1
|
Moye AR, Robichaux MA, Agosto MA, Rivolta C, Moulin AP, Wensel TG. Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633784. [PMID: 39896654 PMCID: PMC11785020 DOI: 10.1101/2025.01.20.633784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The most common genetic cause of the childhood blinding disease Leber Congenital Amaurosis is mutation of the ciliopathy gene CEP290 . Though studied extensively, the photoreceptor-specific roles of CEP290 remain unclear. Using advanced microscopy techniques, we investigated the sub-ciliary localization of CEP290 and its role in mouse photoreceptors during development. CEP290 was found throughout the connecting cilium between the microtubules and membrane, with nine-fold symmetry. In the absence of CEP290 ciliogenesis occurs, but the connecting cilium membrane is aberrant, and sub-structures, such as the ciliary necklace and Y-links, are defective or absent throughout the mid to distal connecting cilium. Transition zone proteins AHI1 and NPHP1 were abnormally restricted to the proximal connecting cilium in the absence of CEP290, while others like NPHP8 and CEP89 were unaffected. Although outer segment disc formation is inhibited in CEP290 mutant retina, we observed large numbers of extracellular vesicles. These results suggest roles for CEP290 in ciliary membrane structure, outer segment disc formation and photoreceptor-specific spatial distribution of a subset of transition zone proteins, which collectively lead to failure of outer segment formation and photoreceptor degeneration.
Collapse
|
2
|
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors. Sci Rep 2024; 14:28347. [PMID: 39550471 PMCID: PMC11569196 DOI: 10.1038/s41598-024-79057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Collapse
Affiliation(s)
- Marine Barbelanne
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keerthana Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Xinxing Zhang
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam Warner
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - X Z Shawn Xu
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Djebar M, Anselme I, Pezeron G, Bardet PL, Cantaut-Belarif Y, Eschstruth A, López-Santos D, Le Ribeuz H, Jenett A, Khoury H, Veziers J, Parmentier C, Hirschler A, Carapito C, Bachmann-Gagescu R, Schneider-Maunoury S, Vesque C. Astrogliosis and neuroinflammation underlie scoliosis upon cilia dysfunction. eLife 2024; 13:RP96831. [PMID: 39388365 PMCID: PMC11466456 DOI: 10.7554/elife.96831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.
Collapse
Affiliation(s)
- Morgane Djebar
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Guillaume Pezeron
- Molecular Physiology and Adaptation (PhyMA - UMR7221), Muséum National d’Histoire Naturelle, CNRSParisFrance
| | - Pierre-Luc Bardet
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Inserm U 16 1127, CNRS UMR 7225, F-75013ParisFrance
| | - Alexis Eschstruth
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Diego López-Santos
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Hélène Le Ribeuz
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UMS2010 / INRA UMS1451, Université Paris-SaclayParisFrance
| | - Hanane Khoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Joelle Veziers
- Inserm UMR 1229, CHU Nantes PHU4 OTONN, SC3M facility, Inserm UMS 016, CNRS 3556, Université de NantesNantesFrance
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Institut de Biologie Paris Seine (IBPS) – Neurosciences Paris Seine (NPS)ParisFrance
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, 23 Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - 24 FR2048StrasbourgFrance
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of ZurichZurichSwitzerland
- Institute of Molecular Life Sciences, University of ZurichZurichSwitzerland
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology UnitParisFrance
| |
Collapse
|
4
|
Mitra A, Loseva E, Peterman EJG. IFT cargo and motors associate sequentially with IFT trains to enter cilia of C. elegans. Nat Commun 2024; 15:3456. [PMID: 38658528 PMCID: PMC11043347 DOI: 10.1038/s41467-024-47807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Intraflagellar transport (IFT) orchestrates entry of proteins into primary cilia. At the ciliary base, assembled IFT trains, driven by kinesin-2 motors, can transport cargo proteins into the cilium, across the crowded transition zone. How trains assemble at the base and how proteins associate with them is far from understood. Here, we use single-molecule imaging in the cilia of C. elegans chemosensory neurons to directly visualize the entry of kinesin-2 motors, kinesin-II and OSM-3, as well as anterograde cargo proteins, IFT dynein and tubulin. Single-particle tracking shows that IFT components associate with trains sequentially, both in time and space. Super-resolution maps of IFT components in wild-type and mutant worms reveal ciliary ultrastructure and show that kinesin-II is essential for axonemal organization. Finally, imaging cilia lacking kinesin-II and/or transition zone function uncovers the interplay of kinesin-II and OSM-3 in driving efficient transport of IFT trains across the transition zone.
