1
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025:10.1038/s41568-024-00785-5. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
3
|
Sengupta D, Galicia-Pereyra R, Han P, Graham M, Liu X, Arshad N, Cresswell P. Cutting Edge: Phagosome-associated Autophagosomes Containing Antigens and Proteasomes Drive TAP-Independent Cross-Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1063-1068. [PMID: 38353614 PMCID: PMC10948299 DOI: 10.4049/jimmunol.2200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
Activation of naive CD8-positive T lymphocytes is mediated by dendritic cells that cross-present MHC class I (MHC-I)-associated peptides derived from exogenous Ags. The most accepted mechanism involves the translocation of Ags from phagosomes or endolysosomes into the cytosol, where antigenic peptides generated by cytosolic proteasomes are delivered by the transporter associated with Ag processing (TAP) to the endoplasmic reticulum, or an endocytic Ag-loading compartment, where binding to MHC-I occurs. We have described an alternative pathway where cross-presentation is independent of TAP but remains dependent on proteasomes. We provided evidence that active proteasomes found within the lumen of phagosomes and endolysosomal vesicles locally generate antigenic peptides that can be directly loaded onto trafficking MHC-I molecules. However, the mechanism of active proteasome delivery to the endocytic compartments remained unknown. In this study, we demonstrate that phagosome-associated LC3A/B structures deliver proteasomes into subcellular compartments containing exogenous Ags and that autophagy drives TAP-independent, proteasome-dependent cross-presentation.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | | | - Patrick Han
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Xinran Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Najla Arshad
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Münz C. Degrade to stay healthy-Proteolytic interplay during inflammation. PLoS Biol 2024; 22:e3002548. [PMID: 38452120 PMCID: PMC10919839 DOI: 10.1371/journal.pbio.3002548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Proteasomes and autophagy constitute the 2 main proteolytic machineries for cytoplasmic content. A new study in PLOS Biology now demonstrates that autophagy stimulation alters proteasome composition, degrading hyperactive immunoproteasomes and thereby limiting inflammation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
6
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Lipid-anchored proteasomes control membrane protein homeostasis. SCIENCE ADVANCES 2023; 9:eadj4605. [PMID: 38019907 PMCID: PMC10686573 DOI: 10.1126/sciadv.adj4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.
Collapse
Affiliation(s)
- Ruizhu Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Pan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Dixian Wang
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Xinran Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Yezhang Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqi Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Siming Zhong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Li Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Jing-Wei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
9
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
10
|
Olson E, Raghavan M. Major histocompatibility complex class I assembly within endolysosomal pathways. Curr Opin Immunol 2023; 84:102356. [PMID: 37379719 PMCID: PMC11759227 DOI: 10.1016/j.coi.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Major histocompatibility complex class I (MHC class I) molecules facilitate subcellular immune surveillance by presenting peptides on the cell surface. MHC class I assembly with peptides generally happens in the endoplasmic reticulum (ER). Peptides are processed in the cytosol, transported into the ER, and assembled with MHC class I heavy and light chains. However, as many pathogens reside within multiple subcellular organelles, peptide sampling across non-cytosolic compartments is also important. MHC class I molecules internalize from the cell surface into endosomes and constitutively traffic between endosomes and the cell surface. Within endosomes, MHC class I molecules assemble with both exogenous and endogenous antigens processed within these compartments. Human MHC classI polymorphisms, well known to affect ER assembly modes, also influence endosomal assembly outcomes, an area of current interest to the field.
