1
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent neonatal diabetes-causing insulin mutations have dominant negative effects on beta cell identity. Mol Metab 2024; 80:101879. [PMID: 38237895 PMCID: PMC10839447 DOI: 10.1016/j.molmet.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood. METHODS We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs. RESULTS we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on beta-cell mass and function after transplantation into mice. In addition to anticipated ER stress, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. CONCLUSIONS These results highlight a novel mechanism, the loss of beta cell identity, contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children's Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, United States.
| |
Collapse
|
2
|
Wildey A, Harrington S, Stehno-Bittel L, Karanu F. Reduction of Activin A gives rise to comparable expression of key definitive endoderm and mature beta cell markers. Regen Med 2024; 19:47-63. [PMID: 38240144 DOI: 10.2217/rme-2023-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: Cell therapies for diabetes rely on differentiation of stem cells into insulin-producing cells, which is complex and expensive. Our goal was to evaluate production costs and test ways to reduce it. Methods: Cost of Goods (COGs) analysis for differentiation was completed and the effects of replacement or reduction of the most expensive item was tested using qRT-PCR, immunohistochemistry, flow cytometry along with glucose-stimulated insulin release. Results: Activin A (AA) was responsible for significant cost. Replacement with small molecules failed to form definitive endoderm (DE). Reducing AA by 50% did not negatively affect expression of beta cell markers. Conclusion: Reduction of AA concentration is feasible without adversely affecting DE and islet-like cell differentiation, leading to significant cost savings in manufacturing.
Collapse
Affiliation(s)
| | | | - Lisa Stehno-Bittel
- Likarda LLC, Kansas City, MO 64137, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
3
|
Argano C, Mirarchi L, Amodeo S, Orlando V, Torres A, Corrao S. The Role of Vitamin D and Its Molecular Bases in Insulin Resistance, Diabetes, Metabolic Syndrome, and Cardiovascular Disease: State of the Art. Int J Mol Sci 2023; 24:15485. [PMID: 37895163 PMCID: PMC10607188 DOI: 10.3390/ijms242015485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
In the last decade, an increasing awareness was directed to the role of Vitamin D in non-skeletal and preventive roles for chronic diseases. Vitamin D is an essential hormone in regulating calcium/phosphorous balance and in the pathogenesis of inflammation, insulin resistance, and obesity. The main forms of vitamin D, Cholecalciferol (Vitamin D3) and Ergocalciferol (Vitamin D2) are converted into the active form (1,25-dihydroxyvitamin D) thanks to two hydroxylations in the liver, kidney, pancreas, and immune cells. Some anti-inflammatory cytokines are produced at higher levels by vitamin D, while some pro-inflammatory cytokines are released at lower levels. Toll-Like Receptor (TLR) expression is increased, and a pro-inflammatory state is also linked to low levels of vitamin D. Regardless of how it affects inflammation, various pathways suggest that vitamin D directly improves insulin sensitivity and secretion. The level of vitamin D in the body may change the ratio of pro- to anti-inflammatory cytokines, which would impact insulin action, lipid metabolism, and the development and function of adipose tissue. Many studies have demonstrated an inverse relationship between vitamin D concentrations and pro-inflammatory markers, insulin resistance, glucose intolerance, metabolic syndrome, obesity, and cardiovascular disease. It is interesting to note that several long-term studies also revealed an inverse correlation between vitamin D levels and the occurrence of diabetes mellitus. Vitamin D supplementation in people has controversial effects. While some studies demonstrated improvements in insulin sensitivity, glucose, and lipid metabolism, others revealed no significant effect on glycemic homeostasis and inflammation. This review aims to provide insight into the molecular basis of the relationship between vitamin D, insulin resistance, metabolic syndrome, type 1 and 2 diabetes, gestational diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Luigi Mirarchi
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Simona Amodeo
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Valentina Orlando
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Alessandra Torres
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy; (L.M.); (S.A.); (V.O.); (A.T.); (S.C.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, [PROMISE], University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Zhang Y, Sui L, Du Q, Haataja L, Yin Y, Viola R, Xu S, Nielsson CU, Leibel RL, Barbetti F, Arvan P, Egli D. Permanent Neonatal diabetes-causing Insulin mutations have dominant negative effects on beta cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555839. [PMID: 37745320 PMCID: PMC10515756 DOI: 10.1101/2023.09.01.555839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice. These insulin mutations derange endoplasmic reticulum (ER) homeostasis, and result in the loss of beta-cell mass and function. In addition to anticipated apoptosis, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. These results highlight both known and novel mechanisms contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.