Collapse
Affiliation(s)
- Aniruddha Mitra
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elizaveta Loseva
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Moraes de Lima Perini M, Pugh JN, Scott EM, Bhula K, Chirgwin A, Reul ON, Berbari NF, Li J. Primary cilia in osteoblasts and osteocytes are required for skeletal development and mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.570609. [PMID: 38318207 PMCID: PMC10843151 DOI: 10.1101/2023.12.15.570609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Primary cilia have been involved in the development and mechanosensation of various tissue types, including bone. In this study, we explored the mechanosensory role of primary cilia in bone growth and adaptation by examining two cilia specific genes, IFT88 and MKS5, required for proper cilia assembly and function. To analyze the role of primary cilia in osteoblasts, Osx1-GFP:Cre mice were bred with IFT88 LoxP/LoxP to generate mice with a conditional knockout of primary cilia in osteoblasts. A significant decrease in body weight was observed in both male (p=0.0048) and female (p=0.0374) conditional knockout (cKO) mice compared to the wild type (WT) controls. The femurs of cKO mice were significantly shorter than that of the WT mice of both male (p=0.0003) and female (p=0.0019) groups. Histological analysis revealed a significant difference in MAR (p=0.0005) and BFR/BS (p<0.0001) between female cKO and WT mice. The BFR/BS of male cKO mice was 58.03% lower compared to WT mice. To further investigate the role of primary cilia in osteocytes, Dmp1-8kb-Cre mice were crossed with MKS5 LoxP/LoxP to generate mice with defective cilia in osteocytes. In vivo axial ulnar loading was performed on 16-week-old mice for 3 consecutive days. The right ulnae were loaded for 120 cycles/day at a frequency of 2Hz with a peak force of 2.9N for female mice and 3.2N for male mice. Load-induced bone formation was measured using histomorphometry. The relative values of MS/BS, MAR and BFR/BS (loaded ulnae minus nonloaded ulnae) in male MKS5 cKO mice were decreased by 24.88%, 46.27% and 48.24%, respectively, compared to the controls. In the female groups, the rMS/BS was 52.5% lower, the rMAR was 27.58% lower, and the rBFR/BS was 41.54% lower in MKS5 cKO mice than the WT group. Histological analysis indicated that MKS5 cKO mice showed significantly decreased response to mechanical loading compared to the controls. Taken together, these data highlight a critical role of primary cilia in bone development and mechanotransduction, suggesting that the presence of primary cilia in osteoblasts play an important role in skeletal development, and primary cilia in osteocytes mediate mechanically induced bone formation.
Collapse
|
7
|
Syu JJ, Chang CH, Chang PY, Liu CH, Yu CJ, Jou TS. Lipid raft interacting galectin 8 regulates primary ciliogenesis. FASEB J 2023; 37:e23300. [PMID: 37997673 DOI: 10.1096/fj.202301943r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.
Collapse
Affiliation(s)
- Jhan-Jhang Syu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Hsiang Chang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Chang
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsiung Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Truong HM, Cruz-Colón KO, Martínez-Márquez JY, Willer JR, Travis AM, Biswas SK, Lo WK, Bolz HJ, Pearring JN. The tectonic complex regulates membrane protein composition in the photoreceptor cilium. Nat Commun 2023; 14:5671. [PMID: 37704658 PMCID: PMC10500017 DOI: 10.1038/s41467-023-41450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.
Collapse
Affiliation(s)
- Hanh M Truong
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kevin O Cruz-Colón
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek OF, Athanasiou D, Jovanovic K, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin Improves Cilia Defects in Human CEP290 Ciliopathy Models. Cells 2023; 12:1575. [PMID: 37371046 PMCID: PMC10297203 DOI: 10.3390/cells12121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.
