expense of related but conflicting information experienced shortly thereafter. We put forward a model whereby event boundaries bifurcate related memory traces for incompatible experiences. This stands in contrast to a mechanism that integrates related experiences for adaptive generalization123, and reveals a potentially distinct organization by which competing memories are adaptively segmented to select and protect nascent fear memories from immediate sources of interference.
Collapse
|
39
|
Building physiological toughness: Some aversive events during extinction may attenuate return of fear. J Behav Ther Exp Psychiatry 2018; 58:18-28. [PMID: 28777975 DOI: 10.1016/j.jbtep.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Although exposure therapy is an effective treatment for anxiety disorders, fear sometimes returns following successful therapy. Recent literature in animal models indicates that incorporating some aversive events into extinction training may offset these return of fear effects. METHODS The effect of occasional reinforced extinction trials was investigated in a sample of thirty-nine participants using a fear conditioning and extinction paradigm. Participants either underwent traditional extinction procedures during which the conditional stimulus which had been paired with the unconditional stimulus (US) during acquisition training (CS+) was presented alone with no presentations of the US or partially reinforced extinction during which there were several unpredicted CS+/US pairings. RESULTS As measured by skin conductance responses, physiological fear responding remained elevated during extinction for participants who experienced partially reinforced extinction; however, these participants demonstrated protection from rapid reacquisition effects. Results from the subjective US-expectancy ratings did not provide evidence of protection against rapid reacquisition in the partially reinforced extinction group; however, there was evidence of protection from spontaneous recovery effects. Lastly, as measured by valence ratings, it was unclear whether partially reinforced extinction provided protection from fear recovery effects. LIMITATIONS Although participants who experienced partially reinforced extinction demonstrated protection from rapid reacquisition as measured by skin conductance responses, they also demonstrated significantly higher levels of physiological fear responding during extinction which made the results of the spontaneous recovery test more difficult to interpret. CONCLUSIONS Occasional CS-US pairings during extinction may protect against return of fear effects. Clinical implications are discussed.
Collapse
|
40
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
41
|
Powers MB, de Kleine RA, Smits JAJ. Core Mechanisms of Cognitive Behavioral Therapy for Anxiety and Depression: A Review. Psychiatr Clin North Am 2017; 40:611-623. [PMID: 29080589 DOI: 10.1016/j.psc.2017.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the extant literature on mediators of change in cognitive behavioral therapy (CBT) for anxiety and depression. The authors briefly discuss the efficacy of CBT for anxiety and depression and methods of mediation analysis and detection. Then the authors discuss fear extinction in anxiety treatment and cognitive change in depression treatment.
Collapse
Affiliation(s)
- Mark B Powers
- Department of Psychology, Institute of Mental Health Research, The University of Texas at Austin, 305 E. 23rd Street, Stop E9000, Austin, TX 78712, USA; Baylor University Medical Center, T. Boone Pickens Cancer Hospital, 3409 Worth Street Tower, Suite C2.500, Dallas, TX 75246, USA.
| | - Rianne A de Kleine
- Institute of Psychology, Leiden University, PO Box 9500, 2300 RA Leiden, The Netherlands
| | - Jasper A J Smits
- Department of Psychology, Institute of Mental Health Research, The University of Texas at Austin, 305 E. 23rd Street, Stop E9000, Austin, TX 78712, USA
| |
Collapse
|
42
|
Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J Psychiatr Res 2017; 90:46-59. [PMID: 28222356 DOI: 10.1016/j.jpsychires.2017.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022]
Abstract
The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1.
Collapse
|
43
|
Bernier BE, Lacagnina AF, Ayoub A, Shue F, Zemelman BV, Krasne FB, Drew MR. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction. J Neurosci 2017; 37:6359-6371. [PMID: 28546308 PMCID: PMC5490069 DOI: 10.1523/jneurosci.3029-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/10/2017] [Accepted: 05/20/2017] [Indexed: 11/21/2022] Open
Abstract
Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear.SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a long-standing question about the role of DG in memory and provide insight into how disorders affecting DG, including aging, stress, and depression, influence cognitive processes.
Collapse
Affiliation(s)
- Brian E Bernier
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Anthony F Lacagnina
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Adam Ayoub
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Francis Shue
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Franklin B Krasne
- Department of Psychology, University of California at Los Angeles, Los Angeles, California 90095
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| |
Collapse
|
44
|
Auchter AM, Shumake J, Gonzalez-Lima F, Monfils MH. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Sci Rep 2017; 7:46071. [PMID: 28397861 PMCID: PMC5387397 DOI: 10.1038/srep46071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/08/2017] [Indexed: 12/23/2022] Open
Abstract
Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction.
