1
|
Abstract
Combustion is a reactive oxidation process that releases energy bound in chemical compounds used as fuels─energy that is needed for power generation, transportation, heating, and industrial purposes. Because of greenhouse gas and local pollutant emissions associated with fossil fuels, combustion science and applications are challenged to abandon conventional pathways and to adapt toward the demand of future carbon neutrality. For the design of efficient, low-emission processes, understanding the details of the relevant chemical transformations is essential. Comprehensive knowledge gained from decades of fossil-fuel combustion research includes general principles for establishing and validating reaction mechanisms and process models, relying on both theory and experiments with a suite of analytic monitoring and sensing techniques. Such knowledge can be advantageously applied and extended to configure, analyze, and control new systems using different, nonfossil, potentially zero-carbon fuels. Understanding the impact of combustion and its links with chemistry needs some background. The introduction therefore combines information on exemplary cultural and technological achievements using combustion and on nature and effects of combustion emissions. Subsequently, the methodology of combustion chemistry research is described. A major part is devoted to fuels, followed by a discussion of selected combustion applications, illustrating the chemical information needed for the future.
Collapse
|
2
|
Lin K, Dmitriev AM, Sun W, Shmakov AG, Knyazkov DA, Yang B. Improving the Predictive Accuracy for Ketene in Diacetyl Laminar Premixed Flames: Experiment and Model Analysis. J Phys Chem A 2022; 126:9475-9484. [DOI: 10.1021/acs.jpca.2c06628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Keli Lin
- Center for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Artëm M. Dmitriev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk630090, Russia
| | - Wenyu Sun
- Center for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, Beijing100084, P.R. China
| | - Andrey G. Shmakov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk630090, Russia
| | - Denis A. Knyazkov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk630090, Russia
| | - Bin Yang
- Center for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, Beijing100084, P.R. China
| |
Collapse
|
3
|
Bierkandt T, Oßwald P, Gaiser N, Krüger D, Köhler M, Hoener M, Shaqiri S, Kaczmarek D, Karakaya Y, Hemberger P, Kasper T. Observation of low‐temperature chemistry products in laminar premixed low‐pressure flames by molecular‐beam mass spectrometry. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Bierkandt
- German Aerospace Center (DLR) Institute of Combustion Technology Stuttgart Germany
| | - Patrick Oßwald
- German Aerospace Center (DLR) Institute of Combustion Technology Stuttgart Germany
| | - Nina Gaiser
- German Aerospace Center (DLR) Institute of Combustion Technology Stuttgart Germany
| | - Dominik Krüger
- German Aerospace Center (DLR) Institute of Combustion Technology Stuttgart Germany
| | - Markus Köhler
- German Aerospace Center (DLR) Institute of Combustion Technology Stuttgart Germany
| | - Martin Hoener
- Mass Spectrometry in Reactive Flows University of Duisburg‐Essen Duisburg Germany
| | - Shkelqim Shaqiri
- Mass Spectrometry in Reactive Flows University of Duisburg‐Essen Duisburg Germany
| | - Dennis Kaczmarek
- Mass Spectrometry in Reactive Flows University of Duisburg‐Essen Duisburg Germany
| | - Yasin Karakaya
- Mass Spectrometry in Reactive Flows University of Duisburg‐Essen Duisburg Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry Paul Scherrer Institute Villigen Switzerland
| | - Tina Kasper
- Mass Spectrometry in Reactive Flows University of Duisburg‐Essen Duisburg Germany
| |
Collapse
|
4
|
Investigation of the combustion of iron pentacarbonyl and the formation of key intermediates in iron oxide synthesis flames. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
6
|
Nucleation of soot: experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The irreversible dimerization of polycyclic aromatic hydrocarbons (PAHs) – typically pyrene (C16H10) dimerization – is widely used in combustion chemistry models to describe the soot particle inception step. This paper concerns itself with the detection and identification of dimers of flame-synthesized PAH radicals and closed-shell molecules and an experimental assessment of the role of these PAH dimers for the nucleation of soot. To this end, flame-generated species were extracted from an inverse co-flow flame of ethylene at atmospheric pressure and immediately diluted with excess nitrogen before the mixture was analyzed using flame-sampling tandem mass spectrometry with collision-induced fragmentation. Signal at m/z = 404.157 (C32H20) and m/z = 452.157 (C36H20) were detected and identified as dimers of closed-shell C16H10 and C18H10 monomers, respectively. A complex between a C13H9 radical and a C24H12 closed-shell PAH was observed at m/z = 465.164 (C37H21). However, a rigorous analysis of the flame-sampled mass spectra as a function of the dilution ratio, defined as the ratio of the flow rates of the diluent nitrogen to the sampled gases, indicates that the observed dimers are not flame-born, but are produced in the sampling line. In agreement with theoretical considerations, this paper provides experimental evidence that pyrene dimers cannot be a key intermediate in particle inception at elevated flame temperatures.