Collapse
Affiliation(s)
| | - Paul E. Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Daniele Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
- Department of Biology, University of Padova, Padova, 35122 Padova PD, Italy
| | - Olivia F. Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Dimitra Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Katarina Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | | | - Brian C. Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B, Rockledge Drive, Montgomery County, MD 20892, USA
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| |
Collapse
|
11
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek FO, Jovanovic K, Athanasiou D, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin improves cilia defects in human CEP290 ciliopathy models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536565. [PMID: 37205323 PMCID: PMC10187159 DOI: 10.1101/2023.04.12.536565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photoreceptor outer segment is a highly specialized primary cilium essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290 , there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290 -related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids, by modulating the expression of rhodopsin, and by targeting cilia and synaptic plasticity pathways. This work sheds light into the mechanism of action of eupatilin, and supports its potential as a variant-independent approach for CEP290 -associated ciliopathies. Abstract Figure
Collapse
Affiliation(s)
- JC Corral-Serrano
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - PE Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
- Department of Biology, University of Padova, Padova, Italy
| | - FO Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - K Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - J van der Spuy
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - BC Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - ME Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
12
|
Structure of the N-terminal coiled-coil domains of the ciliary protein Rpgrip1l. iScience 2023; 26:106249. [PMID: 36915689 PMCID: PMC10006689 DOI: 10.1016/j.isci.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Rpgrip1l is one of the key ciliary proteins located at the transition zone of the primary cilium, an important organelle for cells to sense the outer environment. Mutations in the RPGRIP1L gene are associated with various ciliopathies. Here, we focused on the N-terminal coiled-coil of Rpgrip1l. By comprehensive biochemical and structural characterizations, we demonstrated that the two predicted coiled-coil regions (CC12) located at Rpgrip1l N-terminus each can form a stable parallel dimer. We further showed that overexpression of Rpgrip1l CC12 in NIH/3T3 cells significantly shortened the length of primary cilia, and this effect depended on the dimer formation. In addition, we found that CC12 of the homolog protein Rpgrip1 in mouse and human were significantly different from Rpgrip1l. Finally, we confirmed that some disease-related mutations can alter the dimeric states of CC12 of Rpgrip1l or Rpgrip1, which might explain the pathogenic mechanisms.
Collapse
|
13
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
14
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Clupper M, Gill R, Elsayyid M, Touroutine D, Caplan JL, Tanis JE. Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. iScience 2022; 25:105262. [PMID: 36304122 PMCID: PMC9593189 DOI: 10.1016/j.isci.2022.105262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.
Collapse
Affiliation(s)
- Michael Clupper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachael Gill
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Denis Touroutine
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
17
|
Moreno-Leon L, Quezada-Ramirez MA, Bilsbury E, Kiss C, Guerin A, Khanna H. Prenatal phenotype analysis and mutation identification of a fetus with meckel gruber syndrome. Front Genet 2022; 13:982127. [PMID: 36061204 PMCID: PMC9437271 DOI: 10.3389/fgene.2022.982127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Ciliopathies are a class of inherited severe human disorders that occur due to defective formation or function of cilia. The RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein1-like) gene encodes for a ciliary protein involved in regulating cilia formation and function. Mutations in RPGRIP1L cause ciliopathies associated with severe embryonic defects, such as Meckel-Gruber Syndrome (MKS). Here we report RPGRIP1L mutation analysis in a family diagnosed with MKS. The clinical manifestations of the fetus included thoraco-lumbar open neural tube defect with associated Chiari type II malformation and hydrocephalus, bilateral club feet, and single right kidney/ureter. Analysis of the parental DNA samples revealed that the father carried a previously reported mutation R1236C/+ whereas the mother had a novel splice site mutation IVS6+1 G > A/+ in RPGRIP1L. The splice site mutation resulted in the exclusion of in-frame exon 6 of RPGRIP1L (RPGRIP1L-∆Ex6) but expressed a stable protein in fibroblasts derived from the parents’ skin biopsies. The GFP-RPGRIP1L-∆Ex6 mutant protein exhibited relatively reduced ciliary localization in transiently-transfected cultured RPE-1 cells. Taken together, this study identifies a novel RPGRIP1L variant RPGRIP1L-∆Ex6, which in combination with RPGRIP1L-R1236C is associated with MKS. We also suggest that the deletion of exon 6 of RPGRIP1L leads to reduced ciliary localization of RPGRIP1L, indicating a plausible mechanism of associated disease.
Collapse
Affiliation(s)
- Laura Moreno-Leon
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Marco A. Quezada-Ramirez
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Evan Bilsbury
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Courtney Kiss
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Andrea Guerin
- Kingston Health Sciences Centre, Queen’s Medical School, Kingston, ON, Canada
| | - Hemant Khanna
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: Hemant Khanna, ,
| |
Collapse
|
18
|
Wang L, Wen X, Wang Z, Lin Z, Li C, Zhou H, Yu H, Li Y, Cheng Y, Chen Y, Lou G, Pan J, Cao M. Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nat Commun 2022; 13:3997. [PMID: 35810181 PMCID: PMC9271036 DOI: 10.1038/s41467-022-31751-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The transition zone (TZ) of the cilium/flagellum serves as a diffusion barrier that controls the entry/exit of ciliary proteins. Mutations of the TZ proteins disrupt barrier function and lead to multiple human diseases. However, the systematic regulation of ciliary composition and signaling-related processes by different TZ proteins is not completely understood. Here, we reveal that loss of TCTN1 in Chlamydomonas reinhardtii disrupts the assembly of wedge-shaped structures in the TZ. Proteomic analysis of cilia from WT and three TZ mutants, tctn1, cep290, and nphp4, shows a unique role of each TZ subunit in the regulation of ciliary composition, explaining the phenotypic diversity of different TZ mutants. Interestingly, we find that defects in the TZ impair the formation and biological activity of ciliary ectosomes. Collectively, our findings provide systematic insights into the regulation of ciliary composition by TZ proteins and reveal a link between the TZ and ciliary ectosomes. Cilia project from cells to serve sensory functions, and ciliary disruption can result in multiple disorders known as ciliopathies. Here the authors show that the ciliopathy gene TCTN1 functions to regulate the ciliary transition zone and ectosome formation.