Collapse
Affiliation(s)
- Eli Olson
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Graduate Program In Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Zhang T, Wei X, Li Y, Huang S, Wu Y, Cai S, Aipire A, Li J. Dendritic cell-based vaccine prepared with recombinant Lactococcus lactis enhances antigen cross-presentation and antitumor efficacy through ROS production. Front Immunol 2023; 14:1208349. [PMID: 37711617 PMCID: PMC10498461 DOI: 10.3389/fimmu.2023.1208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Lactococcus lactis (L.L) is safe and can be used as vehicle. In this study, the immunoregulatory effect of L.L on dendritic cell (DC) activation and mechanism were investigated. The immune responses and antigen cross-presentation mechanism of DC-based vaccine prepared with OVA recombinant L.L were explored. Methods Confocal microscopy and flow cytometry were used to analyze the mechanism of L.L promoting DC maturation, phagosome membrane rupture and antigen presentation. The antitumor effect of DC vaccine prepared with L.L-OVA was assessed in the B16-OVA tumor mouse model. Results L.L significantly promoted DC maturation, which was partially dependent on TLR2 and downstream MAPK and NF-κB signaling pathways. L.L was internalized into DCs by endocytosis and did not co-localized with lysosome. OVA recombinant L.L enhanced antigen cross-presentation of DCs through the phagosome-to-cytosol pathway in a reactive oxygen species (ROS)- and proteasome-dependent manner. In mouse experiments, L.L increased the migration of DCs to draining lymph node and DC vaccine prepared with OVA recombinant L.L induced strong antigen-specific Th1 and cytotoxic T lymphocyte responses, which significantly inhibited B16-OVA tumor growth. Conclusion This study demonstrated that recombinant L.L as an antigen delivery system prepared DC vaccine can enhance the antigen cross-presentation and antitumor efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
Ohara RA, Murphy KM. Recent progress in type 1 classical dendritic cell cross-presentation - cytosolic, vacuolar, or both? Curr Opin Immunol 2023; 83:102350. [PMID: 37276818 DOI: 10.1016/j.coi.2023.102350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Type 1 classical dendritic cells (cDC1s) have emerged as the major antigen-presenting cell performing cross-presentation (XP) in vivo, but the antigen-processing pathway in this cell remains obscure. Two competing models for in vivo XP of cell-associated antigens by cDC1 include a vacuolar pathway and cytosolic pathway. A vacuolar pathway relies on directing antigens captured in vesicles toward a class I major histocompatibility complex loading compartment independently of cytosolic entry. Alternate proposals invoke phagosomal rupture, either constitutive or triggered by spleen tyrosine kinase (SYK) signaling in response to C-type lectin domain family 9 member A (CLEC9A) engagement, that releases antigens into the cytosol for proteasomal degradation. The Beige and Chediak-Higashi (BEACH) protein WD repeat- and FYVE domain-containing protein 4 (WDFY4) is strictly required for XP of cell-associated antigens in vivo. However, the cellular mechanism for WDFY4 activity remains unknown and its requirement in XP in vivo is currently indifferent regarding the vacuolar versus cytosolic pathways. Here, we review the current status of these models and discuss the need for future investigation.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Kang MH, Hong J, Lee J, Cha MS, Lee S, Kim HY, Ha SJ, Lim YT, Bae YS. Discovery of highly immunogenic spleen-resident FCGR3 +CD103 + cDC1s differentiated by IL-33-primed ST2 + basophils. Cell Mol Immunol 2023:10.1038/s41423-023-01035-8. [PMID: 37246159 DOI: 10.1038/s41423-023-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/25/2023] [Indexed: 05/30/2023] Open
Abstract
Recombinant interleukin-33 (IL-33) inhibits tumor growth, but the detailed immunological mechanism is still unknown. IL-33-mediated tumor suppression did not occur in Batf3-/- mice, indicating that conventional type 1 dendritic cells (cDC1s) play a key role in IL-33-mediated antitumor immunity. A population of CD103+ cDC1s, which were barely detectable in the spleens of normal mice, increased significantly in the spleens of IL-33-treated mice. The newly emerged splenic CD103+ cDC1s were distinct from conventional splenic cDC1s based on their spleen residency, robust effector T-cell priming ability, and surface expression of FCGR3. DCs and DC precursors did not express Suppressor of Tumorigenicity 2 (ST2). However, recombinant IL-33 induced spleen-resident FCGR3+CD103+ cDC1s, which were found to be differentiated from DC precursors by bystander ST2+ immune cells. Through immune cell fractionation and depletion assays, we found that IL-33-primed ST2+ basophils play a crucial role in the development of FCGR3+CD103+ cDC1s by secreting IL-33-driven extrinsic factors. Recombinant GM-CSF also induced the population of CD103+ cDC1s, but the population neither expressed FCGR3 nor induced any discernable antitumor immunity. The population of FCGR3+CD103+ cDC1s was also generated in vitro culture of Flt3L-mediated bone marrow-derived DCs (FL-BMDCs) when IL-33 was added in a pre-DC stage of culture. FL-BMDCs generated in the presence of IL-33 (FL-33-DCs) offered more potent tumor immunotherapy than control Flt3L-BMDCs (FL-DCs). Human monocyte-derived DCs were also more immunogenic when exposed to IL-33-induced factors. Our findings suggest that recombinant IL-33 or an IL-33-mediated DC vaccine could be an attractive protocol for better tumor immunotherapy.