Collapse
|
7
|
Development and evaluation of a chemical kinetics reaction mechanism for tetramethylsilane-doped flames. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Karakaya Y, Peukert S, Kasper T. Mass Spectrometric Study on the Combustion of Tetramethylsilane and the Formation of Silicon Oxide Clusters in Premixed Laminar Low-Pressure Synthesis Flames. J Phys Chem A 2018; 122:7131-7141. [DOI: 10.1021/acs.jpca.8b06510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Karakaya
- Mass Spectrometry in Reacting Flows-Thermodynamics, IVG, University of Duisburg−Essen, 47048 Duisburg, Germany
| | - S. Peukert
- IVG, Institute for Combustion and Gas Dynamics−Reactive Fluids, University of Duisburg−Essen, 47048 Duisburg, Germany
| | - T. Kasper
- Mass Spectrometry in Reacting Flows-Thermodynamics, IVG, University of Duisburg−Essen, 47048 Duisburg, Germany
| |
Collapse
|
9
|
Zou JB, Li W, Ye LL, Zhang XY, Li YY, Yang JZ, Qi F. Exploring the low-temperature oxidation chemistry of cyclohexane in a jet-stirred reactor: An experimental and kinetic modeling study. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jia-biao Zou
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Li
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-li Ye
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-yuan Zhang
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai 200240, China
| | - Yu-yang Li
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai 200240, China
| | - Jiu-zhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Fei Qi
- Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai 200240, China
| |
Collapse
|
10
|
Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-1009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.
Collapse
|
11
|
Hansen N, Wullenkord J, Obenchain DA, Graf I, Kohse-Höinghaus K, Grabow JU. Microwave spectroscopic detection of flame-sampled combustion intermediates. RSC Adv 2017. [DOI: 10.1039/c7ra06483g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microwave spectroscopy was used to detect and identify combustion intermediates after sampling out of laboratory-scale model flames.
Collapse
Affiliation(s)
- N. Hansen
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - J. Wullenkord
- Department of Chemistry
- Bielefeld University
- D-33615 Bielefeld
- Germany
| | - D. A. Obenchain
- Institut für Physikalische Chemie & Elektrochemie
- Gottfried-Wilhelm-Leibniz-University Hannover
- D-30167 Hannover
- Germany
| | - I. Graf
- Department of Chemistry
- Bielefeld University
- D-33615 Bielefeld
- Germany
| | | | - J.-U. Grabow
- Institut für Physikalische Chemie & Elektrochemie
- Gottfried-Wilhelm-Leibniz-University Hannover
- D-30167 Hannover
- Germany
| |
Collapse
|
12
|
Oßwald P, Köhler M. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:105109. [PMID: 26520986 DOI: 10.1063/1.4932608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.
Collapse
Affiliation(s)
- Patrick Oßwald
- Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| | - Markus Köhler
- Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| |
Collapse
|
13
|
Osswald P, Hemberger P, Bierkandt T, Akyildiz E, Köhler M, Bodi A, Gerber T, Kasper T. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:025101. [PMID: 24593390 DOI: 10.1063/1.4861175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.
Collapse
Affiliation(s)
- P Osswald
- German Aerospace Center (DLR) - Institute of Combustion Technology, Stuttgart 70569, Germany
| | - P Hemberger
- Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - T Bierkandt
- Mass Spectrometry in Reactive Flows - Thermodynamics (IVG), University of Duisburg-Essen, Duisburg, Germany
| | - E Akyildiz
- Mass Spectrometry in Reactive Flows - Thermodynamics (IVG), University of Duisburg-Essen, Duisburg, Germany
| | - M Köhler
- German Aerospace Center (DLR) - Institute of Combustion Technology, Stuttgart 70569, Germany
| | - A Bodi
- Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - T Gerber
- Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - T Kasper
- Mass Spectrometry in Reactive Flows - Thermodynamics (IVG), University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
14
|
Tran LS, Glaude PA, Fournet R, Battin-Leclerc F. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2013; 27:2226-2245. [PMID: 23712124 PMCID: PMC3663996 DOI: 10.1021/ef301628x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C2H5OH+OH→Products+H2O is also discussed.