Collapse
Affiliation(s)
- Liang Wang
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Xin Wen
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Zhengmao Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chunhong Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huilin Zhou
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huimin Yu
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuhan Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yifei Cheng
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Geer Lou
- Shanghai Biotree Biotech Co. Ltd, 201815, Shanghai, China
| | - Junmin Pan
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
19
|
Xie C, Habif JC, Ukhanov K, Uytingco CR, Zhang L, Campbell RJ, Martens JR. Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies. JCI Insight 2022; 7:158736. [PMID: 35771640 PMCID: PMC9462494 DOI: 10.1172/jci.insight.158736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ciliopathies are a class of genetic diseases resulting in cilia dysfunction in multiple organ systems, including the olfactory system. Currently, there are no available curative treatments for olfactory dysfunction and other symptoms in ciliopathies. The loss or shortening of olfactory cilia, as seen in multiple mouse models of the ciliopathy Bardet–Biedl syndrome (BBS), results in olfactory dysfunction. However, the underlying mechanism of the olfactory cilia reduction is unknown, thus limiting the development of therapeutic approaches for BBS and other ciliopathies. Here, we demonstrated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a phosphoinositide typically excluded from olfactory cilia, aberrantly redistributed into the residual cilia of BBS mouse models, which caused F-actin ciliary infiltration. Importantly, PI(4,5)P2 and F-actin were necessary for olfactory cilia shortening. Using a gene therapeutic approach, the hydrolyzation of PI(4,5)P2 by overexpression of inositol polyphosphate-5-phosphatase E (INPP5E) restored cilia length and rescued odor detection and odor perception in BBS. Together, our data indicate that PI(4,5)P2/F-actin–dependent cilia disassembly is a common mechanism contributing to the loss of olfactory cilia in BBS and provide valuable pan-therapeutic intervention targets for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Robert J Campbell
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, United States of America
| |
Collapse
|
20
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
21
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
22
|
Tmem138 is localized to the connecting cilium essential for rhodopsin localization and outer segment biogenesis. Proc Natl Acad Sci U S A 2022; 119:e2109934119. [PMID: 35394880 PMCID: PMC9169668 DOI: 10.1073/pnas.2109934119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The connecting cilium (CC) of the photoreceptor provides the only route for the trafficking of the outer segment (OS) proteins. Failure of OS protein transport causes degenerative photoreceptor diseases, including retinitis pigmentosa. We demonstrate that Tmem138, a protein linked to ciliopathy, is localized to the photoreceptor CC. Germline deletion of Tmem138 abolished OS morphogenesis, followed by rapid photoreceptor degeneration. Tmem138 interacts with rhodopsin and two additional CC compartment proteins, Ahi1 and Tmem231, likely forming a membrane complex to facilitate trafficking of rhodopsin and other OS-bound proteins across the CC. The study thus implicates a new line of regulation on the delivery of OS proteins through interactions with CC membrane complex(es) and provides insights into photoreceptor ciliopathy diseases. Photoreceptor connecting cilium (CC) is structurally analogous to the transition zone (TZ) of primary cilia and gates the molecular trafficking between the inner and the outer segment (OS). Retinal dystrophies with underlying CC defects are manifested in a broad array of syndromic conditions known as ciliopathies as well as nonsyndromic retinal degenerations. Despite extensive studies, many questions remain in the mechanism of protein trafficking across the photoreceptor CC. Here, we genetically inactivated mouse Tmem138, a gene encoding a putative transmembrane protein localized to the ciliary TZ and linked to ciliopathies. Germline deletion of Tmem138 abolished OS morphogenesis, followed by rapid photoreceptor degeneration. Tmem138 was found localized to the photoreceptor CC and was required for localization of Ahi1 to the distal subdomain of the CC. Among the examined set of OS proteins, rhodopsin was mislocalized throughout the mutant cell body prior to OS morphogenesis. Ablation of Tmem138 in mature rods recapitulated the molecular changes in the germline mutants, causing failure of disc renewal and disintegration of the OS. Furthermore, Tmem138 interacts reciprocally with rhodopsin and a related protein Tmem231, and the ciliary localization of the latter was also altered in the mutant photoreceptors. Taken together, these results suggest a crucial role of Tmem138 in the functional organization of the CC, which is essential for rhodopsin localization and OS biogenesis.