Collapse
Affiliation(s)
- Allison M Auchter
- The University of Texas at Austin, Department of Psychology, Austin, TX 78712, USA
| | - Jason Shumake
- The University of Texas at Austin, Department of Psychology, Austin, TX 78712, USA.,Institute for Mental Health Research, The University of Texas at Austin, USA
| | | | - Marie H Monfils
- The University of Texas at Austin, Department of Psychology, Austin, TX 78712, USA.,Institute for Mental Health Research, The University of Texas at Austin, USA
| |
Collapse
|
45
|
Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, Heitland I, Hermann A, Kuhn M, Kruse O, Meir Drexler S, Meulders A, Nees F, Pittig A, Richter J, Römer S, Shiban Y, Schmitz A, Straube B, Vervliet B, Wendt J, Baas JMP, Merz CJ. Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev 2017; 77:247-285. [PMID: 28263758 DOI: 10.1016/j.neubiorev.2017.02.026] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
The so-called 'replicability crisis' has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence-based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany.
| | - Mareike M Menz
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Marta Andreatta
- University of Würzburg, Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, Würzburg, Germany
| | - Miguel A Fullana
- Anxiety Unit, Institute of Neuropsychiatry and Addictions, Hospital del Mar, CIBERSAM, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Armita Golkar
- Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden; University of Amsterdam, Department of Clinical Psychology, Amsterdam, Netherlands
| | - Jan Haaker
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany; Karolinska Institutet, Department of Clinical Neuroscience, Psychology Section, Stockholm, Sweden
| | - Ivo Heitland
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Andrea Hermann
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Manuel Kuhn
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Onno Kruse
- Justus Liebig University Giessen, Department of Psychology, Psychotherapy and Systems Neuroscience, Giessen, Germany
| | - Shira Meir Drexler
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| | - Ann Meulders
- KU Leuven, Health Psychology, Leuven, Belgium; Maastricht University, Research Group Behavioral Medicine, Maastricht, The Netherlands
| | - Frauke Nees
- Heidelberg University, Medical Faculty Mannheim, Central Institute of Mental Health, Department of Cognitive and Clinical Neuroscience, Mannheim, Germany
| | - Andre Pittig
- Technische Universität Dresden, Institute of Clinical Psychology and Psychotherapy, Dresden, Germany
| | - Jan Richter
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Sonja Römer
- Saarland University, Department of Clinical Psychology and Psychotherapy, Saarbrücken, Germany
| | - Youssef Shiban
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Anja Schmitz
- University of Regensburg, Department of Psychology, Clinical Psychology and Psychotherapy, Regensburg, Germany
| | - Benjamin Straube
- Philipps-University Marburg, Department of Psychiatry and Psychotherapy, Marburg, Germany
| | - Bram Vervliet
- KU Leuven, Centre for the Psychology of Learning and Experimental Psychopathology, Leuven, Belgium; Center for Excellence on Generalization, University of Leuven, Leuven, Belgium; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Julia Wendt
- University of Greifswald, Department of Physiological and Clinical Psychology/Psychotherapy, Greifswald, Germany
| | - Johanna M P Baas
- Utrecht University, Department of Experimental Psychology and Helmholtz Institute, Utrecht, The Netherlands
| | - Christian J Merz
- Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany
| |
Collapse
|
46
|
Carnevali L, Rivara S, Nalivaiko E, Thayer JF, Vacondio F, Mor M, Sgoifo A. Pharmacological inhibition of FAAH activity in rodents: A promising pharmacological approach for psychological—cardiac comorbidity? Neurosci Biobehav Rev 2017; 74:444-452. [DOI: 10.1016/j.neubiorev.2016.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023]
|
47
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
48
|
|
49
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
50
|
Ferrer Monti RI, Giachero M, Alfei JM, Bueno AM, Cuadra G, Molina VA. An appetitive experience after fear memory destabilization attenuates fear retention: involvement GluN2B-NMDA receptors in the Basolateral Amygdala Complex. Learn Mem 2016; 23:465-78. [PMID: 27531837 PMCID: PMC4986855 DOI: 10.1101/lm.042564.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
It is known that a consolidated memory can return to a labile state and become transiently malleable following reactivation. This instability is followed by a restabilization phase termed reconsolidation. In this work, we explored whether an unrelated appetitive experience (voluntary consumption of diluted sucrose) can affect a contextual fear memory in rats during the reactivation-induced destabilization phase. Our findings show that exposure to an appetitive experience following reactivation can diminish fear retention. This effect persisted after 1 wk. Importantly, it was achieved only under conditions that induced fear memory destabilization. This result could not be explained as a potentiated extinction, because sucrose was unable to promote extinction. Since GluN2B-containing NMDA receptors in the basolateral amygdala complex (BLA) have been implicated in triggering fear memory destabilization, we decided to block pharmacologically these receptors to explore the neurobiological bases of the observed effect. Intra-BLA infusion with ifenprodil, a GluN2B-NMDA antagonist, prevented the fear reduction caused by the appetitive experience. In sum, these results suggest that the expression of a fear memory can be dampened by an unrelated appetitive experience, as long as memory destabilization is achieved during reactivation. Possible mechanisms behind this effect and its clinical implications are discussed.
Collapse
Affiliation(s)
- Roque I Ferrer Monti
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, Enfermera Gordillo y Enrique Barros, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marcelo Giachero
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Joaquín M Alfei
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, Enfermera Gordillo y Enrique Barros, Ciudad Universitaria, 5000 Córdoba, Argentina Department of Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Adrián M Bueno
- Laboratorio de Psicología Experimental, Facultad de Psicología, Universidad Nacional de Córdoba, Enfermera Gordillo y Enrique Barros, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Gabriel Cuadra
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Victor A Molina
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|