1
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
2
|
Albani S, Eswaran VSB, Piergentili A, de Souza PCT, Lampert A, Rossetti G. Depletion of membrane cholesterol modifies structure, dynamic and activation of Na v1.7. Int J Biol Macromol 2024; 278:134219. [PMID: 39097041 DOI: 10.1016/j.ijbiomac.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.
Collapse
Affiliation(s)
- Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany
| | | | - Alessia Piergentili
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Paulo Cesar Telles de Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale, Supérieure de Lyon, 46 All'ee d'Italie, 69364 Lyon, France
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
4
|
Xu K, Zhao S, Ren Y, Zhong Q, Feng J, Tu D, Wu W, Wang J, Chen J, Xie P. Elevated SCN11A concentrations associated with lower serum lipid levels in patients with major depressive disorder. Transl Psychiatry 2024; 14:202. [PMID: 38734669 PMCID: PMC11088647 DOI: 10.1038/s41398-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of major depressive disorder (MDD) involves lipid metabolism. Our earlier research also revealed that MDD patients had much lower total cholesterol (TC) concentrations than healthy controls (HCs). However, it is still unclear why TC decreased in MDD. Here, based on the Ingenuity Knowledge Base's ingenuity pathway analysis, we found that sodium voltage-gated channel alpha subunit 11A (SCN11A) might serve as a link between low lipid levels and MDD. We analyzed the TC levels and used ELISA kits to measure the levels of SCN11A in the serum from 139 MDD patients, and 65 HCs to confirm this theory and explore the potential involvement of SCN11A in MDD. The findings revealed that TC levels were considerably lower and SCN11A levels were remarkably increased in MDD patients than those in HCs, while they were significantly reversed in drug-treatment MDD patients than in drug-naïve MDD patients. There was no significant difference in SCN11A levels among MDD patients who used single or multiple antidepressants, and selective serotonin reuptake inhibitors or other antidepressants. Pearson correlation analysis showed that the levels of TC and SCN11A were linked with the Hamilton Depression Rating Scales score. A substantial association was also found between TC and SCN11A. Moreover, a discriminative model made up of SCN11A was discovered, which produced an area under a curve of 0.9571 in the training set and 0.9357 in the testing set. Taken together, our findings indicated that SCN11A may serve as a link between low lipid levels and MDD, and showed promise as a candidate biomarker for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiaolin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Lin Y, Tao E, Champion JP, Corry B. A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage-gated sodium channels. eLife 2024; 12:RP91218. [PMID: 38465747 DOI: 10.7554/elife.91218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Voltage-gated sodium channels (Naᵥ) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naᵥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naᵥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naᵥ1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naᵥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naᵥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naᵥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naᵥ-related diseases.
Collapse
Affiliation(s)
- Yiechang Lin
- Research School of Biology, Australian National University, Canberra, Australia
| | - Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - James P Champion
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Suzuki Y, Suzuki T, Takagi M, Murakami M, Ikeda T. Bidirectional Longitudinal Association between Back Pain and Loneliness in Later Life: Evidence from English Longitudinal Study of Ageing. Ann Geriatr Med Res 2024; 28:27-35. [PMID: 38105012 PMCID: PMC10982446 DOI: 10.4235/agmr.23.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND This study examined the bidirectional and temporal-ordinal relationship between loneliness and back pain. METHODS Data from 7,730 participants in waves 6 (2012-2013), 7 (2014-2015), and 8 (2016-2017) of the national English Longitudinal Study of Ageing were analyzed. Back pain was graded on a scale of 0-10 (0, no discomfort; 10, unbearable pain). Loneliness was measured using the Revised University of California Los Angeles Loneliness Scale. A targeted minimum loss-based estimator was used to examine the bidirectional longitudinal associations between back pain and loneliness. RESULTS No loneliness in waves 6 and 7 (relative risk [RR]=0.76; 95% confidence interval [CI], 0.61-0.94), no loneliness in wave 6 but loneliness in wave 7 (RR=0.58; 95% CI, 0.50-0.68), and loneliness in wave 6 but not in wave 7 (RR=0.69; 95% CI, 0.57-0.86) were associated with significant risk reductions of back pain in wave 8 compared with the scenario of loneliness in waves 6 and 7. Mild back pain in wave 6 but moderate back pain (RR=0.55; 95% CI, 0.35-0.86) or severe back pain in wave 7 (RR=0.49; 95% CI, 0.34-0.72) showed a significant risk reduction of loneliness in wave 8 compared with severe back pain in waves 6 and 7. CONCLUSION Loneliness may be a risk factor for back pain, and back pain may be a risk factor for loneliness. The results of this study will inform the development of more effective interventions for loneliness and back pain.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Health Policy Science, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tomoto Suzuki
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Michiaki Takagi
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Masayasu Murakami
- Department of Health Policy Science, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takaaki Ikeda
- Department of Health Policy Science, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Petersen EN, Pavel MA, Hansen SS, Gudheti M, Wang H, Yuan Z, Murphy KR, Ja W, Ferris HA, Jorgensen E, Hansen SB. Mechanical activation of TWIK-related potassium channel by nanoscopic movement and rapid second messenger signaling. eLife 2024; 12:RP89465. [PMID: 38407149 PMCID: PMC10942622 DOI: 10.7554/elife.89465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Mahmud Arif Pavel
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| | - Samuel S Hansen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| | - Manasa Gudheti
- Division of Endocrinology and Metabolism, Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Hao Wang
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Zixuan Yuan
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
- Scripps Research Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, Scripps,JupiterUnited States
| | - Keith R Murphy
- Department of Neuroscience, The Scripps Research Institute, ScrippsJupiterUnited States
- Center on Aging,The Scripps Research Institute, ScrippsJupiterUnited States