Collapse
|
23
|
Zhang P, Wu B, Wang Y, Ren Y, Li G, Qan Y, Lei C, Wang H. Identification of Pathogenic Variants in RPGRIP1L with Meckel Syndrome and Preimplantation Genetic Testing in a Chinese Family. Reprod Sci 2022; 29:2200-2207. [PMID: 35233738 DOI: 10.1007/s43032-022-00898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Meckel syndrome (MKS, OMIM:249000) is a severe multiorgan dysplastic lethal ciliopathy with extreme genetic heterogeneity. Defects in RPGRIP1L are the cause of MKS type 5 (MKS5, OMIM:611561). However, only six different variants have been reported in eight MKS5 cases with biallelic variants. Here, we describe the case of a Chinese family with recurrent fetal malformations. The proband was a 14-week gestation fetus with occipital encephalocele, polycystic kidneys, polydactyly, and single ventricular heart. Trio whole-exome sequencing was performed, and two novel compound heterozygous variants of RPGRIP1L (c.427C > T, p.Gln143Ter and c.1351-11A > G) were identified. cDNA studies of the splicing variant demonstrated a reading-frame shift with a subsequent premature stop codon (p.Glu451Serfs*6). After the proband was diagnosed with MKS5, the couple chose preimplantation genetic testing for monogenic disorders (PGT-M) and prenatal genetic diagnosis (PND) to prevent the transmission of pathogenic variants, which led to a successful pregnancy recently. In summary, we have identified two novel variants of RPGRIP1L in a Chinese family, which expand the variant spectrum of MKS5. Furthermore, we have described the successful application of PGT-M and PND in this family. These techniques could assist couples with a genetic predisposition in avoiding the transmission of genetic diseases to their offspring.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yunyun Ren
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Qan
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Caixia Lei
- Prenatal Diagnosis Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. .,Department of Genetics, Shanghai JiAi Genetics & IVF Institute, Shanghai, China.
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Stilling S, Kalliakoudas T, Benninghoven-Frey H, Inoue T, Falkenburger BH. PIP2 determines length and stability of primary cilia by balancing membrane turnovers. Commun Biol 2022; 5:93. [PMID: 35079141 PMCID: PMC8789910 DOI: 10.1038/s42003-022-03028-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractPrimary cilia are sensory organelles on many postmitotic cells. The ciliary membrane is continuous with the plasma membrane but differs in its phospholipid composition with phosphatidylinositol 4,5-bisposphate (PIP2) being much reduced toward the ciliary tip. In order to determine the functional significance of this difference, we used chemically induced protein dimerization to rapidly synthesize or degrade PIP2 selectively in the ciliary membrane. We observed ciliary fission when PIP2 was synthesized and a growing ciliary length when PIP2 was degraded. Ciliary fission required local actin polymerisation in the cilium, the Rho kinase Rac, aurora kinase A (AurkA) and histone deacetylase 6 (HDAC6). This pathway was previously described for ciliary disassembly before cell cycle re-entry. Activating ciliary receptors in the presence of dominant negative dynamin also increased ciliary PIP2, and the associated vesicle budding required ciliary PIP2. Finally, ciliary shortening resulting from constitutively increased ciliary PIP2 was mediated by the same actin – AurkA – HDAC6 pathway. Taken together, changes in ciliary PIP2 are a unifying point for ciliary membrane stability and turnover. Different stimuli increase ciliary PIP2 to secrete vesicles and reduce ciliary length by a common pathway. The paucity of PIP2 in the distal cilium therefore ensures ciliary stability.
Collapse
|
25
|
Shi H, Wang H, Zhang C, Lu Y, Yao J, Chen Z, Xing G, Wei Q, Cao X. Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via Sonic Hedgehog signaling. JCI Insight 2022; 7:149626. [PMID: 35041619 PMCID: PMC8876550 DOI: 10.1172/jci.insight.149626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Defective primary cilia cause a range of diseases called ciliopathies, which include hearing loss (HL). Variants in the human oxysterol-binding protein like 2 (OSBPL2/ORP2) are responsible for autosomal dominant nonsyndromic HL (DFNA67). However, the pathogenesis of OSBPL2 deficiency has not been fully elucidated. In this study, we show that the Osbpl2-KO mice exhibited progressive HL and abnormal cochlear development with defective cilia. Further research revealed that OSBPL2 was located at the base of the kinocilia in hair cells (HCs) and primary cilia in supporting cells (SCs) and functioned in the maintenance of ciliogenesis by regulating the homeostasis of PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) on the cilia membrane. OSBPL2 deficiency led to a significant increase of PI(4,5)P2 on the cilia membrane, which could be partially rescued by the overexpression of INPP5E. In addition, smoothened and GL13, the key molecules in the Sonic Hedgehog (Shh) signaling pathway, were detected to be downregulated in Osbpl2-KO HEI-OC1 cells. Our findings revealed that OSBPL2 deficiency resulted in ciliary defects and abnormal Shh signaling transduction in auditory cells, which helped to elucidate the underlying mechanism of OSBPL2 deficiency in HL.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Cheng Zhang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| |
Collapse
|
26
|
Blanco-Ameijeiras J, Lozano-Fernández P, Martí E. Centrosome maturation - in tune with the cell cycle. J Cell Sci 2022; 135:274149. [PMID: 35088834 DOI: 10.1242/jcs.259395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.