Collapse
Affiliation(s)
- Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Jinjoo Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Min-Suk Cha
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Hye-Young Kim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Taik Lim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
| |
Collapse
|
14
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao J, Wang Z, Yang B, Guo X. Lipid-anchored Proteasomes Control Membrane Protein Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540509. [PMID: 37214852 PMCID: PMC10197712 DOI: 10.1101/2023.05.12.540509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation (ERAD) and membrane protein trafficking. Rpt2 G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by m yristoyl- a nchored p roteasomes (MAPs) in health and disease.
Collapse
|
15
|
Yee Mon KJ, Blander JM. TAP-ing into the cross-presentation secrets of dendritic cells. Curr Opin Immunol 2023; 83:102327. [PMID: 37116384 DOI: 10.1016/j.coi.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Viral blockade of the transporter associated with antigen processing (TAP) diminishes surface and endosomal recycling compartment levels of major histocompatibility complex class-I (MHC-I) in dendritic cells (DCs), and compromises both classical MHC-I presentation and canonical cross-presentation during infection to impair CD8 T-cell immunity. Virus-specific CD8 T cells are thought to be cross-primed mostly by uninfected TAP-sufficient DCs through cross-presentation of viral peptides from internalized virus-infected dying cells. The dilemma is that CD8 T cells primed to TAP-dependent viral peptides are mismatched to the TAP-independent epitopes presented on tissues infected with immune-evasive viruses. Noncanonical cross-presentation in DCs overcomes cell-intrinsic TAP blockade to nevertheless prime protective TAP-independent CD8 T cells best-matched against the infection. Exploitation of noncanonical cross-presentation may prevent chronic infections with immune-evasive viruses. It may also control immune-evasive cancers that have downmodulated TAP expression.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA; Department of Microbiology and Immunology, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
16
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
18
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Blander JM. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol 2023; 66:101713. [PMID: 36706521 PMCID: PMC10023361 DOI: 10.1016/j.smim.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.
Collapse
Affiliation(s)
- J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, USA; Joan and Sanford I. Weill Department of Medicine, USA; Department of Microbiology and Immunology, USA; Sandra and Edward Meyer Cancer Center, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
20
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
21
|
Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022; 13:940047. [PMID: 35979365 PMCID: PMC9376467 DOI: 10.3389/fimmu.2022.940047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adjuvants are indispensable components of vaccines for stimulating optimal immune responses to non-replicating, inactivated and subunit antigens. Eliciting balanced humoral and T cell-mediated immunity is paramount to defend against diseases caused by complex intracellular pathogens, such as tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL) responses. To elicit potent CTL memory, vaccines need to engage the cross-presentation pathway, and this requirement has been a crucial bottleneck in the development of subunit vaccines that engender effective T cell immunity. In this review, we focus on recent insights into DC cross-presentation and the extent to which clinically relevant vaccine adjuvants, such as aluminum-based nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-presentation efficiency. Further, we discuss the feasibility of using carbomer-based adjuvants as next generation of adjuvant platforms to elicit balanced antibody- and T-cell based immunity. Understanding of the molecular mechanism of DC cross-presentation and the mode of action of adjuvants will pave the way for rational design of vaccines for infectious diseases and cancer that require balanced antibody- and T cell-based immunity.
Collapse
|
22
|
Jia JJ, Liao XY, Liang YY, Chen RL, Gao FG. K48- and K27-mutant ubiquitin regulates adaptive immune response by affecting cross-presentation in bone marrow precursor cells. J Leukoc Biol 2022; 112:157-172. [PMID: 35352390 DOI: 10.1002/jlb.4ma0222-419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
K48-linked ubiquitination determines antigen degradation and plays vital roles in the process of cross-presentation of bone marrow precursor cell (BMPC)-derived dendritic cells (DCs). Although previous studies revealed that K48 and K27-linked ubiquitination regulates innate immunity, the exact roles of K48 and K27-linked ubiquitination in cross-presentation and BMPC-based adaptive immunity are still uncertain. In this study, we investigated the effects of K48- and K27-mutant ubiquitin (Ub) on BMPC-based adaptive immune response by observing the effects of MG132, Ub deficiency, and K48/K27-mutant Ub on cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and thereby the efficiency of cytolytic capacity of BMPC-activate T cells. We demonstrated that MG132, Ub deficiency, and K48-mutant Ub impair cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and the cytolytic capacity of BMPC-activated T cells. Moreover, although K27-only Ub decreases cross-presentation, the replenishment of K27-mutant Ub restores Ub deficiency impaireds the abilities of T cell proliferation, IFN-γ secretion, CTL priming, and the cytolytic capacity of BMPC-activated T cells. Thus, these data suggest that K48- and K27-linked ubiquitination contributes to BMPC-mediated adaptive immune response by affecting BMPC cross-presentation and the cytolytic capacity by up-regulating both perforin and granzyme B in BMPC-activated T cells. K48- and K27-mutant Ub might have potential clinical therapeutic function in adaptive immune response-associated diseases.