| | - William Ja
- Department of Neuroscience, The Scripps Research Institute, ScrippsJupiterUnited States
- Center on Aging,The Scripps Research Institute, ScrippsJupiterUnited States
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, Center for Brain Immunology and Glia, Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Erik Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of UtahSalt Lake CityUnited States
| | - Scott B Hansen
- Departments of Molecular Medicine, The Scripps Research Institute, ScrippsJupiterUnited States
| |
Collapse
|
8
|
Wang B, Wang Y, Mao P, Zhang Y, Li Y, Liu X, Fan B. Predicting the Mechanism of Tiannanxing-shengjiang Drug Pair in Treating Pain Using Network Pharmacology and Molecular Docking Technology. Curr Comput Aided Drug Des 2024; 20:463-473. [PMID: 37231756 DOI: 10.2174/1573409919666230525122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE This study aimed to analyze the potential targets and mechanism of the Tiannanxing-shengjiang drug pair in pain treatment using network pharmacology and molecular docking technology. METHODS The active components and target proteins of Tiannanxing-Shengjiang were obtained from the TCMSP database. The pain-related genes were acquired from the DisGeNET database. The common target genes between Tiannanxing-Shengjiang and pain were identified and subjected to the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses on the DAVID website. AutoDockTools and molecular dynamics simulation analysis were used to assess the binding of the components with the target proteins. RESULTS Ten active components were screened out, such as stigmasterol, β-sitosterol, and dihydrocapsaicin. A total of 63 common targets between the drug and pain were identified. GO analysis showed the targets to be mainly associated with biological processes, such as inflammatory response and forward regulation of the EKR1 and EKR2 cascade. KEGG analysis revealed 53 enriched pathways, including pain-related calcium signaling, cholinergic synaptic signaling, and serotonergic pathway. Five compounds and 7 target proteins showed good binding affinities. These data suggest that Tiannanxing-shengjiang may alleviate pain through specific targets and signaling pathways. CONCLUSION The active ingredients in Tiannanxing-shengjiang might alleviate pain by regulating genes, such as CNR1, ESR1, MAPK3, CYP3A4, JUN, and HDAC1 through the signaling pathways, including intracellular calcium ion conduction, cholinergic prominent signaling, and cancer signaling pathway.
Collapse
Affiliation(s)
- Boning Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanlei Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng Mao
- Department of Pain Medicine, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Yi Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Yifan Li
- Department of Pain Medicine, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Xing Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bifa Fan
- Department of Pain Medicine, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| |
Collapse
|
9
|
Zhao C, Zhou X, Shi X. The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 2023; 17:2212350. [PMID: 37186898 DOI: 10.1080/19336950.2023.2212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Navia-Pelaez JM, Lemes JBP, Gonzalez L, Delay L, dos Santos Aggum Capettini L, Lu JW, Dos Santos GG, Gregus AM, Dougherty PM, Yaksh TL, Miller YI. AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lipid raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain 2023; 164:e274-e285. [PMID: 36719418 PMCID: PMC10182209 DOI: 10.1097/j.pain.0000000000002834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Abstract
ABSTRACT Nociceptive afferent signaling evoked by inflammation and nerve injury is mediated by the opening of ligand-gated and voltage-gated receptors or channels localized to cholesterol-rich lipid raft membrane domains. Dorsal root ganglion (DRG) nociceptors express high levels of toll-like receptor 4 (TLR4), which also localize to lipid rafts. Genetic deletion or pharmacologic blocking of TLR4 diminishes pain associated with chemotherapy-induced peripheral neuropathy (CIPN). In DRGs of mice with paclitaxel-induced CIPN, we analyzed DRG neuronal lipid rafts, expression of TLR4, activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), and TLR4-TRPV1 interaction. Using proximity ligation assay, flow cytometry, and whole-mount DRG microscopy, we found that CIPN increased DRG neuronal lipid rafts and TLR4 expression. These effects were reversed by intrathecal injection of apolipoprotein A-I binding protein (AIBP), a protein that binds to TLR4 and specifically targets cholesterol depletion from TLR4-expressing cells. Chemotherapy-induced peripheral neuropathy increased TRPV1 phosphorylation, localization to neuronal lipid rafts, and proximity to TLR4. These effects were also reversed by AIBP treatment. Regulation of TRPV1-TLR4 interactions and their associated lipid rafts by AIBP covaried with the enduring reversal of mechanical allodynia otherwise observed in CIPN. In addition, AIBP reduced intracellular calcium in response to the TRPV1 agonist capsaicin, which was increased in DRG neurons from paclitaxel-treated mice and in the naïve mouse DRG neurons incubated in vitro with paclitaxel. Together, these results suggest that the assembly of nociceptive and inflammatory receptors in the environment of lipid rafts regulates nociceptive signaling in DRG neurons and that AIBP can control lipid raft-associated nociceptive processing.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Leonardo Gonzalez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | | | - Jenny W. Lu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia, USA
| | - Patrick M. Dougherty
- Departments of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
12
|
Liu S, Yang S, Zhou X, Zhu X, Xu L, Li X, Gao Z, Sun T, Wei J, Tian L, Cheng H, Wei G, Huo FQ, Liang L. Nerve injury-induced upregulation of apolipoprotein E in dorsal root ganglion participates in neuropathic pain in male mice. Neuropharmacology 2023; 224:109372. [PMID: 36502869 DOI: 10.1016/j.neuropharm.2022.109372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Apolipoprotein E (ApoE) is an apolipoprotein involved in lipid metabolism and is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). The aim of this study is to explore the role of ApoE in the pathological development of neuropathic pain. First, we examined the location of ApoE in the dorsal root ganglion (DRG) and spinal cord in male mice using immunohistochemistry, and found that ApoE was predominantly expressed in DRG satellite glial cells (SGCs) and macrophages and spinal cord astrocytes. Using a spinal nerve ligation (SNL)-induced neuropathic pain mouse model, we found that nerve injury caused an increase in ApoE expression in the injured DRGs, but not in the spinal cord after SNL surgery. Furthermore, we observed reduced SNL-induced pain hypersensitivity in ApoE knockout mice compared to wild-type mice. Moreover, an antisense oligonucleotide (ASO) targeting the Apoe gene sequence, which was microinjected into the DRG or administered intrathecally, not only reduced ApoE expression in DRG but also attenuated SNL-induced pain hypersensitivity. Finally, we found that a tyrosine kinase receptor AXL, which was previously demonstrated to contribute to neuropathic pain, may mediate ApoE function under neuropathic pain condition. In conclusion, our data suggest that ApoE in DRG promote pain hypersensitivity via the DRG membrane receptor AXL in neurons under neuropathic pain conditions. This study revealed a novel mechanism between lipid homeostasis and neuropathic pain.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Shuting Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiaoqiong Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xuan Zhu