Collapse
Affiliation(s)
- Jose Blanco-Ameijeiras
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Pilar Lozano-Fernández
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
27
|
De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C, Carvalho AX, Gassmann R, Abreu CMC, Dantas TJ. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol 2022; 221:212746. [PMID: 34739033 PMCID: PMC8576871 DOI: 10.1083/jcb.202010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homologue, WDR-60, and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing retrograde motor availability at the ciliary tip. Consistent with this, we show that fewer dynein-2 motors power WDR-60–deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone’s NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT, and the NPHP module as a roadblock to dynein-2 passage through the transition zone.
Collapse
Affiliation(s)
- Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cármen Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2295-2306. [DOI: 10.1093/hmg/ddac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
|
29
|
Mansour F, Boivin FJ, Shaheed IB, Schueler M, Schmidt-Ott KM. The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis. Int J Mol Sci 2021; 22:ijms222212253. [PMID: 34830133 PMCID: PMC8621283 DOI: 10.3390/ijms222212253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Felix J. Boivin
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Iman B. Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Correspondence: (M.S.); (K.M.S.-O.)
| | - Kai M. Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: (M.S.); (K.M.S.-O.)
| |
Collapse
|
30
|
Hilgendorf KI. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion. Front Physiol 2021; 12:769367. [PMID: 34759842 PMCID: PMC8573240 DOI: 10.3389/fphys.2021.769367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is a microtubule-based cellular protrusion found on most mammalian cell types in diverse tissues. It functions as a cellular antenna to sense and transduce a broad range of signals, including odorants, light, mechanical stimuli, and chemical ligands. This diversity in signals requires cilia to display a context and cell type-specific repertoire of receptors. Recently, primary cilia have emerged as critical regulators of metabolism. The importance of primary cilia in metabolic disease is highlighted by the clinical features of human genetic disorders with dysfunctional ciliary signaling, which include obesity and diabetes. This review summarizes the current literature on the role of primary cilia in metabolic disease, focusing on the importance of primary cilia in directing white adipose tissue expansion during obesity.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Chen C, Xu Q, Zhang Y, Davies BA, Huang Y, Katzmann DJ, Harris PC, Hu J, Ling K. Ciliopathy protein HYLS1 coordinates the biogenesis and signaling of primary cilia by activating the ciliary lipid kinase PIPKIγ. SCIENCE ADVANCES 2021; 7:eabe3401. [PMID: 34162535 PMCID: PMC8221637 DOI: 10.1126/sciadv.abe3401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/10/2021] [Indexed: 05/04/2023]
Abstract
Mutation of ciliopathy protein HYLS1 causes the perinatal lethal hydrolethalus syndrome (HLS), yet the underlying molecular etiology and pathogenesis remain elusive. Here, we reveal unexpected mechanistic insights into the role of mammalian HYLS1 in regulating primary cilia. HYLS1 is recruited to the ciliary base via a direct interaction with the type Iγ phosphatidylinositol 4-phosphate [PI(4)P] 5-kinase (PIPKIγ). HYLS1 activates PIPKIγ by interrupting the autoinhibitory dimerization of PIPKIγ, which thereby expedites depletion of centrosomal PI(4)P to allow axoneme nucleation. HYLS1 deficiency interrupts the assembly of ciliary NPHP module and agonist-induced ciliary exit of β-arrestin, which, in turn, disturbs the removal of ciliary Gpr161 and activation of hedgehog (Hh) signaling. Consistent with this model of pathogenesis, the HLS mutant HYLS1D211G supports ciliogenesis but not activation of Hh signaling. These results implicate mammalian HYLS1 as a multitasking protein that facilitates ciliogenesis and ciliary signaling by coordinating with the ciliary lipid kinase PIPKIγ.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Qingwen Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuxia Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution Microscopy Reveals Distinct Phosphoinositide Subdomains Within the Cilia Transition Zone. Front Cell Dev Biol 2021; 9:634649. [PMID: 33996795 PMCID: PMC8120242 DOI: 10.3389/fcell.2021.634649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
33
|