Collapse
Affiliation(s)
- Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui Ling Chen
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Park H, Park MS, Seok JH, You J, Kim J, Kim J, Park MS. Insights into the immune responses of SARS-CoV-2 in relation to COVID-19 vaccines. J Microbiol 2022; 60:308-320. [PMID: 35235179 PMCID: PMC8890016 DOI: 10.1007/s12275-022-1598-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
The three types of approved coronavirus disease 2019 (COVID-19) vaccines that have been emergency-use listed (EUL) by the World Health Organization are mRNA vaccines, adenovirus-vectored vaccines, and inactivated vaccines. Canonical vaccine developments usually take years or decades to be completed to commercialization; however, the EUL vaccines being used in the current situation comprise several COVID-19 vaccine candidates applied in studies and clinical settings across the world. The extraordinary circumstances of the COVID-19 pandemic have necessitated the emergency authorization of these EUL vaccines, which have been rapidly developed. Although the benefits of the EUL vaccines outweigh their adverse effects, there have been reports of rare but fatal cases directly associated with COVID-19 vaccinations. Thus, a reassessment of the immunological rationale underlying EUL vaccines in relation to COVID-19 caused by SARSCOV-2 virus infection is now required. In this review, we discuss the manifestations of COVID-19, immunologically projected effects of EUL vaccines, reported immune responses, informed issues related to COVID-19 vaccination, and the potential strategies for future vaccine use against antigenic variants.
Collapse
Affiliation(s)
- Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jineui Kim
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jeonghun Kim
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
25
|
VAMP3 and VAMP8 regulate the development and functionality of parasitophorous vacuoles housing Leishmania amazonensis. Infect Immun 2022; 90:e0018321. [PMID: 35130453 DOI: 10.1128/iai.00183-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor proteins to the expansion and functionality of communal vacuoles as well as on the replication of the parasite. The differential recruitment patterns of Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor to communal vacuoles harboring L. amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither proteins has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Collapse
|
26
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
27
|
Mareninova OA, Dillon DL, Wightman CJM, Yakubov I, Takahashi T, Gaisano HY, Munson K, Ohmuraya M, Dawson D, Gukovsky I, Gukovskaya AS. Rab9 Mediates Pancreatic Autophagy Switch From Canonical to Noncanonical, Aggravating Experimental Pancreatitis. Cell Mol Gastroenterol Hepatol 2021; 13:599-622. [PMID: 34610499 PMCID: PMC8715155 DOI: 10.1016/j.jcmgh.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagosome, the central organelle in autophagy process, can assemble via canonical pathway mediated by LC3-II, the lipidated form of autophagy-related protein LC3/ATG8, or noncanonical pathway mediated by the small GTPase Rab9. Canonical autophagy is essential for exocrine pancreas homeostasis, and its disordering initiates and drives pancreatitis. The involvement of noncanonical autophagy has not been explored. We examine the role of Rab9 in pancreatic autophagy and pancreatitis severity. METHODS We measured the effect of Rab9 on parameters of autophagy and pancreatitis responses using transgenic mice overexpressing Rab9 (Rab9TG) and adenoviral transduction of acinar cells. Effect of canonical autophagy on Rab9 was assessed in ATG5-deficient acinar cells. RESULTS Pancreatic levels of Rab9 and its membrane-bound (active) form decreased in rodent pancreatitis models and in human disease. Rab9 overexpression stimulated noncanonical and inhibited canonical/LC3-mediated autophagosome formation in acinar cells through up-regulation of ATG4B, the cysteine protease that delipidates LC3-II. Conversely, ATG5 deficiency caused Rab9 increase in acinar cells. Inhibition of canonical autophagy in Rab9TG pancreas was associated with accumulation of Rab9-positive vacuoles containing markers of mitochondria, protein aggregates, and trans-Golgi. The shift to the noncanonical pathway caused pancreatitis-like damage in acinar cells and aggravated experimental pancreatitis. CONCLUSIONS The results show that Rab9 regulates pancreatic autophagy and indicate a mutually antagonistic relationship between the canonical/LC3-mediated and noncanonical/Rab9-mediated autophagy pathways in pancreatitis. Noncanonical autophagy fails to substitute for its canonical counterpart in protecting against pancreatitis. Thus, Rab9 decrease in experimental and human pancreatitis is a protective response to sustain canonical autophagy and alleviate disease severity.