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Zihao Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Tingkai Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jianxiong Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Hong Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Guihua Wei
- Institute of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
13
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Guard SE, Chapnick DA, Poss ZC, Ebmeier CC, Jacobsen J, Nemkov T, Ball KA, Webb KJ, Simpson HL, Coleman S, Bunker E, Ramirez A, Reisz JA, Sievers R, Stowell MHB, D'Alessandro A, Liu X, Old WM. Multiomic Analysis Reveals Disruption of Cholesterol Homeostasis by Cannabidiol in Human Cell Lines. Mol Cell Proteomics 2022; 21:100262. [PMID: 35753663 PMCID: PMC9525918 DOI: 10.1016/j.mcpro.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
The nonpsychoactive cannabinoid, cannabidiol (CBD), is Food and Dug Administration approved for treatment of two drug-resistant epileptic disorders and is seeing increased use among the general public, yet the mechanisms that underlie its therapeutic effects and side-effect profiles remain unclear. Here, we report a systems-level analysis of CBD action in human cell lines using temporal multiomic profiling. FRET-based biosensor screening revealed that CBD elicits a sharp rise in cytosolic calcium, and activation of AMP-activated protein kinase in human keratinocyte and neuroblastoma cell lines. CBD treatment leads to alterations in the abundance of metabolites, mRNA transcripts, and proteins associated with activation of cholesterol biosynthesis, transport, and storage. We found that CBD rapidly incorporates into cellular membranes, alters cholesterol accessibility, and disrupts cholesterol-dependent membrane properties. Sustained treatment with high concentrations of CBD induces apoptosis in a dose-dependent manner. CBD-induced apoptosis is rescued by inhibition of cholesterol synthesis and potentiated by compounds that disrupt cholesterol trafficking and storage. Our data point to a pharmacological interaction of CBD with cholesterol homeostasis pathways, with potential implications in its therapeutic use.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Douglas A Chapnick
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary C Poss
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jeremy Jacobsen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Kerri A Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kristofor J Webb
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Helen L Simpson
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Stephen Coleman
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Eric Bunker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Adrian Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Robert Sievers
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - William M Old
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
15
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
16
|
Wippert PM, Puerto Valencia L, Drießlein D. Stress and Pain. Predictive (Neuro)Pattern Identification for Chronic Back Pain: A Longitudinal Observational Study. Front Med (Lausanne) 2022; 9:828954. [PMID: 35620722 PMCID: PMC9129900 DOI: 10.3389/fmed.2022.828954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Low back pain (LBP) leads to considerable impairment of quality of life worldwide and is often accompanied by psychosomatic symptoms. Objectives First, to assess the association between stress and chronic low back pain (CLBP) and its simultaneous appearance with fatigue and depression as a symptom triad. Second, to identify the most predictive stress-related pattern set for CLBP for a 1-year diagnosis. Methods In a 1-year observational study with four measurement points, a total of 140 volunteers (aged 18–45 years with intermittent pain) were recruited. The primary outcomes were pain [characteristic pain intensity (CPI), subjective pain disability (DISS)], fatigue, and depressive mood. Stress was assessed as chronic stress, perceived stress, effort reward imbalance, life events, and physiological markers [allostatic load index (ALI), hair cortisol concentration (HCC)]. Multiple linear regression models and selection procedures for model shrinkage and variable selection (least absolute shrinkage and selection operator) were applied. Prediction accuracy was calculated by root mean squared error (RMSE) and receiver-operating characteristic curves. Results There were 110 participants completed the baseline assessments (28.2 ± 7.5 years, 38.1% female), including HCC, and a further of 46 participants agreed to ALI laboratory measurements. Different stress types were associated with LBP, CLBP, fatigue, and depressive mood and its joint occurrence as a symptom triad at baseline; mainly social-related stress types were of relevance. Work-related stress, such as “excessive demands at work”[b = 0.51 (95%CI -0.23, 1.25), p = 0.18] played a role for upcoming chronic pain disability. “Social overload” [b = 0.45 (95%CI -0.06, 0.96), p = 0.080] and “over-commitment at work” [b = 0.28 (95%CI -0.39, 0.95), p = 0.42] were associated with an upcoming depressive mood within 1-year. Finally, seven psychometric (CPI: RMSE = 12.63; DISS: RMSE = 9.81) and five biomarkers (CPI: RMSE = 12.21; DISS: RMSE = 8.94) could be derived as the most predictive pattern set for a 1-year prediction of CLBP. The biomarker set showed an apparent area under the curve of 0.88 for CPI and 0.99 for DISS. Conclusion Stress disrupts allostasis and favors the development of chronic pain, fatigue, and depression and the emergence of a “hypocortisolemic symptom triad,” whereby the social-related stressors play a significant role. For translational medicine, a predictive pattern set could be derived which enables to diagnose the individuals at higher risk for the upcoming pain disorders and can be used in practice.