Collapse
Affiliation(s)
- Yuwei Zhang
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- These authors contributed equally
| | - Qian Du
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Leena Haataja
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Yishu Yin
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Ryan Viola
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Shuangyi Xu
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Christian Ulrik Nielsson
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Monogenic Diabetes Clinic, Endocrinology and Diabetes Unit, Bambino Gesù Children’s Hospital, Rome 00164, Italy
| | - Peter Arvan
- Metabolism Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, United States
- Lead Contact
| |
Collapse
|
5
|
Discrete and Continuous Glucose Monitoring Systems: The Point of View of a Patient Affected by Type-1 Diabetes. Processes (Basel) 2022. [DOI: 10.3390/pr10122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work represents the point of view of a diabetic patient with an indirect experience in this specific field of research. As a chemical engineer and researcher in drug carrier production, he has always approached type-1 diabetes (T1D) in a scientific manner. Therefore, this work represents a description of almost 20 years of this illness treatment using a multi-injection insulin system, compared with the experience acquired with a newly adopted micro-infusion system, allowing automatized insulin administration. The use of the continuous system reduced significantly the Hb1Ac average values, from 8.8% to 6.6%, in less than 2 years. Moreover, a full 24 h control guaranteed the almost total elimination of the hypoglycemia risk, thanks to the automated control system, that can stop insulin administration in order to prevent critical situations. It is also important to note that the point of view underlined in this work does not presume to be that of a doctor or of a researcher who works closely in the field of medicine or diabetology. However, the author wants to highlight that doctors could try to educate patients to a scientific approach to treat illnesses correctly. The author experienced the very common difficulties related to the use of insulin with multi-injection administration for many years; then, he was proposed to start treatment with the automated pump mechanism. In this work, the author provides comments on the physical and psychological advantages and disadvantages of both insulin release systems, in order to define their impact on a patient’s daily life. This work may also represent a vademecum for patients during the beginning of diabetes treatment, helped by the constant support and advice of a medical doctor.
Collapse
|
6
|
Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:1-27. [PMID: 34426962 DOI: 10.1007/5584_2021_653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable β-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing β-cells (iβ-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature β-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and β-cells from diabetic patient-specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived β-cells to improve the relative efficacy of the available treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
7
|
Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc 2021; 16:4109-4143. [PMID: 34349281 DOI: 10.1038/s41596-021-00560-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
We detail a six-stage planar differentiation methodology for generating human pluripotent stem cell-derived pancreatic β cells (SC-β cells) that secrete high amounts of insulin in response to glucose stimulation. This protocol first induces definitive endoderm by treatment with Activin A and CHIR99021, then generates PDX1+/NKX6-1+ pancreatic progenitors through the timed application of keratinocyte growth factor, SANT1, TPPB, LDN193189 and retinoic acid. Endocrine induction and subsequent SC-β-cell specification is achieved with a cocktail consisting of the cytoskeletal depolymerizing compound latrunculin A combined with XXI, T3, ALK5 inhibitor II, SANT1 and retinoic acid. The resulting SC-β cells and other endocrine cell types can then be aggregated into islet-like clusters for analysis and transplantation. This differentiation methodology takes ~34 d to generate functional SC-β cells, plus an additional 1-2 weeks for initial stem cell expansion and final cell assessment. This protocol builds upon a large body of previous work for generating β-like cells. In this iteration, we have eliminated the need for 3D culture during endocrine induction, allowing for the generation of highly functional SC-β cells to be done entirely on tissue culture polystyrene. This change simplifies the differentiation methodology, requiring only basic stem cell culture experience as well as familiarity with assessment techniques common in biology laboratories. In addition to expanding protocol accessibility and simplifying SC-β-cell generation, we demonstrate that this planar methodology is amenable for differentiating SC-β cells from a wide variety of cell lines from various sources, broadening its applicability.
Collapse
Affiliation(s)
- Nathaniel J Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristina G Maxwell
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Punn Augsornworawat
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
9
|
Szlachcic WJ, Ziojla N, Kizewska DK, Kempa M, Borowiak M. Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:629212. [PMID: 33996792 PMCID: PMC8116659 DOI: 10.3389/fcell.2021.629212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.