Park K, Li C, Tsiropoulou S, Gonçalves J, Kondratev C, Pelletier L, Blacque OE, Leroux MR. CDKL kinase regulates the length of the ciliary proximal segment. Curr Biol 2021; 31:2359-2373.e7. [PMID: 33857430 DOI: 10.1016/j.cub.2021.03.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Cilia are organelles found throughout most unicellular eukaryotes and different metazoan cell types. To accomplish their essential roles in cell motility, fluid flow, and signaling, cilia are divided into subcompartments with variable structures, compositions, and functions. How these specific subcompartments are built remains almost completely unexplored. Here, we show that C. elegans CDKL-1, related to the human CDKL kinase family (CDKL1/CDKL2/CDKL3/CDKL4/CDKL5), specifically controls the length of the proximal segment, a ciliary subdomain conserved in evolution from Tetrahymena motile cilia to C. elegans chemosensory, mammalian olfactory, and photoreceptor non-motile cilia. CDKL-1 associates with intraflagellar transport (IFT), influences the distribution of the IFT anterograde motors heterotrimeric kinesin-II and homodimeric OSM-3-kinesin/KIF17 in the proximal segment, and shifts the boundary between the proximal and distal segments (PS/DS boundary). CDKL-1 appears to function independently from several factors that influence cilium length, namely the kinases DYF-5 (mammalian CILK1/MAK) and NEKL-1 (NEK9), as well as the depolymerizing kinesins KLP-13 (KIF19) and KLP-7 (KIF2). However, a different kinase, DYF-18 (CCRK), is needed for the correct localization and function of CDKL-1 and similarly influences the length of the proximal segment. Loss of CDKL-1, which affects proximal segment length without impairing overall ciliary microtubule structural integrity, also impairs cilium-dependent processes, namely cGMP-signaling-dependent body length control and CO2 avoidance. Collectively, our findings suggest that cilium length is regulated by various pathways and that the IFT-associated kinase CDKL-1 is essential for the construction of a specific ciliary compartment and contributes to development and sensory physiology.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
34
|
Hazime KS, Zhou Z, Joachimiak E, Bulgakova NA, Wloga D, Malicki JJ. STORM imaging reveals the spatial arrangement of transition zone components and IFT particles at the ciliary base in Tetrahymena. Sci Rep 2021; 11:7899. [PMID: 33846423 PMCID: PMC8041816 DOI: 10.1038/s41598-021-86909-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet–Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.
Collapse
Affiliation(s)
- Khodor S Hazime
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Zhu Zhou
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Natalia A Bulgakova
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Jarema J Malicki
- Bateson Centre and the Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
35
|
Xie C, Martens JR. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement. Chem Senses 2021; 46:6159785. [PMID: 33690843 DOI: 10.1093/chemse/bjab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
38
|
Guo J, Yang Y, Ji Z, Yao M, Xia X, Sha X, Huang M. Case Report: Novel RPGRIP1L Gene Mutations Identified by Whole Exome Sequencing in a Patient With Multiple Primary Tumors. Front Genet 2021; 12:620472. [PMID: 33597970 PMCID: PMC7882720 DOI: 10.3389/fgene.2021.620472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
A 78 years old Chinese woman with five different cancer types and a family history of malignancy was the subject of this study. Pancreatic adenocarcinoma and gingival squamous cell carcinoma tissues were obtained from the patient and sequenced using Whole Exome Sequencing. Whole exome sequencing identified 20 mutation sites in six candidate genes. Sanger Sequencing was used for further validation. The results verified six mutations in three genes, OBSCN, TTN, and RPGRIP1L, in at least one cancer type. Immunohistochemistry was used to verify protein expression. mRNA expression analysis using The Cancer Genome Atlas database revealed that RPGRIP1L was highly expressed in several cancer types, especially in pancreatic adenocarcinoma, and correlated with patient survival and sensitivity to paclitaxel, probably through the TGF-β signaling pathway. The newly identified somatic mutations in RPGRIP1L might contribute to pathogenesis in the patients. Protein conformation simulation demonstrated that the alterations had caused the binding pocket at position 708 to change from concave to convex, which could restrict contraction and extension, and interfere with the physiological function of the protein. Further studies are required to determine the implication of RPGRIP1L in this family and in multiple primary tumors.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Yang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Zhuqing Ji
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Mengchu Yao
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaotian Xia
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaofeng Sha
- Department of Medical Oncology, Huai'an Hongze District People's Hospital, Huai'an, China
| | - Mingde Huang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
39
|
Lange KI, Tsiropoulou S, Kucharska K, Blacque OE. Interpreting the pathogenicity of Joubert syndrome missense variants in Caenorhabditis elegans. Dis Model Mech 2021; 14:dmm.046631. [PMID: 33234550 PMCID: PMC7859701 DOI: 10.1242/dmm.046631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have used a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S and G155S) in mksr-2/B9D2 associated with Joubert syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment and regulates the molecular composition and sensory/signalling functions of the cilium. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm that both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and MKS-2/TMEM216. Together, these data establish C. elegans as a model for interpreting JBTS mutations and provide further insight into MKS module organisation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Katarzyna Kucharska