Collapse
Affiliation(s)
- Olga A Mareninova
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Dustin L Dillon
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Carli J M Wightman
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith Munson
- Department of Physiology, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - David Dawson
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Anna S Gukovskaya
- Department of Medicine, Los Angeles, California; VA Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
28
|
Mishto M, Rodriguez-Hernandez G, Neefjes J, Urlaub H, Liepe J. Response: Commentary: An In Silico-In Vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Front Immunol 2021; 12:679836. [PMID: 34326838 PMCID: PMC8315000 DOI: 10.3389/fimmu.2021.679836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Guillermo Rodriguez-Hernandez
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
29
|
Isnard S, Hatton EX, Iannetta M, Guillerme JB, Hosmalin A. Cell-Associated HIV Cross-Presentation by Plasmacytoid Dendritic Cells Is Potentiated by Noncognate CD8 + T Cell Preactivation. THE JOURNAL OF IMMUNOLOGY 2021; 207:15-22. [PMID: 34183372 DOI: 10.4049/jimmunol.2000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
IFN-γ secretion by Ag-specific T cells is known to be tightly regulated by engagement of the TCR. Human plasmacytoid dendritic cells (pDC) can cross-present Ags from apoptotic HIV-infected cells or tumor cells to CD8+ T cells. As pDC respond to HIV virions by maturing and secreting cytokines, we hypothesized that this might affect cross-presentation from HIV-infected cells. Purified blood DC were incubated with apoptotic HIV-infected H9 cells in the presence of saquinavir, after which the activation process of HIV-specific cloned CD8+ T cells was studied. IFN-γ secretion by HIV-specific T cells was stimulated by pDC and conventional DC (cDC1) more than by cDC2 and was strictly MHC class I restricted. Surprisingly, intracellular production of IFN-γ was only partly MHC class I restricted for pDC, indicating a noncognate CD8+ T cell activation. pDC, but not cDC, matured and secreted IFN-α in the presence of apoptotic H9HIV cells. A mixture of IFN-α, IFN-β, and TNF-α induced intracellular production of IFN-γ but not granzyme B, mimicking the noncognate mechanism. Neutralization of type I IFN signaling blocked noncognate intracellular production of IFN-γ. Moreover, cognate stimulation was required to induce IFN-γ secretion in addition to the cytokine mixture. Thus, IFN-γ secretion is tightly regulated by engagement of the TCR as expected, but in the context of virus-infected cells, pDC can trigger intracellular IFN-γ accumulation in CD8+ T cells, potentializing IFN-γ secretion once CD8+ T cells make cognate interactions. These findings may help manipulate type I IFN signaling to enhance specifically Ag-specific CD8+ T cell activation against chronic infections or tumors.
Collapse
Affiliation(s)
- Stéphane Isnard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne X Hatton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marco Iannetta
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
30
|
Barbet G, Nair-Gupta P, Schotsaert M, Yeung ST, Moretti J, Seyffer F, Metreveli G, Gardner T, Choi A, Tortorella D, Tampé R, Khanna KM, García-Sastre A, Blander JM. TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nat Immunol 2021; 22:497-509. [PMID: 33790474 PMCID: PMC8981674 DOI: 10.1038/s41590-021-00903-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.