Collapse
Affiliation(s)
- Wojciech J. Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Ziojla
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dorota K. Kizewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcelina Kempa
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Milajerdi A, Abbasi F, Mousavi SM, Esmaillzadeh A. Maternal vitamin D status and risk of gestational diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Clin Nutr 2021; 40:2576-2586. [PMID: 33933723 DOI: 10.1016/j.clnu.2021.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND No earlier systematic review and meta-analysis have been done on the association between maternal serum vitamin D status and risk of GDM among prospective studies. The current study was done to systematically review prospective cohort studies (with several years of follow-up) on the association between maternal serum vitamin D deficiency or insufficiency and risk of GDM. METHODS Relevant papers published up to January 2020 were searched through PubMed, MEDLINE, SCOPUS, EMBASE, and Google Scholar using suitable keywords. All prospective cohort studies reporting Hazard Ratios (HRs) or Relative Risks (RRs) and 95% Confidence Intervals (CI) for GDM across categories of maternal serum vitamin D status were included. RESULTS A total of 29 prospective and nested case-control studies were included in the current systematic review, of which 27 studies had sufficient data for the meta-analysis. Individuals with vitamin D deficiency had a 26% greater risk of developing GDM than those with normal serum vitamin D concentrations (OR: 1.26; 95% CI: 1.13, 1.41). In addition, a significant positive association was seen between combined vitamin D insufficiency and deficiency and risk of developing GDM (OR: 1.23; 95% CI: 1.11, 1.35). Dose-response analysis showed a significant U-shaped non-linear association between serum vitamin D concentrations and risk of developing GDM (P < 0.001), such that those with serum vitamin D concentrations between 40 and 90 nmol/L had significantly reduced risk of GDM. CONCLUSIONS We found a significant association between vitamin D deficiency and an increased risk of GDM. The lowest risk of GDM was found among those with a serum vitamin D levels of 40-90 nmol/L. Further studies, including randomized clinical trials, are needed to confirm our findings. REGISTRATION PROSPERO (ID: 180722), https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Department of Health, Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbasi
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Karimi R, Barabadi Z, Larijani B, Tavoosidana G, Lotfibakhshaiesh N, Absalan M, Jabbarpour Z, Ostad SN, Ai J. Comparison of insulin secretion by transduced adipose-derived and endometrial-derived stem cells in 2D and 3D cultures on fibrin scaffold. J Biomed Mater Res A 2020; 109:1036-1044. [PMID: 32862549 DOI: 10.1002/jbm.a.37094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes is a metabolic disorder caused by the loss or dysfunction of β-cells in the pancreas. Organ shortage is a critical concern of diabetic patients in need of beta islet transplantation. Tissue engineered islets are promising alternatives to traditional organ transplantation. Recent progress in stem cell biology and gene cloning techniques has raised hopes for the generation of insulin producing cells (IPCs) without the need of immunosuppression. The purpose of this study was to produce IPCs using human adipose-derived stem cells (hADSCs) and human endometrial-derived stem cells (hEnSCs) and also to compare the level of insulin secretion by these cells in 2D and 3D culture systems on fibrin scaffolding. Stem cells differentiation was carried out through transduction with an insulin over expression lentiviral vector. Real-time PCR and immunocytochemistry confirmed the successful transduction of both cell types. Both cell types showed comparable insulin secretion by ELISA.3D culture resulted in higher amounts of insulin secretion of the two cell types versus 2D as control. This study showed that insulin gene delivery to the stem cells could be an efficient method for producing IPCs and fibrin encapsulation enhances the functionality of these cells.
Collapse
Affiliation(s)
- Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Barabadi
- Department of Tissue Engineering, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Absalan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jabbarpour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Naser Ostad
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
13
|
Chen F, Li T, Sun Y, Liu Q, Yang T, Chen J, Zhu H, Shi Y, Hu YP, Wang MJ. Generation of insulin-secreting cells from mouse gallbladder stem cells by small molecules in vitro. Stem Cell Res Ther 2019; 10:289. [PMID: 31547878 PMCID: PMC6757438 DOI: 10.1186/s13287-019-1407-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background Stem cell-derived pancreatic β-like cells hold great promise for treating diabetes. Gallbladder belongs to the extrahepatic bile duct system and possesses stem-like cells. These stem cells could be expanded in vitro and have the potential of differentiating into hepatocytes, cholangiocytes, or pancreatic cells. As the gallbladder is highly available, gallbladder stem cells provide a new cell source of pancreatic β-like cells. In this study, we aimed to investigate an approach for the generation of pancreatic β-like cells from gallbladder stem cells (GSCs) without genetic modification. Methods A CK19CreERT;Rosa26R-GFP mouse was used to isolate CK19+ cells, which represented EpCAM+ stem cells in the gallbladder. They were cultured in the modified Kubota’s medium for expansion and further analyzed. Then, we developed a strategy to screen a combination of small molecules that can generate insulin-secreting cells from gallbladder stem cells. These cells were identified with markers of pancreatic cells. Finally, they were seeded into the cellulosic sponge and transplanted to the diabetic mice for functional examination in vivo. Results Gallbladder stem cells could be expanded for more than 15 passages. They expressed typical hepatic stem cell markers including CK19, EpCAM, Sox9, and albumin. By screening method, we found that adding Noggin, FR180204, and cyclopamine could efficiently induce gallbladder stem cells differentiating into insulin-secreting cells. These cells expressed Pdx1, Nkx6.1, and insulin but were negative for Gcg. After transplantation with the cellulosic sponge, they could ameliorate hyperglycemia in the diabetic mice. Conclusion This study provides a new approach which can generate insulin-secreting cells from the gallbladder without genetic modification. This offers an option for β cell therapy in treating type 1 diabetes.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Tuo Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.,Department of Endocrinology, Changzheng Hospital, Navy Medical University (Second Military Medical University), 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Sun
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Tao Yang
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Jiajia Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Haiying Zhu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China
| | - Yongquan Shi
- Department of Endocrinology, Changzheng Hospital, Navy Medical University (Second Military Medical University), 415 Fengyang Road, Shanghai, 200003, China.