Collapse
Affiliation(s)
- Pia-Maria Wippert
- Medical Sociology and Psychobiology, University of Potsdam, Potsdam, Germany.,Faculty of Health Sciences, Joint Faculty of the University of Potsdam, Brandenburg Medical School Theodor Fontane, and the Brandenburg University of Technology Cottbus-Senftenberg, Postdam, Germany
| | | | - David Drießlein
- Statistical Consulting Unit StaBLab, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Astrocytic PTEN regulates neuropathic pain by facilitating HMGCR-dependent cholesterol biosynthesis. Pain 2022; 163:e1192-e1206. [PMID: 35559917 DOI: 10.1097/j.pain.0000000000002682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Recent studies have noted the role of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in developing neuropathic pain, but the underlying mechanisms are obscure. We found that PTEN was mainly expressed in astrocytes in the rat spinal cord and dramatically downregulated after chronic constriction injury (CCI). Intrathecal injection of a PTEN inhibitor induced pain-related behaviors in naïve rats. In contrast, administration of a PTEN protector effectively mitigated CCI-induced pain. Adeno-associated virus (AAV)-mediated overexpression of astrocytic PTEN in the spinal cord reduced glial activation and neuroinflammation and subsequently alleviated pain-related behaviors. Importantly, astrocyte-specific PTEN-knockout (Pten conditional knockout, Pten CKO) mice showed nociceptive sensitization and glial activation. Proteomic analysis revealed that PTEN overexpression upregulated at least 7 enzymes in the cholesterol biosynthesis pathway and the total cholesterol level in the spinal cord of CCI rats. Furthermore, PTEN directly interacted with enzymes, including 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), in the cholesterol biosynthesis pathway. Astrocytic HMGCR overexpression alleviated both CCI-induced pain and mechanical allodynia in Pten CKO mice. Finally, cholesterol replenishment attenuated CCI-induced pain and suppressed spinal glial activation. Taken together, these findings imply that spinal astrocytic PTEN plays a beneficial role in CCI-induced pain by regulating cholesterol biosynthesis, and increased level of PTEN may accelerate cholesterol biosynthesis and reduce glial activation, thereby alleviating neuropathic pain. Recovery of PTEN or cholesterol might be an effective therapeutic strategy for neuropathic pain.
Collapse
|
18
|
Hao J, Brosse L, Bonnet C, Ducrocq M, Padilla F, Penalba V, Desplat A, Ruel J, Delmas P. The widely used antihistamine mepyramine causes topical pain relief through direct blockade of nociceptor sodium channels. FASEB J 2021; 35:e22025. [PMID: 34758144 DOI: 10.1096/fj.202100976rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aβ-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.
Collapse
Affiliation(s)
- Jizhe Hao
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Lucie Brosse
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Caroline Bonnet
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Myriam Ducrocq
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Françoise Padilla
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Angélique Desplat
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Jérôme Ruel
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| |
Collapse
|
19
|
Jose M, Sivanand A, Channakeshava C. Membrane Cholesterol Is a Critical Determinant for Hippocampal Neuronal Polarity. Front Mol Neurosci 2021; 14:746211. [PMID: 34744625 PMCID: PMC8566733 DOI: 10.3389/fnmol.2021.746211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Maintaining a normal cholesterol balance is crucial for the functioning of a healthy brain. Dysregulation in cholesterol metabolism and homeostasis in the brain have been correlated to various neurological disorders. The majority of previous studies in primary cultures focus on the role of cholesterol balance in neuronal development after polarity has been established. Here we have investigated how transient alteration of membrane lipids, specifically cholesterol, affects neuronal development and polarity in developing hippocampal neurons prior to polarity establishment, soon after initiation of neurite outgrowth. We observed that temporary cholesterol perturbation affects axonal and dendritic development differentially in an opposing manner. Transient membrane cholesterol deficiency increased neuronal population with a single neurite, simultaneously generating a second population of neurons with supernumerary axons. Brief replenishment of cholesterol immediately after cholesterol sequestering rescued neuronal development defects and restored polarity. The results showed a small window of cholesterol concentration to be complementing neurite outgrowth, polarity reestablishment, and in determining the normal neuronal morphology, emphasizing the critical role of precise membrane lipid balance in defining the neuronal architecture. Membrane cholesterol enhancement modified neurite outgrowth but did not significantly alter polarity. Cholesterol sequestering at later stages of development has shown to enhance neurite outgrowth, whereas distinct effects for neurite development and polarity were observed at early developmental stages, signifying the relevance of precise membrane cholesterol balance in altering neuronal physiology. Our results confirm cholesterol to be a key determinant for axo-dendritic specification and neuronal architecture and emphasize the possibility to reverse neuronal developmental defects caused by cholesterol deficiency by modulating membrane cholesterol during the early developmental stages.
Collapse
Affiliation(s)
- Mini Jose
- Centre for Neuroscience, Indian institute of Science, Bangalore, India
| | - Aiswarya Sivanand
- Centre for Neuroscience, Indian institute of Science, Bangalore, India
| | | |
Collapse
|
20
|
Rezola M, Castellanos A, Gasull X, Comes N. Functional Interaction Between Caveolin 1 and LRRC8-Mediated Volume-Regulated Anion Channel. Front Physiol 2021; 12:691045. [PMID: 34658903 PMCID: PMC8517123 DOI: 10.3389/fphys.2021.691045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Volume-regulated anion channel (VRAC), constituted by leucine-rich repeat-containing 8 (LRRC8) heteromers, is crucial for volume homeostasis in vertebrate cells. This widely expressed channel has been associated with membrane potential modulation, proliferation, migration, apoptosis, and glutamate release. VRAC is activated by cell swelling and by low cytoplasmic ionic strength or intracellular guanosine 5′-O-(3-thiotriphosphate) (GTP-γS) in isotonic conditions. Despite the substantial number of studies that characterized the biophysical properties of VRAC, its mechanism of activation remains a mystery. Different evidence suggests a possible effect of caveolins in modulating VRAC activity: (1) Caveolin 1 (Cav1)-deficient cells display insignificant swelling-induced Cl– currents mediated by VRAC, which can be restored by Cav1 expression; (2) Caveolin 3 (Cav3) knockout mice display reduced VRAC currents; and (3) Interaction between LRRC8A, the essential subunit for VRAC, and Cav3 has been found in transfected human embryonic kidney 293 (HEK 293) cells. In this study, we demonstrate a physical interaction between endogenous LRRC8A and Cav1 proteins, that is enhanced by hypotonic stimulation, suggesting that this will increase the availability of the channel to Cav1. In addition, LRRC8A targets plasma membrane regions outside caveolae of HEK 293 cells where it associates with non-caveolar Cav1. We propose that a rise in cell membrane tension by hypotonicity would flatten caveolae, as described previously, increasing the amount of Cav1 outside of caveolar structures interacting with VRAC. Besides, the expression of Cav1 in HEK Cav1- cells increases VRAC current density without changing the main biophysical properties of the channel. The present study provides further evidence on the relevance of Cav1 on the activation of endothelial VRAC through a functional molecular interaction.