Collapse
Affiliation(s)
- Gaëtan Barbet
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- The Child Health Institute of New Jersey, and Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Priyanka Nair-Gupta
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen T Yeung
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Disease, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julien Moretti
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fabian Seyffer
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Giorgi Metreveli
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Gardner
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA
- ArsenalBio, San Francisco, CA, USA
| | - Angela Choi
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Moderna Inc., Cambridge, MA, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kamal M Khanna
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
32
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Weimershaus M, Mauvais FX, Evnouchidou I, Lawand M, Saveanu L, van Endert P. IRAP Endosomes Control Phagosomal Maturation in Dendritic Cells. Front Cell Dev Biol 2020; 8:585713. [PMID: 33425891 PMCID: PMC7793786 DOI: 10.3389/fcell.2020.585713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DCs) contribute to the immune surveillance by sampling their environment through phagocytosis and endocytosis. We have previously reported that, rapidly following uptake of extracellular antigen into phagosomes or endosomes in DCs, a specialized population of storage endosomes marked by Rab14 and insulin-regulated aminopeptidase (IRAP) is recruited to the nascent antigen-containing compartment, thereby regulating its maturation and ultimately antigen cross-presentation to CD8+ T lymphocytes. Here, using IRAP–/– DCs, we explored how IRAP modulates phagosome maturation dynamics and cross-presentation. We find that in the absence of IRAP, phagosomes acquire more rapidly late endosomal markers, are more degradative, and show increased microbicidal activity. We also report evidence for a role of vesicle trafficking from the endoplasmic reticulum (ER)–Golgi intermediate compartment to endosomes for the formation or stability of the IRAP compartment. Moreover, we dissect the dual role of IRAP as a trimming peptidase and a critical constituent of endosome stability. Experiments using a protease-dead IRAP mutant and pharmacological IRAP inhibition suggest that IRAP expression but not proteolytic activity is required for the formation of storage endosomes and for DC-typical phagosome maturation, whereas proteolysis is required for fully efficient cross-presentation. These findings identify IRAP as a key factor in cross-presentation, trimming peptides to fit the major histocompatibility complex class-I binding site while preventing their destruction through premature phagosome maturation.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Irini Evnouchidou
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France.,Inovarion, Paris, France
| | - Myriam Lawand
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Loredana Saveanu
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| |
Collapse
|
34
|
Tullett KM, Tan PS, Park HY, Schittenhelm RB, Michael N, Li R, Policheni AN, Gruber E, Huang C, Fulcher AJ, Danne JC, Czabotar PE, Wakim LM, Mintern JD, Ramm G, Radford KJ, Caminschi I, O'Keeffe M, Villadangos JA, Wright MD, Blewitt ME, Heath WR, Shortman K, Purcell AW, Nicola NA, Zhang JG, Lahoud MH. RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. eLife 2020; 9:63452. [PMID: 33264090 PMCID: PMC7710356 DOI: 10.7554/elife.63452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.
Collapse
Affiliation(s)
- Kirsteen M Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Peck Szee Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Hae-Young Park
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Nicole Michael
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Rong Li
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Antonia N Policheni
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Emily Gruber
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Alex J Fulcher
- Monash Micro Imaging Facility, Monash University, Clayton, Australia
| | - Jillian C Danne
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Georg Ramm
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Kristen J Radford
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Meredith O'Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Molecular Biology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Melbourne, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - William R Heath
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
35
|
Øynebråten I. Involvement of autophagy in MHC class I antigen presentation. Scand J Immunol 2020; 92:e12978. [PMID: 32969499 PMCID: PMC7685157 DOI: 10.1111/sji.12978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Abstract
MHC class I molecules on the cellular surface display peptides that either derive from endogenous proteins (self or viral), or from endocytosis of molecules, dying cells or pathogens. The conventional antigen‐processing pathway for MHC class I presentation depends on proteasome‐mediated degradation of the protein followed by transporter associated with antigen‐processing (TAP)‐mediated transport of the generated peptides into the endoplasmic reticulum (ER). Here, peptides are loaded onto MHC I molecules before transportation to the cell surface. However, several alternative mechanisms have emerged. These include TAP‐independent mechanisms, the vacuolar pathway and involvement of autophagy. Autophagy is a cell intrinsic recycling system. It also functions as a defence mechanism that removes pathogens and damaged endocytic compartments from the cytosol. Therefore, it appears likely that autophagy would intersect with the MHC class I presentation pathway to alarm CD8+ T cells of an ongoing intracellular infection. However, the importance of autophagy as a source of antigen for presentation on MHC I molecules remains to be defined. Here, original research papers which suggest involvement of autophagy in MHC I antigen presentation are reviewed. The antigens are from herpesvirus, cytomegalovirus and chlamydia. The studies point towards autophagy as important in MHC class I presentation of endogenous proteins during conditions of immune evasion. Because autophagy is a regulated process which is induced upon activation of, for example, pattern recognition receptors (PRRs), it will be crucial to use relevant stimulatory conditions together with primary cells when aiming to confirm the importance of autophagy in MHC class I antigen presentation in future studies.