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.
| | - Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University (Second Military Medical University), 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
14
|
Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med 2019; 68:5-16. [PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Collapse
Affiliation(s)
- L L Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - B H I Ruszymah
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - J X Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Grindheim JM, Nicetto D, Donahue G, Zaret KS. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice. Gastroenterology 2019; 156:1834-1848. [PMID: 30689973 PMCID: PMC6599454 DOI: 10.1053/j.gastro.2019.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Jessica Mae Grindheim
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. of Cancer Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Dirice E, Kahraman S, De Jesus DF, El Ouaamari A, Basile G, Baker RL, Yigit B, Piehowski PD, Kim MJ, Dwyer AJ, Ng RWS, Schuster C, Vethe H, Martinov T, Ishikawa Y, Teo AKK, Smith RD, Hu J, Haskins K, Serwold T, Qian WJ, Fife BT, Kissler S, Kulkarni RN. Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nat Metab 2019; 1:509-518. [PMID: 31423480 PMCID: PMC6696912 DOI: 10.1038/s42255-019-0061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of β-cells1. Restoration of insulin-producing β-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing β-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower β-cell apoptosis, that together protect them from developing T1D. The animals displayed altered β-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-β/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill β-cells. These data support a previously unidentified observation that initiating β-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of β-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.
Collapse
Affiliation(s)
- Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program in Areas of Basic and Applied Biology
(GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Porto,
Portugal
| | - Abdelfattah El Ouaamari
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Rocky L. Baker
- Department of Immunology, School of Medicine, University of
Colorado, Aurora, CO, USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Mi-Jeong Kim
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Alexander J. Dwyer
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Raymond W. S. Ng
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Heidrun Vethe
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
| | - Tijana Martinov
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Yuki Ishikawa
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Adrian Kee Keong Teo
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Haskins
- Department of Immunology, School of Medicine, University of
Colorado, Aurora, CO, USA
| | - Thomas Serwold
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Brian T. Fife
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
| |
Collapse
|
17
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
18
|
Bethea M, Liu Y, Wade AK, Mullen R, Gupta R, Gelfanov V, DiMarchi R, Bhatnagar S, Behringer R, Habegger KM, Hunter CS. The islet-expressed Lhx1 transcription factor interacts with Islet-1 and contributes to glucose homeostasis. Am J Physiol Endocrinol Metab 2019; 316:E397-E409. [PMID: 30620636 PMCID: PMC6415717 DOI: 10.1152/ajpendo.00235.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LIM-homeodomain (LIM-HD) transcription factor Islet-1 (Isl1) interacts with the LIM domain-binding protein 1 (Ldb1) coregulator to control expression of key pancreatic β-cell genes. However, Ldb1 also has Isl1-independent effects, supporting that another LIM-HD factor interacts with Ldb1 to impact β-cell development and/or function. LIM homeobox 1 (Lhx1) is an Isl1-related LIM-HD transcription factor that appears to be expressed in the developing mouse pancreas and in adult islets. However, roles for this factor in the pancreas are unknown. This study aimed to determine Lhx1 interactions and elucidate gene regulatory and physiological roles in the pancreas. Co-immunoprecipitation using β-cell extracts demonstrated an interaction between Lhx1 and Isl1, and thus we hypothesized that Lhx1 and Isl1 regulate similar target genes. To test this, we employed siRNA-mediated Lhx1 knockdown in β-cell lines and discovered reduced Glp1R mRNA. Chromatin immunoprecipitation revealed Lhx1 occupancy at a domain also known to be occupied by Isl1 and Ldb1. Through development of a pancreas-wide knockout mouse model ( Lhx1∆Panc), we demonstrate that aged Lhx1∆Panc mice have elevated fasting blood glucose levels, altered intraperitoneal and oral glucose tolerance, and significantly upregulated glucagon, somatostatin, pancreatic polypeptide, MafB, and Arx islet mRNAs. Additionally, Lhx1∆Panc mice exhibit significantly reduced Glp1R, an mRNA encoding the insulinotropic receptor for glucagon-like peptide 1 along with a concomitant dampened Glp1 response and mild glucose intolerance in mice challenged with oral glucose. These data are the first to reveal that the Lhx1 transcription factor contributes to normal glucose homeostasis and Glp1 responses.