Collapse
Affiliation(s)
- Mikel Rezola
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aida Castellanos
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Comes
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
21
|
Li J, Chen Y, Liu J, Zhang D, Liang P, Lu P, Shen J, Miao C, Zuo Y, Zhou C. Elevated Expression and Activity of Sodium Leak Channel Contributes to Neuronal Sensitization of Inflammatory Pain in Rats. Front Mol Neurosci 2021; 14:723395. [PMID: 34512260 PMCID: PMC8430348 DOI: 10.3389/fnmol.2021.723395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory pain encompasses many clinical symptoms, and there is no satisfactory therapeutic target. Neuronal hyperexcitability and/or sensitization of the primary nociceptive neurons in the dorsal root ganglion (DRG) and spinal dorsal horn are critical to the development and maintenance of inflammatory pain. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability. It is unknown whether abnormal activity of NALCN mediates the pathological process of inflammatory pain. Complete Freund’s adjuvant (CFA) was injected into the left footpad of rats to induce inflammatory pain. The thresholds of mechanical and thermal sensation and spontaneous pain behaviors were assessed. The expression of NALCN in DRG and spinal dorsal cord was measured. NALCN currents and the contribution of NALCN to neuronal excitability in the DRG and spinal dorsal cord were recorded using whole-cell patch-clamping recording. NALCN was abundantly expressed in neurons of the DRG and spinal dorsal cord. In acutely isolated DRG neurons and spinal cord slices from rats with CFA-induced inflammatory pain, NALCN currents and neuronal excitability were increased. Subsequently, intrathecal and sciatic nerve injection of NALCN-small interfering RNA (siRNA) decreased NALCN mRNA and reverted NALCN currents to normal levels, and then reduced CFA-induced neuronal excitability and alleviated pain symptoms. Furthermore, pain-related symptoms were significantly prevented by the NALCN-shRNA-mediated NALCN knockdown in DRG and spinal cord. Therefore, increased expression and activity of NALCN contributed to neuronal sensitization in CFA-induced inflammatory pain. NALCN may be a novel molecular target for the control of inflammatory pain.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, Xi'an Jiaotong University-Affiliated Honghui Hospital, Xi'an, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peilin Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiefei Shen
- Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases and Department of Prosthodontics, West China Stomatology Hospital of Sichuan University, Chengdu, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Grage SL, Culetto A, Ulrich AS, Weinschenk S. Membrane-Mediated Activity of Local Anesthetics. Mol Pharmacol 2021; 100:502-512. [PMID: 34475108 DOI: 10.1124/molpharm.121.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023] Open
Abstract
The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anke Culetto
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| | - Stefan Weinschenk
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (S.L.G., A.C., A.S.U.); Institute of Organic Chemistry, KIT, Karlsruhe, Germany (A.C., A.S.U.); Women's Hospital, Department of Gynecological Endocrinology and Fertility Disorders, Heidelberg, Germany (S.W.); and The HUNTER Group, Heidelberg University, Women's Hospital, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany, Heidelberg University, Women's Hospital, Neural Therapy Education & Research Group (S.W.)
| |
Collapse
|
23
|
Cui G, Cottrill KA, Strickland KM, Mashburn SA, Koval M, McCarty NA. Alteration of Membrane Cholesterol Content Plays a Key Role in Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Channel Activity. Front Physiol 2021; 12:652513. [PMID: 34163370 PMCID: PMC8215275 DOI: 10.3389/fphys.2021.652513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022] Open
Abstract
Altered cholesterol homeostasis in cystic fibrosis patients has been reported, although controversy remains. As a major membrane lipid component, cholesterol modulates the function of multiple ion channels by complicated mechanisms. However, whether cholesterol directly modulates cystic fibrosis transmembrane conductance regulator (CFTR) channel function remains unknown. To answer this question, we determined the effects of changing plasma membrane cholesterol levels on CFTR channel function utilizing polarized fischer rat thyroid (FRT) cells and primary human bronchial epithelial (HBE) cells. Treatment with methyl-β-cyclodextrin (MβCD) significantly reduced total cholesterol content in FRT cells, which significantly decreased forskolin (FSK)-mediated activation of both wildtype (WT-) and P67L-CFTR. This effect was also seen in HBE cells expressing WT-CFTR. Cholesterol modification by cholesterol oxidase and cholesterol esterase also distinctly affected activation of CFTR by FSK. In addition, alteration of cholesterol increased the potency of VX-770, a clinically used potentiator of CFTR, when both WT- and P67L-CFTR channels were activated at low FSK concentrations; this likely reflects the apparent shift in the sensitivity of WT-CFTR to FSK after alteration of membrane cholesterol. These results demonstrate that changes in the plasma membrane cholesterol level significantly modulate CFTR channel function and consequently may affect sensitivity to clinical therapeutics in CF patients.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kirsten A Cottrill
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kerry M Strickland
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Sarah A Mashburn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Nael A McCarty
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
24
|