Collapse
Affiliation(s)
- Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
36
|
Apavaloaei A, Hardy MP, Thibault P, Perreault C. The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers (Basel) 2020; 12:E2607. [PMID: 32932620 PMCID: PMC7565792 DOI: 10.3390/cancers12092607] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The dominant paradigm holds that spontaneous and therapeutically induced anti-tumor responses are mediated mainly by CD8 T cells and directed against tumor-specific antigens (TSAs). The presence of specific TSAs on cancer cells can only be proven by mass spectrometry analyses. Bioinformatic predictions and reverse immunology studies cannot provide this type of conclusive evidence. Most TSAs are coded by unmutated non-canonical transcripts that arise from cancer-specific epigenetic and splicing aberrations. When searching for TSAs, it is therefore important to perform mass spectrometry analyses that interrogate not only the canonical reading frame of annotated exome but all reading frames of the entire translatome. The majority of aberrantly expressed TSAs (aeTSAs) derive from unstable short-lived proteins that are good substrates for direct major histocompatibility complex (MHC) I presentation but poor substrates for cross-presentation. This is an important caveat, because cancer cells are poor antigen-presenting cells, and the immune system, therefore, depends on cross-presentation by dendritic cells (DCs) to detect the presence of TSAs. We, therefore, postulate that, in the untreated host, most aeTSAs are undetected by the immune system. We present evidence suggesting that vaccines inducing direct aeTSA presentation by DCs may represent an attractive strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.); (M.-P.H.)
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.); (M.-P.H.)
| |
Collapse
|
37
|
Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machinery. Cancers (Basel) 2020; 12:cancers12092403. [PMID: 32847079 PMCID: PMC7565485 DOI: 10.3390/cancers12092403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/21/2023] Open
Abstract
Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades. Biophysical and biochemical fingerprints of tumor micromilieus show significant spatiotemporal differences in comparison to non-neoplastic tissue. In tumors, low pH (mainly due to extracellular lactate accumulation via the Warburg effect and via glutaminolysis) and high oncotic and osmotic pressure (resulting from tumor debris, increased extracellular matrix components but in part also triggered by nutritive aspects) are—despite fluctuations and difficulties in measurement—likely the most constant general hallmarks of tumor microenvironment. Here, we focus on the influence of acidic and hypertonic micromilieu on the capacity of DCs to cross-present tumor-specific antigens. We discuss complex and in part controversial scientific data on the interference of these factors with to date reported mechanisms of antigen uptake, processing and cross-presentation, and we highlight their potential role in cancer immune escape and poor clinical response to DC vaccines.
Collapse
|
38
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Goebel T, Mausbach S, Tuermer A, Eltahir H, Winter D, Gieselmann V, Thelen M. Proteaphagy in Mammalian Cells Can Function Independent of ATG5/ATG7. Mol Cell Proteomics 2020; 19:1120-1131. [PMID: 32299840 PMCID: PMC7338089 DOI: 10.1074/mcp.ra120.001983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/04/2020] [Indexed: 01/31/2023] Open
Abstract
The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), β-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Because these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.
Collapse
Affiliation(s)
- Tatjana Goebel
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Simone Mausbach
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Andreas Tuermer
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Heba Eltahir
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn.
| |
Collapse
|
40
|
Olson E, Geng J, Raghavan M. Polymorphisms of HLA-B: influences on assembly and immunity. Curr Opin Immunol 2020; 64:137-145. [PMID: 32619904 PMCID: PMC7772265 DOI: 10.1016/j.coi.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
The major histocompatibility class I (MHC-I) complex functions in innate and adaptive immunity, mediating surveillance of the subcellular environment. In humans, MHC-I heavy chains are encoded by three genes: the human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. These genes are highly polymorphic, which results in the expression, typically, of six different HLA class I (HLA-I) proteins on the cell surface, and the presentation of diverse peptide antigens to CD8+ T cells for broad surveillance against many pathogenic conditions. Recent studies of HLA-B allotypes show that the polymorphisms, not surprisingly, also significantly impact protein folding and assembly pathways. The use of non-canonical assembly routes and the generation of non-canonical HLA-B conformers has consequences for immune receptor interactions and disease therapies.