Collapse
Affiliation(s)
- Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Alexa K Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Rachel Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Rajesh Gupta
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Vasily Gelfanov
- Department of Chemistry, Indiana University , Bloomington, Indiana
| | - Richard DiMarchi
- Department of Chemistry, Indiana University , Bloomington, Indiana
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Richard Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
19
|
Sui L, Danzl N, Campbell SR, Viola R, Williams D, Xing Y, Wang Y, Phillips N, Poffenberger G, Johannesson B, Oberholzer J, Powers AC, Leibel RL, Chen X, Sykes M, Egli D. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes 2018; 67:26-35. [PMID: 28931519 PMCID: PMC5741143 DOI: 10.2337/db17-0120] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy.
Collapse
Affiliation(s)
- Lina Sui
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ryan Viola
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Damian Williams
- Columbia Stem Cell Core Facility, Columbia University Medical Center, New York, NY
| | - Yuan Xing
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Yong Wang
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jose Oberholzer
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Dieter Egli
- Naomi Berrie Diabetes Center and Department of Pediatrics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- New York Stem Cell Foundation Research Institute, New York, NY
| |
Collapse
|
20
|
Abstract
OBJECTIVES The side population (SP) contains cells with stem cell/progenitor properties. Previously, we observed that the mouse pancreas SP expanded after pancreatic injury. We aimed to characterize the SP in human pancreas as a potential source of stem cells. METHODS Human organ donor pancreata were fractionated into islets and exocrine tissue, enriched by tissue culture and dispersed into single cells. Cells were phenotyped by flow cytometry, and the SP was defined by efflux of fluorescent dye Hoechst 33342 visualized by ultraviolet excitation. Cells were flow sorted, and their colony-forming potential measured on feeder cells in culture. RESULTS An SP was identified in islet and exocrine cells from human organ donors: 2 with type 1 diabetes, 3 with type 2 diabetes, and 28 without diabetes. Phenotyping revealed that exocrine SP cells had an epithelial origin, were enriched for carbohydrate antigen 19-9 ductal cells expressing stem cell markers CD133 and CD26, and had greater colony-forming potential than non-SP cells. The exocrine SP was increased in a young adult with type 1 diabetes and ongoing islet autoimmunity. CONCLUSIONS The pancreatic exocrine SP is a potential reservoir of adult stem/progenitor cells, consistent with previous evidence that such cells are duct-derived and express CD133.
Collapse
|
21
|
Abstract
Since the discovery of insulin by Banting and Best in 1921, the prognosis and treatment options for individuals with diabetes have improved. The development of various insulin types, various oral agents, and insulin pumps have improved the available medical options for individuals afflicted with diabetes. The current need for frequent blood glucose monitoring imposed by multiple daily insulin injections, result in significant life-style challenges for in individuals afflicted with Type 1 diabetes (T1D). In contrast the use of surgical interventions, such as whole organ pancreas transplantation (PT) requires less-intensive glucose monitoring while the organ is viable. Also, isolated human pancreatic islet transplantation (IT) holds similar promise as PT; however, the limited availability of human pancreata exacerbated by, the need for multiple pancreata per individual IT recipient, and issues with prolonged viability, still hamper widespread successful, and routine use of IT. The use of porcine pancreata holds promise as a viable alternative to human pancreas to significantly increase the volume of islets available to meet the needs of millions of patients afflicted with T1D. This chapter outlines our protocol utilized to reliably isolate and microencapsulate porcine islets.
Collapse
|
22
|
Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-Definition Medicine. Cell 2017; 170:828-843. [PMID: 28841416 DOI: 10.1016/j.cell.2017.08.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine.
Collapse
Affiliation(s)
- Ali Torkamani
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kristian G Andersen
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R Steinhubl
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric J Topol
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Islet and pancreas transplantation prove that β cell replacement can cure the glycemic derangements in type 1 diabetes (T1D). Induced pluripotent stem cells (iPSCs) can differentiate into functional insulin-producing cells, able to restore normoglycemia in diabetic animal models. iPSCs in particular can be derived from the somatic cells of a person with T1D. This review aims to clarify if it is possible to transplant autologous iPSC-derived β cells without immunosuppression or which are the alternative approaches. RECENT FINDINGS Several lines of evidence show that autologous iPSC and their derivatives can be immune rejected, and this immunogenicity depends on the reprogramming, the type of cells generated, the transplantation site, and the genetic/epigenetic modifications induced by reprogramming and differentiation. Besides, cell replacement in T1D should keep in consideration also the possibility of autoimmune reaction against autologous stem cell-derived β cells. Autologous iPSC-derived β cells could be immunogenic upon transplantation, eliciting both auto and allogeneic immune response. A strategy to protect cells from immune rejection is still needed. This strategy should be efficacious in protecting the grafted cells, but also avoid toxicity and the risk of tumor formation.