Collapse
Affiliation(s)
- Luc-Sy Tran
- Laboratoire Réactions et Génie des Procédé, Université de Lorraine, CNRS, BP 20451, 1 rue Grandville, 54001 Nancy, France
| | - Pierre-Alexandre Glaude
- Laboratoire Réactions et Génie des Procédé, Université de Lorraine, CNRS, BP 20451, 1 rue Grandville, 54001 Nancy, France
| | - René Fournet
- Laboratoire Réactions et Génie des Procédé, Université de Lorraine, CNRS, BP 20451, 1 rue Grandville, 54001 Nancy, France
| | - Frédérique Battin-Leclerc
- Laboratoire Réactions et Génie des Procédé, Université de Lorraine, CNRS, BP 20451, 1 rue Grandville, 54001 Nancy, France
| |
Collapse
|
15
|
Yang B, Westbrook CK, Cool TA, Hansen N, Kohse-Höinghaus K. The Effect of Carbon–Carbon Double Bonds on the Combustion Chemistry of Small Fatty Acid Esters. ACTA ACUST UNITED AC 2011. [DOI: 10.1524/zpch.2011.0167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Environmentally friendly biodiesel is a mixture of saturated and unsaturated methyl (or ethyl) esters of long-chain fatty acids. To experimentally examine the effect of C=C double bonds on the combustion chemistry of fatty acid esters, low-pressure premixed laminar flames of four small esters have been studied using flame-sampling molecular-beam mass spectrometry. Mole fraction profiles of reactants, products, and well-identified stable and reactive combustion intermediates in flames of the saturated species methyl propanoate (CH3CH2COOCH
3) and its isomer ethyl acetate (CH3COOCH2CH
3) have been compared with results from flames of the unsaturated fuels methyl propenoate (CH2CHCOOCH
3) and vinyl acetate (CH3COOCHCH
2) flames. A total of eight flames have been studied, with two fuel-rich flame conditions investigated (fuel-equivalence ratios φ=1.2 and 1.56) for each fuel. In addition, the underlying oxidation chemistry at these premixed flame conditions has been investigated using a detailed chemical kinetic reaction mechanism, which is largely based on a previously proposed model for saturated esters [B. Yang et al., Phys. Chem. Chem. Phys. 13 (2011) 7205]. The combined results provide a detailed understanding of the similarities and differences between the combustion of saturated vs. unsaturated esters. Meanwhile, the isomeric and stoichiometric effects on their combustion chemistry are also addressed. In this paper, experimental and modeling details are discussed with a special focus on the different reaction pathways.
Collapse
Affiliation(s)
- Bin Yang
- Cornell University, School of Applied Engineering Physics, Ithaca, NY 14853, U.S.A
| | | | | | - Nils Hansen
- Sandia National Laboratories, Combustion Research Facility, Livermore, CA 94551, U.S.A
| | | |
Collapse
|
16
|
Burke MP, Chaos M, Ju Y, Dryer FL, Klippenstein SJ. Comprehensive H2
/O2
kinetic model for high-pressure combustion. INT J CHEM KINET 2011. [DOI: 10.1002/kin.20603] [Citation(s) in RCA: 555] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Oßwald P, Kohse-Höinghaus K, Struckmeier U, Zeuch T, Seidel L, Leon L, Mauss F. Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames. ACTA ACUST UNITED AC 2011. [DOI: 10.1524/zpch.2011.0148] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The combustion chemistry of the two butane isomers represents a subset in a comprehensive description of C1–C4 hydrocarbon and oxygenated fuels. A critical examination of combustion models and their capability to predict emissions from this class of fuels must rely on high-quality experimental data that address the respective chemical decomposition and oxidation pathways, including quantitative intermediate species mole fractions. Premixed flat low-pressure (40 mbar) flames of the two butane isomers were thus studied under identical, fuel-rich (φ=1.71) conditions. Two independent molecular-beam mass spectrometer (MBMS) set-ups were used to provide quantitative species profiles. Both data sets, one from electron ionization (EI)-MBMS with high mass resolution and one from photoionization (PI)-MBMS with high energy resolution, are in overall good agreement. Simulations with a flame model were used to analyze the respective reaction pathways, and differences in the combustion behavior of the two isomers are discussed.