Collapse
Affiliation(s)
- Eli Olson
- Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
42
|
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr Opin Immunol 2020; 64:9-14. [PMID: 31935516 DOI: 10.1016/j.coi.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Altered and infected cells are eliminated by CD8+ cytotoxic T lymphocytes. This requires production of antigenic peptides mostly in the cytosol, transport to the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), and cell surface presentation by major histocompatibility complex class I (MHC-I). Strikingly, antigen presentation occurs without TAP, although it is inefficient and associated to human pathology. TAP-independent peptides derive both from membrane and secreted proteins, as well as cytosolic ones. The efficiency of TAP-independent presentation may be impacted by the availability of receptive MHC-I, and in turn by the functional presence in the ER of the peptide-loading complex, itself anchored on TAP. Without TAP, surface expression of human leukocyte antigen (HLA)-B allotypes varies widely, with those presenting a broader peptide repertoire among the most TAP-independent. Much remains to be learned on the alternative cellular pathways for antigen presentation in the absence of TAP.
Collapse
Affiliation(s)
- Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Luis C Antón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Víctor Muñoz-Abad
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
43
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|
44
|
Monitoring antigen cross-presentation by human dendritic cells purified from peripheral blood. Methods Enzymol 2020; 635:283-305. [DOI: 10.1016/bs.mie.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Imai J, Otani M, Sakai T. Distinct Subcellular Compartments of Dendritic Cells Used for Cross-Presentation. Int J Mol Sci 2019; 20:ijms20225606. [PMID: 31717517 PMCID: PMC6888166 DOI: 10.3390/ijms20225606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) present exogenous protein-derived peptides on major histocompatibility complex class I molecules to prime naïve CD8+ T cells. This DC specific ability, called cross-presentation (CP), is important for the activation of cell-mediated immunity and the induction of self-tolerance. Recent research revealed that endoplasmic reticulum-associated degradation (ERAD), which was first identified as a part of the unfolded protein response—a quality control system in the ER—plays a pivotal role in the processing of exogenous proteins in CP. Moreover, DCs express a variety of immuno-modulatory molecules and cytokines to regulate T cell activation in response to the environment. Although both CP and immuno-modulation are indispensable, contrasting ER conditions are required for their correct activity. Since ERAD substrates are unfolded proteins, their accumulation may result in ER stress, impaired cell homeostasis, and eventually apoptosis. In contrast, activation of the unfolded protein response should be inhibited for DCs to express immuno-modulatory molecules and cytokines. Here, we review recent advances on antigen CP, focusing on intracellular transport routes for exogenous antigens and distinctive subcellular compartments involved in ERAD.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
46
|
Abstract
Our understanding of the mechanisms by which peptides from proteins present in phagosomes and endosomes are processed and presented on MHC class I molecules, in a pathway called cross-presentation, is still incomplete. One of the main questions arising from currently proposed models is how do proteins in the phagosome lumen reach the proteasome in the cytoplasm to be processed properly. In this issue of The EMBO Journal, Sengupta et al (2019) present evidence for a surprising turn of events where, in fact, the proteasome acts within the lumen of endosomes and phagosomes.
Collapse
Affiliation(s)
- Michel Desjardins
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
Sengupta D, Graham M, Liu X, Cresswell P. Proteasomal degradation within endocytic organelles mediates antigen cross-presentation. EMBO J 2019; 38:e99266. [PMID: 31271236 DOI: 10.15252/embj.201899266] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 11/09/2022] Open
Abstract
During MHC-I-restricted antigen processing, peptides generated by cytosolic proteasomes are translocated by the transporter associated with antigen processing (TAP) into the endoplasmic reticulum, where they bind to newly synthesized MHC-I molecules. Dendritic cells and other cell types can also generate MHC-I complexes with peptides derived from internalized proteins, a process called cross-presentation. Here, we show that active proteasomes within cross-presenting cell phagosomes can generate these peptides. Active proteasomes are detectable within endocytic compartments in mouse bone marrow-derived dendritic cells. In TAP-deficient mouse dendritic cells, cross-presentation is enhanced by the introduction of human β2 -microglobulin, which increases surface expression of MHC-I and suggests a role for recycling MHC-I molecules. In addition, surface MHC-I can be reduced by proteasome inhibition and stabilized by MHC-I-restricted peptides. This is consistent with constitutive proteasome-dependent but TAP-independent peptide loading in the endocytic pathway. Rab-GTPase mutants that restrain phagosome maturation increase proteasome recruitment and enhance TAP-independent cross-presentation. Thus, phagosomal/endosomal binding of peptides locally generated by proteasomes allows cross-presentation to generate MHC-I-peptide complexes identical to those produced by conventional antigen processing.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|