Collapse
Affiliation(s)
- Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
24
|
Harb G, Poh YC, Pagliuca F. Stem Cell-Derived Insulin-Producing β Cells to Treat Diabetes. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Abstract
PURPOSE OF THE REVIEW Type 1 diabetes (T1D) is defined by an autoimmune destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. As exogenous insulin administration fails at preventing severe complications associated with this disease, cell replacement therapies are being considered as a means to treat T1D. The purpose of this manuscript is to review the challenges associated with current strategies and discuss the potential of stem cell therapy for the treatment of T1D. RECENT FINDINGS The most prominent therapy offered to T1D patients is exogenous insulin administration which, despite formulations improvement, remains a suboptimal treatment, due to the frequency of injections and the issues associated with precise dosing. As immunotherapy approaches have remained unsuccessful, the only cure for T1D is transplantation of donor-derived pancreas or islets. However, donor scarcity, graft loss, and immune response to the foreign tissue are issues challenging this approach and limiting the number of patients who can benefit from such treatments. In this review, we discuss the causes of T1D and the shortcomings of the current treatments. Furthermore, we summarize the cutting edge research that aims to tackle the current challenges in reaching a quality-controlled product with long-term effects, with a focus on regenerative medicine approaches using human pluripotent stem cells.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- Toronto General Hospital Research Institute and McEwen Centre for Regenerative Medicine, Toronto, Canada
- University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute and McEwen Centre for Regenerative Medicine, Toronto, Canada.
- University Health Network, Toronto, Ontario, M5G 1L7, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
26
|
Gazda LS, Collins J, Lovatt A, Holdcraft RW, Morin MJ, Galbraith D, Graham M, Laramore MA, Maclean C, Black J, Milne EW, Marthaler DG, Vinerean HV, Michalak MM, Hoffer D, Richter S, Hall RD, Smith BH. A comprehensive microbiological safety approach for agarose encapsulated porcine islets intended for clinical trials. Xenotransplantation 2016; 23:444-463. [PMID: 27862363 PMCID: PMC7169751 DOI: 10.1111/xen.12277] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The use of porcine islets to replace insulin-producing islet β-cells, destroyed during the diabetogenic disease process, presents distinct challenges if this option is to become a therapeutic reality for the treatment of type 1 diabetes. These challenges include a thorough evaluation of the microbiological safety of the islets. In this study, we describe a robust porcine islet-screening program that provides a high level of confidence in the microbiological safety of porcine islets suitable for clinical trials. METHODS A four-checkpoint program systematically screens the donor herd (Large White - Yorkshire × Landrace F1 hybrid animals), individual sentinel and pancreas donor animals and, critically, the islet macrobeads themselves. Molecular assays screen for more than 30 known viruses, while electron microscopy and in vitro studies are employed to screen for potential new or divergent (emergent) viruses. RESULTS Of 1207 monthly samples taken from random animals over a 2-year period, only a single positive result for Transmissible gastroenteritis virus was observed, demonstrating the high level of biosecurity maintained in the source herd. Given the lack of clinical signs, positive antibody titers for Porcine reproductive and respiratory syndrome virus, Porcine parvovirus, and Influenza A confirm the efficacy of the herd vaccination program. Porcine respiratory coronavirus was found to be present in the herd, as expected for domestic swine. Tissue homogenate samples from six sentinel and 11 donor animals, over the same 2-year period, were negative for the presence of viruses when co-cultured with six different cell lines from four species. The absence of adventitious viruses in separate islet macrobead preparations produced from 12 individual pancreas donor animals was confirmed using validated molecular (n = 32 viruses), in vitro culture (cells from four species), and transmission electron microscopy assays (200 cell profiles per donor animal) over the same 2-year period. There has been no evidence of viral transmission following the implantation of these same encapsulated and functional porcine islets into non-immunosuppressed diabetic cynomolgus macaques for up to 4 years. Isolated peripheral blood mononuclear cells from all time points were negative for PCV (Type 2), PLHV, PRRSV, PCMV, and PERV-A, PERV-B, and PERV-C by PCR analysis in all six recipient animals. CONCLUSION The four-checkpoint program is a robust and reliable method for characterization of the microbiological safety of encapsulated porcine islets intended for clinical trials.