Wippert PM, Niederer D, Drießlein D, Beck H, Banzer W, Schneider C, Schiltenwolf M, Mayer F. Psychosocial Moderators and Mediators of Sensorimotor Exercise in Low Back Pain: A Randomized Multicenter Controlled Trial. Front Psychiatry 2021; 12:629474. [PMID: 34393840 PMCID: PMC8358182 DOI: 10.3389/fpsyt.2021.629474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise interventions on unspecific chronic low back pain (CLBP) have been investigated in many studies, but the results are inconclusive regarding exercise types, efficiency, and sustainability. This may be because the influence of psychosocial factors on exercise induced adaptation regarding CLBP is neglected. Therefore, this study assessed psychosocial characteristics, which moderate and mediate the effects of sensorimotor exercise on LBP. A single-blind 3-arm multicenter randomized controlled trial was conducted for 12-weeks. Three exercise groups, sensorimotor exercise (SMT), sensorimotor and behavioral training (SMT-BT), and regular routines (CG) were randomly assigned to 662 volunteers. Primary outcomes (pain intensity and disability) and psychosocial characteristics were assessed at baseline (M1) and follow-up (3/6/12/24 weeks, M2-M5). Multiple regression models were used to analyze whether psychosocial characteristics are moderators of the relationship between exercise and pain, meaning that psychosocial factors and exercise interact. Causal mediation analysis were conducted to analyze, whether psychosocial characteristics mediate the exercise effect on pain. A total of 453 participants with intermittent pain (mean age = 39.5 ± 12.2 years, f = 62%) completed the training. It was shown, that depressive symptomatology (at M4, M5), vital exhaustion (at M4), and perceived social support (at M5) are significant moderators of the relationship between exercise and the reduction of pain intensity. Further depressive mood (at M4), social-satisfaction (at M4), and anxiety (at M5 SMT) significantly moderate the exercise effect on pain disability. The amount of moderation was of clinical relevance. In contrast, there were no psychosocial variables which mediated exercise effects on pain. In conclusion it was shown, that psychosocial variables can be moderators in the relationship between sensorimotor exercise induced adaptation on CLBP which may explain conflicting results in the past regarding the merit of exercise interventions in CLBP. Results suggest further an early identification of psychosocial risk factors by diagnostic tools, which may essential support the planning of personalized exercise therapy. Level of Evidence: Level I. Clinical Trial Registration: DRKS00004977, LOE: I, MiSpEx: grant-number: 080102A/11-14. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00004977.
Collapse
Affiliation(s)
- Pia-Maria Wippert
- Sociology of Medicine and Psychobiology, Department of Physical Activity and Health, University of Potsdam, Potsdam, Germany.,Faculty of Health Sciences Brandenburg, University of Potsdam, the Brandenburg Medical School Theodor Fontane and the Brandenburg University of Technology Cottbus, Senftenberg, Germany
| | - Daniel Niederer
- Department of Sports Medicine and Exercise Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David Drießlein
- Statistical Consulting Unit StaBLab, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heidrun Beck
- University Hospital Carl Gustav Carus at Technical University Dresden, Dresden, Germany
| | - Winfried Banzer
- Department of Preventive and Sports Medicine, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcus Schiltenwolf
- Pain Management, Centre of Orthopaedics and Trauma Surgery, Conservative Orthopaedics and Pain Management, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Mayer
- Faculty of Health Sciences Brandenburg, University of Potsdam, the Brandenburg Medical School Theodor Fontane and the Brandenburg University of Technology Cottbus, Senftenberg, Germany.,Centre of Sports Medicine, University Outpatient Clinic, University of Potsdam, Potsdam, Germany
| |
Collapse
|
25
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
26
|
Qiu X, Luo J, Fang L. AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Curr Atheroscler Rep 2020; 23:1. [PMID: 33230630 DOI: 10.1007/s11883-020-00899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to summarize the current understanding of the secreted APOA1 binding protein (AIBP), encoded by NAXE, in angiogenesis, hematopoiesis, and inflammation. The studies on AIBP illustrate a critical connection between lipid metabolism and the aforementioned endothelial and immune cell biology. RECENT FINDINGS AIBP dictates both developmental processes such as angiogenesis and hematopoiesis, and pathological events such as inflammation, tumorigenesis, and atherosclerosis. Although cholesterol efflux dictates AIBP-mediated lipid raft disruption in many of the cell types, recent studies document cholesterol efflux-independent mechanism involving Cdc42-mediated cytoskeleton remodeling in macrophages. AIBP disrupts lipid rafts and impairs raft-associated VEGFR2 but facilitates non-raft-associated NOTCH1 signaling. Furthermore, AIBP can induce cholesterol biosynthesis gene SREBP2 activation, which in turn transactivates NOTCH1 and supports specification of hematopoietic stem and progenitor cells (HSPCs). In addition, AIBP also binds TLR4 and represses TLR4-mediated inflammation. In this review, we summarize the latest research on AIBP, focusing on its role in cholesterol metabolism and the attendant effects on lipid raft-regulated VEGFR2 and non-raft-associated NOTCH1 activation in angiogenesis, SREBP2-upregulated NOTCH1 signaling in hematopoiesis, and TLR4 signaling in inflammation and atherogenesis. We will discuss its potential therapeutic applications in angiogenesis and inflammation due to selective targeting of activated cells.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Jingmin Luo
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Obstetrics and Gynecology, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Investigating the Multitarget Mechanism of Traditional Chinese Medicine Prescription for Cancer-Related Pain by Using Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7617261. [PMID: 33224254 PMCID: PMC7673937 DOI: 10.1155/2020/7617261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023]
Abstract
Gu-tong formula (GTF) has achieved good curative effects in the treatment of cancer-related pain. However, its potential mechanisms have not been explored. We used network pharmacology and molecular docking to investigate the molecular mechanism and the effective compounds of the prescription. Through the analysis and research in this paper, we obtained 74 effective compounds and 125 drug-disease intersection targets to construct a network, indicating that quercetin, kaempferol, and β-sitosterol were possibly the most important compounds in GTF. The key targets of GTF for cancer-related pain were Jun proto-oncogene (JUN), mitogen-activated protein kinase 1 (MAPK1), and RELA proto-oncogene (RELA). 2204 GO entries and 148 pathways were obtained by GO and KEGG enrichment, respectively, which proved that chemokine, MAPK, and transient receptor potential (TRP) channels can be regulated by GTF. The results of molecular docking showed that stigmasterol had strong binding activity with arginine vasopressin receptor 2 (AVPR2) and C-X3-C motif chemokine ligand 1 (CX3CL1) and cholesterol was more stable with p38 MAPK, prostaglandin-endoperoxide synthase 2 (PTGS2), and transient receptor potential vanilloid-1 (TRPV1). In conclusion, the therapeutic effect of GTF on cancer-related pain is based on the comprehensive pharmacological effect of multicomponent, multitarget, and multichannel pathways. This study provides a theoretical basis for further experimental research in the future.