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
40
|
Barbeito P, Tachibana Y, Martin-Morales R, Moreno P, Mykytyn K, Kobayashi T, Garcia-Gonzalo FR. HTR6 and SSTR3 ciliary targeting relies on both IC3 loops and C-terminal tails. Life Sci Alliance 2020; 4:4/3/e202000746. [PMID: 33372037 PMCID: PMC7772773 DOI: 10.26508/lsa.202000746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Ciliary accumulation of G protein–coupled receptors HTR6 and SSTR3 depends on redundant ciliary targeting sequences acting via ciliary trafficking adapters TULP3 and RABL2. G protein-coupled receptors (GPCRs) are the most common pharmacological target in human clinical practice. To perform their functions, many GPCRs must accumulate inside primary cilia, microtubule-based plasma membrane protrusions working as cellular antennae. Nevertheless, the molecular mechanisms underlying GPCR ciliary targeting remain poorly understood. Serotonin receptor 6 (HTR6) and somatostatin receptor 3 (SSTR3) are two brain-enriched ciliary GPCRs involved in cognition and pathologies such as Alzheimer’s disease and cancer. Although the third intracellular loops (IC3) of HTR6 and SSTR3 suffice to target non-ciliary GPCRs to cilia, these IC3s are dispensable for ciliary targeting of HTR6 and SSTR3 themselves, suggesting these GPCRs contain additional ciliary targeting sequences (CTSs). Herein, we discover and characterize novel CTSs in HTR6 and SSTR3 C-terminal tails (CT). These CT-CTSs (CTS2) act redundantly with IC3-CTSs (CTS1), each being sufficient for ciliary targeting. In HTR6, RKQ and LPG motifs are critical for CTS1 and CTS2 function, respectively, whereas in SSTR3 these roles are mostly fulfilled by AP[AS]CQ motifs in IC3 and juxtamembrane residues in CT. Furthermore, we shed light on how these CTSs promote ciliary targeting by modulating binding to ciliary trafficking adapters TULP3 and RABL2.
Collapse
Affiliation(s)
- Pablo Barbeito
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Yuki Tachibana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Raquel Martin-Morales
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Paula Moreno
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Kirk Mykytyn
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.,Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Francesc R Garcia-Gonzalo
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain .,Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain.,Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
41
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
42
|
Nechipurenko IV. The Enigmatic Role of Lipids in Cilia Signaling. Front Cell Dev Biol 2020; 8:777. [PMID: 32850869 PMCID: PMC7431879 DOI: 10.3389/fcell.2020.00777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are specialized cellular structures that project from the surface of most cell types in metazoans and mediate transduction of major signaling pathways. The ciliary membrane is contiguous with the plasma membrane, yet it exhibits distinct protein and lipid composition, which is essential for ciliary function. Diffusion barriers at the base of a cilium are responsible for establishing unique molecular composition of this organelle. Although considerable progress has been made in identifying mechanisms of ciliary protein trafficking in and out of cilia, it remains largely unknown how the distinct lipid identity of the ciliary membrane is achieved. In this mini review, I summarize recent developments in characterizing lipid composition and organization of the ciliary membrane and discuss the emerging roles of lipids in modulating activity of ciliary signaling components including ion channels and G protein-coupled receptors.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
43
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
44
|
Jászai J, Thamm K, Karbanová J, Janich P, Fargeas CA, Huttner WB, Corbeil D. Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3. J Biol Chem 2020; 295:6007-6022. [PMID: 32201384 DOI: 10.1074/jbc.ra119.011253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin-Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor-like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; Institute of Anatomy, Medizinische Fakultät der Technischen Universität Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany.
| | - Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Peggy Janich
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.
| |
Collapse
|
45
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
46
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
47
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
48
|
Cilia and development. Curr Opin Genet Dev 2019; 56:15-21. [DOI: 10.1016/j.gde.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023]
|
49
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
50
|
Gawden-Bone CM, Griffiths GM. Phospholipids: Pulling Back the Actin Curtain for Granule Delivery to the Immune Synapse. Front Immunol 2019; 10:700. [PMID: 31031745 PMCID: PMC6470250 DOI: 10.3389/fimmu.2019.00700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
| | - Gillian M Griffiths
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|