Collapse
Affiliation(s)
| | - James Collins
- Veterinary Diagnostic LaboratoryUniversity of MinnesotaSaint PaulMNUSA
| | | | | | | | | | - Melanie Graham
- Department of SurgeryUniversity of MinnesotaSaint PaulMNUSA
- Department of Veterinary Population MedicineUniversity of MinnesotaSaint PaulMNUSA
| | | | | | | | | | - Douglas G. Marthaler
- Veterinary Diagnostic LaboratoryUniversity of MinnesotaSaint PaulMNUSA
- Department of Veterinary Population MedicineUniversity of MinnesotaSaint PaulMNUSA
| | - Horatiu V. Vinerean
- Office of Laboratory Animal ResearchFlorida International UniversityMiamiFLUSA
- Department of SurgeryHerbert Wertheim College of MedicineMiamiFLUSA
| | | | | | | | | | - Barry H. Smith
- Department of SurgeryWeill Medical College of Cornell University and NewYork‐Presbyterian HospitalNew YorkNYUSA
- The Rogosin InstituteNew YorkNYUSA
| |
Collapse
|
27
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
28
|
Zou G, Liu T, Guo L, Huang Y, Feng Y, Huang Q, Duan T. miR-145 modulates lncRNA-ROR and Sox2 expression to maintain human amniotic epithelial stem cell pluripotency and β islet-like cell differentiation efficiency. Gene 2016; 591:48-57. [PMID: 27346547 DOI: 10.1016/j.gene.2016.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
In this study, we observed a great reduction in the expression of the endogenous long noncoding RNA ROR (lncRNA-ROR) and the stem cell transcription factor Sox2, in contrast to a marked increase in miR-145 expression, during the course of in vitro induced differentiation of human amniotic epithelial stem cells (HuAECs). Bioinformatics analysis and the luciferase reporter assay revealed binding of miR-145 to specific sites in lncRNA-ROR and Sox2, silencing their expression. Overexpression of a lncRNA-ROR-specific siRNA effectively downregulated the expression levels of Sox2 and other stem cell markers in HuAECs while weakening the efficiency of HuAEC differentiation into β islet-like cells. Moreover, the in vitro response of HuAEC-derived β islet-like cells to extracellular stimuli and C-peptide release by these cells were markedly weakened in the siRNA-ROR transfection group. Furthermore, the in vivo expression of β islet-like cell biomarkers was substantially reduced in HuAECs in the siRNA-ROR transfection group, and their in vivo β islet-like cell differentiation and insulin release capacities were reduced in a streptozocin-induced diabetic rat model. The experimental results indicate that lncRNA-ROR effectively maintains Sox2 gene expression through competitive binding to miR-145, achieving pluripotency maintenance in HuAECs and regulation of their directed β islet-like cell differentiation efficiency.
Collapse
Affiliation(s)
- Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Te Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongyi Huang
- Laboratoire PROTEE, Bâtiment R, Université du Sud Toulon-Var, 83957, La Garde Cedex, France
| | - Ya Feng
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Qin Huang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| |
Collapse
|
29
|
Prophylactically Decontaminating Human Islet Product for Safe Clinical Application: Effective and Potent Method. Transplant Direct 2016; 2:e63. [PMID: 26894230 PMCID: PMC4754204 DOI: 10.1097/txd.0000000000000574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Transplanting pancreatic islets into recipients must be safe and effective to treat type 1 diabetes. Islet quality and quantity are important; however, the final product must also be free from microbial contamination and low endotoxin levels. Methods This study explored a method to eliminate contamination in manufacturing islets for transplantation. A simple (single antibiotic n = 164) and refined (triple antimicrobial agents, n = 279) pancreas decontaminating methods were used to test their effects on reducing the contamination rates in the islet final product. A total of 443 pancreata were processed for islet isolations. Three samples for microbial tests (Gram stain, aerobic, and anaerobic culture) were taken at preprocess (pancreas preservation), postisolation, and postculture. Endotoxin levels were measured only for islets considered for transplantation. Results Of 443 pancreata used for islet isolation, 79 (17.8%) showed signs of contamination in preprocess samples; 10 (2.3%) were contaminated in both preprocess and in the final product (postisolation and postculture) samples. Contamination rates in which preprocess and final product samples were positive for contamination was significantly lower using the refined method (refined vs simple method: 5% vs 20.5%, P = 0.045). Identical microbial species were present in both preprocess and in the final product. Conclusions This study demonstrated that the refined method reduces the rate of contamination of the islet final product and is safe for clinical application. Moreover, it may be used as a standard method during human islet manufacturing facilitating the application of a biological license agreement from United States Food and Drug Administration.