Collapse
|
28
|
Oehler B, Kloka J, Mohammadi M, Ben-Kraiem A, Rittner HL. D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Mol Pain 2020; 16:1744806920903848. [PMID: 31996074 PMCID: PMC6993174 DOI: 10.1177/1744806920903848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Cologne, Cologne, Germany
| | - Adel Ben-Kraiem
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Yao L, Liu C, Wang N, Du F, Fan S, Guo Y, Zhang L, Pan Y, Xiong W. Cholesterol regulates cannabinoid analgesia through glycine receptors. Neuropharmacology 2020; 177:108242. [DOI: 10.1016/j.neuropharm.2020.108242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
30
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
31
|
Chaturvedi R, Alexander B, A'Court AM, Waterman RS, Burton BN, Urman RD, Gabriel RA. Genomics testing and personalized medicine in the preoperative setting: Can it change outcomes in postoperative pain management? Best Pract Res Clin Anaesthesiol 2020; 34:283-295. [PMID: 32711834 DOI: 10.1016/j.bpa.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Postoperative pain and opioid use are major challenges in perioperative medicine. Pain perception and its response to opioid use are multi-faceted and include pharmacological, psychological, and genetic components. Precision medicine is a unique approach to individualized health care in which decisions in management are based on genetics, lifestyle, and environment of each person. Genetic variations can have an impact on the perception of pain and response to treatment. This can have an effect on pain management in both acute and chronic settings. Although there is currently not enough evidence for making recommendations about genetic testing to guide pain management in the acute care setting, there are some known polymorphisms that play a role in surgical pain and opioid-related postoperative adverse outcomes. In this review, we describe the potential use of pharmacogenomics (PGx) for improving perioperative pain management. We first review a number of genotypes that have shown correlations with pain and opioid use and then describe the importance of PGx-guided analgesic protocols and implementation of screening in a preoperative evaluation clinical setting.
Collapse
Affiliation(s)
- Rahul Chaturvedi
- School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Brenton Alexander
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.
| | - Alison M A'Court
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Ruth S Waterman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA.
| | - Brittany N Burton
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA.
| | - Rodney A Gabriel
- Department of Anesthesiology and Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Shah S, Carver CM, Mullen P, Milne S, Lukacs V, Shapiro MS, Gamper N. Local Ca 2+ signals couple activation of TRPV1 and ANO1 sensory ion channels. Sci Signal 2020; 13:13/629/eaaw7963. [PMID: 32345727 DOI: 10.1126/scisignal.aaw7963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel (CaCC) expressed in peripheral somatosensory neurons that are activated by painful (noxious) stimuli. These neurons also express the Ca2+-permeable channel and noxious heat sensor TRPV1, which can activate ANO1. Here, we revealed an intricate mechanism of TRPV1-ANO1 channel coupling in rat dorsal root ganglion (DRG) neurons. Simultaneous optical monitoring of CaCC activity and Ca2+ dynamics revealed that the TRPV1 ligand capsaicin activated CaCCs. However, depletion of endoplasmic reticulum (ER) Ca2+ stores reduced capsaicin-induced Ca2+ increases and CaCC activation, suggesting that ER Ca2+ release contributed to TRPV1-induced CaCC activation. ER store depletion by plasma membrane-localized TRPV1 channels was demonstrated with an ER-localized Ca2+ sensor in neurons exposed to a cell-impermeable TRPV1 ligand. Proximity ligation assays established that ANO1, TRPV1, and the IP3 receptor IP3R1 were often found in close proximity to each other. Stochastic optical reconstruction microscopy (STORM) confirmed the close association between all three channels in DRG neurons. Together, our data reveal the existence of ANO1-containing multichannel nanodomains in DRG neurons and suggest that coupling between TRPV1 and ANO1 requires ER Ca2+ release, which may be necessary to enhance ANO1 activation.
Collapse
Affiliation(s)
- Shihab Shah
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Pierce Mullen
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen Milne
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Viktor Lukacs
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark S Shapiro
- Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nikita Gamper
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK. .,Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| |
Collapse
|
33
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
34
|
Oehler B, Brack A, Blum R, Rittner HL. Pain Control by Targeting Oxidized Phospholipids: Functions, Mechanisms, Perspectives. Front Endocrinol (Lausanne) 2020; 11:613868. [PMID: 33569042 PMCID: PMC7868524 DOI: 10.3389/fendo.2020.613868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Within the lipidome oxidized phospholipids (OxPL) form a class of chemically highly reactive metabolites. OxPL are acutely produced in inflamed tissue and act as endogenous, proalgesic (pain-inducing) metabolites. They excite sensory, nociceptive neurons by activating transient receptor potential ion channels, specifically TRPA1 and TRPV1. Under inflammatory conditions, OxPL-mediated receptor potentials even potentiate the action potential firing rate of nociceptors. Targeting OxPL with D-4F, an apolipoprotein A-I mimetic peptide or antibodies like E06, specifically binding oxidized headgroups of phospholipids, can be used to control acute, inflammatory pain syndromes, at least in rodents. With a focus on proalgesic specificities of OxPL, this article discusses, how targeting defined substances of the epilipidome can contribute to mechanism-based therapies against primary and secondary chronic inflammatory or possibly also neuropathic pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anesthesiology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Heike L. Rittner,
| |
Collapse
|
35
|
Bonnet C, Delmas P. L’activation des canaux Nav1.9 par le monoxyde d’azote à l’origine des céphalées par abus médicamenteux. Med Sci (Paris) 2020; 36:16-19. [DOI: 10.1051/medsci/2019254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache. Nat Commun 2019; 10:4253. [PMID: 31534133 PMCID: PMC6751217 DOI: 10.1038/s41467-019-12197-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/26/2019] [Indexed: 01/03/2023] Open
Abstract
Medication-overuse headaches (MOH) occur with both over-the-counter and pain-relief medicines, including paracetamol, opioids and combination analgesics. The mechanisms that lead to MOH are still uncertain. Here, we show that abnormal activation of Nav1.9 channels by Nitric Oxide (NO) is responsible for MOH induced by triptan migraine medicine. Deletion of the Scn11a gene in MOH mice abrogates NO-mediated symptoms, including cephalic and extracephalic allodynia, photophobia and phonophobia. NO strongly activates Nav1.9 in dural afferent neurons from MOH but not normal mice. Abnormal activation of Nav1.9 triggers CGRP secretion, causing artery dilatation and degranulation of mast cells. In turn, released mast cell mediators potentiates Nav1.9 in meningeal nociceptors, exacerbating inflammation and pain signal. Analysis of signaling networks indicates that PKA is downregulated in trigeminal neurons from MOH mice, relieving its inhibitory action on NO-Nav1.9 coupling. Thus, anomalous activation of Nav1.9 channels by NO, as a result of chronic medication, promotes MOH.