Collapse
Affiliation(s)
| | | | - Ulf Struckmeier
- Thermo Fisher Scientific, Solaar House, Cambridge, CB5 8BZ, Großbritannien
| | - Thomas Zeuch
- Universität Göttingen, Institut für Physikalische Chemie, Göttingen, Deutschland
| | - Lars Seidel
- Brandenburg University of Technology, Thermodynamics and Thermal Process Engineering, Cottbus, Deutschland
| | - Larisa Leon
- Brandenburg University of Technology, Thermodynamics and Thermal Process Engineering, Cottbus, Deutschland
| | - Fabian Mauss
- Brandenburg University of Technology, Thermodynamics and Thermal Process Engineering, Cottbus, Deutschland
| |
Collapse
|
18
|
Tian Z, Yuan T, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Zhang K, Qi F. An experimental and kinetic investigation of premixed furan/oxygen/argon flames. COMBUSTION AND FLAME 2011; 158:756-773. [PMID: 23814311 PMCID: PMC3695461 DOI: 10.1016/j.combustflame.2010.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detailed chemical structures of three low-pressure (35 Torr) premixed laminar furan/oxygen/argon flames with equivalence ratios of 1.4, 1.8 and 2.2 have been investigated by using tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 40 combustion species including hydrocarbons and oxygenated intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species including reactants, intermediates and products have been determined by scanning burner position with some selected photon energies near ionization thresholds. Flame temperatures have been measured by a Pt-6%Rh/Pt-30%Rh thermocouple. A new mechanism involving 206 species and 1368 reactions has been proposed whose predictions are in reasonable agreement with measured species profiles for the three investigated flames. Rate-of-production and sensitivity analyses have been performed to track the key reaction paths governing furan consumption for different equivalence ratios. Both experimental and modeling results indicate that few aromatics could be formed in these flames. Furthermore, the current model has been validated against previous pyrolysis results of the literature obtained behind shock waves and the agreement is reasonable as well.
Collapse
Affiliation(s)
- Zhenyu Tian
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Tao Yuan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Rene Fournet
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Pierre-Alexandre Glaude
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Baptiste Sirjean
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Frédérique Battin-Leclerc
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Kuiwen Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Fei Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
19
|
Tian Z, Pitz WJ, Fournet R, Glaude PA, Battin-Leclerc F. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2011; 33:233-261. [PMID: 23762016 PMCID: PMC3677400 DOI: 10.1016/j.proci.2010.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C4 + C2 species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C6H4CH3 radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a methyl C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C6H4CH3 radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.
Collapse
Affiliation(s)
- Zhenyu Tian
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - William J. Pitz
- Chemical Sciences Division, Lawrence Livermore National Laboratory, CA, USA
| | - René Fournet
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Pierre-Alexander Glaude
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| | - Frédérique Battin-Leclerc
- Laboratoire Réactions et Génie des Procédés, CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 451, 54001 Nancy Cedex, France
| |
Collapse
|
20
|
Yang B, Westbrook CK, Cool TA, Hansen N, Kohse-Höinghaus K. Fuel-specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers. Phys Chem Chem Phys 2011; 13:6901-13. [DOI: 10.1039/c0cp02065f] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Hansen N, Harper MR, Green WH. High-temperature oxidation chemistry of n-butanol – experiments in low-pressure premixed flames and detailed kinetic modeling. Phys Chem Chem Phys 2011; 13:20262-74. [DOI: 10.1039/c1cp21663e] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR. Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed Engl 2010; 49:3572-97. [PMID: 20446278 DOI: 10.1002/anie.200905335] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels.
Collapse
|
23
|
Kohse-Höinghaus K, Oßwald P, Cool T, Kasper T, Hansen N, Qi F, Westbrook C, Westmoreland P. Verbrennungschemie der Biokraftstoffe: von Ethanol bis Biodiesel. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Hansen N, Li W, Law ME, Kasper T, Westmoreland PR, Yang B, Cool TA, Lucassen A. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Phys Chem Chem Phys 2010; 12:12112-22. [DOI: 10.1039/c0cp00241k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|