Collapse
|
30
|
Kawser Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang GM, Choi HY, Cho SG. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. Int J Mol Sci 2016; 17:256. [PMID: 26907255 PMCID: PMC4783985 DOI: 10.3390/ijms17020256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
31
|
Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell 2016; 18:410-21. [PMID: 26908146 DOI: 10.1016/j.stem.2016.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/05/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional β cells for glycemic control.
Collapse
Affiliation(s)
- Chaiyaboot Ariyachet
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Guanjue Xiang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla A Richmond
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catia Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ramesh A Shivdasani
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - David T Breault
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
33
|
Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis. Biomed Pharmacother 2016; 78:156-164. [PMID: 26898437 DOI: 10.1016/j.biopha.2016.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Islet transplantation is a commonly therapeutic strategy for diabetes mellitus. However, avascular phase and the poor formation of blood vessels in the late period lead to islet allograft loss which contributed to inefficiency and short-acting of islet transplantation. Recently, to speed up new angiogenesis and increase the density of blood vessels around transplanted islets became the hotspot in research of islet transplantation. METHODS In this study, we undergone co-combination transplantation of allogeneic islet and bone marrow mesenchymal stem cells (BM-MSCs) into non-obese diabetic (NOD) mice and investigated the influence of BM-MSCs in transplanted islet function and neovascularization. RESULTS In mice of co-combination transplantation of islet with BM-MSCs, level of blood glucose was improved compared with only BM-MSCs transplanted mice; proliferation of islet cell was enhanced while apoptosis of islet cell was reduced; 2, 4, and 8 weeks post transplantation, peripheral vascular density of islet grafts were significantly more than the islet transplantation group alone; donor lymphocytic chimerism in graft was increased. In result of immunofluorescence analysis, we observed that BM-MSCs can migrate to transplanted islet, differentiate into vascular smooth muscle cells (VSMC) and vascular endothelial cells (VEC), and also secrete vascular endothelial growth factor (VEGF). CONCLUSION BM-MSCs can migrate to transplanted islet and promote neovascularization. Also, it enhanced allograft immune tolerance of islet grafts via increasing donor lymphocytic chimerism.
Collapse
|
34
|
Stavdahl Ø, Fougner AL, Kölle K, Christiansen SC, Ellingsen R, Carlsen SM. The Artificial Pancreas: A Dynamic Challenge. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ifacol.2016.07.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Chauhan A, Weiss H, Koch F, Ibrahim SM, Vera J, Wolkenhauer O, Tiedge M. Dissecting Long-Term Glucose Metabolism Identifies New Susceptibility Period for Metabolic Dysfunction in Aged Mice. PLoS One 2015; 10:e0140858. [PMID: 26540285 PMCID: PMC4634931 DOI: 10.1371/journal.pone.0140858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
Metabolic disorders, like diabetes and obesity, are pathogenic outcomes of imbalance in glucose metabolism. Nutrient excess and mitochondrial imbalance are implicated in dysfunctional glucose metabolism with age. We used conplastic mouse strains with defined mitochondrial DNA (mtDNA) mutations on a common nuclear genomic background, and administered a high-fat diet up to 18 months of age. The conplastic mouse strain B6-mtFVB, with a mutation in the mt-Atp8 gene, conferred β-cell dysfunction and impaired glucose tolerance after high-fat diet. To our surprise, despite of this functional deficit, blood glucose levels adapted to perturbations with age. Blood glucose levels were particularly sensitive to perturbations at the early age of 3 to 6 months. Overall the dynamics consisted of a peak between 3–6 months followed by adaptation by 12 months of age. With the help of mathematical modeling we delineate how body weight, insulin and leptin regulate this non-linear blood glucose dynamics. The model predicted a second rise in glucose between 15 and 21 months, which could be experimentally confirmed as a secondary peak. We therefore hypothesize that these two peaks correspond to two sensitive periods of life, where perturbations to the basal metabolism can mark the system for vulnerability to pathologies at later age. Further mathematical modeling may perspectively allow the design of targeted periods for therapeutic interventions and could predict effects on weight loss and insulin levels under conditions of pre-diabetic obesity.
Collapse
Affiliation(s)
- Anuradha Chauhan
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Heike Weiss
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Franziska Koch
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Saleh M. Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Julio Vera
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Markus Tiedge
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
36
|
Sproul AA. Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models. Mol Aspects Med 2015; 43-44:54-65. [PMID: 26101165 DOI: 10.1016/j.mam.2015.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/21/2023]
Abstract
Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD.
Collapse
Affiliation(s)
- Andrew A Sproul
- The New York Stem Cell Foundation Research Institute, New York, NY, USA; Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|