Collapse
|
37
|
Abstract
Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Rehabilitation Research Center, Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| |
Collapse
|
38
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|
39
|
Delmas P, Padilla F, Poilbout C. [Cholesterol depletion triggers Nav1.9 channel-mediated inflammatory pain]. Med Sci (Paris) 2019; 35:115-118. [PMID: 30774072 DOI: 10.1051/medsci/2019019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Patrick Delmas
- SomatoSens, Laboratoire de Neurosciences Cognitives, UMR 7291 CNRS, Aix-Marseille-Université, CS80011, boulevard Pierre Dramard, 13344 Marseille, France
| | - Françoise Padilla
- SomatoSens, Laboratoire de Neurosciences Cognitives, UMR 7291 CNRS, Aix-Marseille-Université, CS80011, boulevard Pierre Dramard, 13344 Marseille, France
| | - Corinne Poilbout
- Centre de Psychiatrie et Neurosciences, 102-108, rue de la Santé, 75014 Paris France
| |
Collapse
|
40
|
Roselló-Busquets C, de la Oliva N, Martínez-Mármol R, Hernaiz-Llorens M, Pascual M, Muhaisen A, Navarro X, Del Valle J, Soriano E. Cholesterol Depletion Regulates Axonal Growth and Enhances Central and Peripheral Nerve Regeneration. Front Cell Neurosci 2019; 13:40. [PMID: 30809129 PMCID: PMC6379282 DOI: 10.3389/fncel.2019.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal growth during normal development and axonal regeneration rely on the action of many receptor signaling systems and complexes, most of them located in specialized raft membrane microdomains with a precise lipid composition. Cholesterol is a component of membrane rafts and the integrity of these structures depends on the concentrations present of this compound. Here we explored the effect of cholesterol depletion in both developing neurons and regenerating axons. First, we show that cholesterol depletion in vitro in developing neurons from the central and peripheral nervous systems increases the size of growth cones, the density of filopodium-like structures and the number of neurite branching points. Next, we demonstrate that cholesterol depletion enhances axonal regeneration after axotomy in vitro both in a microfluidic system using dissociated hippocampal neurons and in a slice-coculture organotypic model of axotomy and regeneration. Finally, using axotomy experiments in the sciatic nerve, we also show that cholesterol depletion favors axonal regeneration in vivo. Importantly, the enhanced regeneration observed in peripheral axons also correlated with earlier electrophysiological responses, thereby indicating functional recovery following the regeneration. Taken together, our results suggest that cholesterol depletion per se is able to promote axonal growth in developing axons and to increase axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia de la Oliva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| |
Collapse
|
41
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
42
|
Rosenhouse-Dantsker A. Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:119-138. [DOI: 10.1007/978-3-030-14265-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
43
|
Wippert PM, Wiebking C. Stress and Alterations in the Pain Matrix: A Biopsychosocial Perspective on Back Pain and Its Prevention and Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E785. [PMID: 29670003 PMCID: PMC5923827 DOI: 10.3390/ijerph15040785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
The genesis of chronic pain is explained by a biopsychosocial model. It hypothesizes an interdependency between environmental and genetic factors provoking aberrant long-term changes in biological and psychological regulatory systems. Physiological effects of psychological and physical stressors may play a crucial role in these maladaptive processes. Specifically, long-term demands on the stress response system may moderate central pain processing and influence descending serotonergic and noradrenergic signals from the brainstem, regulating nociceptive processing at the spinal level. However, the underlying mechanisms of this pathophysiological interplay still remain unclear. This paper aims to shed light on possible pathways between physical (exercise) and psychological stress and the potential neurobiological consequences in the genesis and treatment of chronic pain, highlighting evolving concepts and promising research directions in the treatment of chronic pain. Two treatment forms (exercise and mindfulness-based stress reduction as exemplary therapies), their interaction, and the dose-response will be discussed in more detail, which might pave the way to a better understanding of alterations in the pain matrix and help to develop future prevention and therapeutic concepts.
Collapse
Affiliation(s)
- Pia-Maria Wippert
- Sociology of Health and Physical Activity, Department of Health Science, University of Potsdam, Am Neuen Palais 10, House 12, 14469 Potsdam, Germany.
- Department of Health Sciences and Technology, ETH Zürich, HCP, Leopold-Ruzicka-Weg 4, CH-8093 Zürich, Switzerland.
| | - Christine Wiebking
- Sociology of Health and Physical Activity, Department of Health Science, University of Potsdam, Am Neuen Palais 10, House 12, 14469 Potsdam, Germany.
- Institute of Psychology and Education, Applied Emotion and Motivation Research, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
44
|
Shah S, Gamper N. Fat nerves keep pain at bay. EMBO J 2018; 37:embj.201899231. [DOI: 10.15252/embj.201899231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shihab Shah
- Faculty of Biological Sciences University of Leeds Leeds UK
| | - Nikita Gamper
- Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|