1
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Benedetti R, Di Crosta M, D’Orazi G, Cirone M. Post-Translational Modifications (PTMs) of mutp53 and Epigenetic Changes Induced by mutp53. BIOLOGY 2024; 13:508. [PMID: 39056701 PMCID: PMC11273943 DOI: 10.3390/biology13070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Michele Di Crosta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| |
Collapse
|
3
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Chen Y, Zhu H, Luo Y, Tong S, Liu Y. EZH2: The roles in targeted therapy and mechanisms of resistance in breast cancer. Biomed Pharmacother 2024; 175:116624. [PMID: 38670045 DOI: 10.1016/j.biopha.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Drug resistance presents a formidable challenge in the realm of breast cancer therapy. Accumulating evidence suggests that enhancer of zeste homolog 2 (EZH2), a component of the polycomb repressive complex 2 (PRC2), may serve as a key regulator in controlling drug resistance. EZH2 overexpression has been observed in breast cancer and many other malignancies, showing a strong correlation with poor outcomes. This review aims to summarize the mechanisms by which EZH2 regulates drug resistance, with a specific focus on breast cancer, in order to provide a comprehensive understanding of the underlying molecular processes. Additionally, we will discuss the current strategies and outcomes of targeting EZH2 using both single agents and combination therapies, with the goal of offering improved guidance for the clinical treatment of breast cancer patients who have developed drug resistance.
Collapse
Affiliation(s)
- Yun Chen
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hongyan Zhu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yi Luo
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Biotheus Inc., Guangdong Province, Zhuhai 519080, PR China.
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Karras P, Black JRM, McGranahan N, Marine JC. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 2024; 629:543-554. [PMID: 38750233 DOI: 10.1038/s41586-024-07302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Collapse
Affiliation(s)
- Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - James R M Black
- Cancer Genome Evolution Research Group, UCL Cancer Institute, London, UK
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Dai D, Yu J, Gou W, Yang S, Li Y, Wang Z, Yang Z, Huang T, Li P, Zhu T, Hou W, Zhao Y, Xu W, Li Y. Novel CDK19-Targeted Radiotracers: A Potential Design Strategy to Improve the Pharmacokinetics and Tumor Uptake. J Med Chem 2024; 67:6726-6737. [PMID: 38570733 DOI: 10.1021/acs.jmedchem.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cyclin-dependent kinase 19 (CDK19) is overexpressed in prostate cancer, making it an attractive target for both imaging and therapy. Since little is known about the optimized approach for radioligands of nuclear proteins, linker optimization strategies were used to improve pharmacokinetics and tumor absorption, including the adjustment of the length, flexibility/rigidity, and hydrophilicity/lipophilicity of linkers. Molecular docking was conducted for virtual screening and followed by IC50 determination. Both BALB/c mice and P-16 xenografts were used for tissue distribution and PET/CT imaging. The ligand 68Ga-10c demonstrated high absorption in tumor 5 min after injection and sustains long-term imaging within 3 h. Furthermore, 68Ga-10c exhibited slow clearance within the tumor and was predominantly metabolized in both the liver and kidneys, showing the potential to alleviate metabolic pressure and enhance tissue safety. Therefore, the linker optimization strategy is well suited for CDK19 and provides a reference for the radioactive ligands of other nuclear targets.
Collapse
Affiliation(s)
- Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Jiang Yu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Shuangmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yanli Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ziyang Wang
- Department of Molecular Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Zhao Yang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Ting Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Panfeng Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
7
|
Kim DH, Siddiqui S, Jain P, Wang M, Thakral B, Li S, Miranda R, Vega F, Medeiros LJ, Ok CY. TP53 mutation is frequent in mantle cell lymphoma with EZH2 expression and have dismal outcome when both are present. Hum Pathol 2024; 146:1-7. [PMID: 38460798 DOI: 10.1016/j.humpath.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Enhancer of zeste homolog 2 (EZH2) expression is found in about 40% of mantle cell lymphoma (MCL) patients, which is associated with aggressive histology, high Ki-67 proliferation rate, p53 mutant pattern and inferior overall survival (OS). We conducted 11-gene (ATM, BIRC3, CCND1, KMT2C, KMT2D, NOTCH1, NOTCH2, RB1, TP53, TRAF2 and UBR5) next generation sequencing panel to shed more light on MCL with EZH2 expression (EZH2+ MCL). EZH2+ MCL more frequently harbor TP53 mutation compared to EZH2(-) MCL (41.2% vs. 19.1%, respectively, p = 0.045). TP53 mutation and EZH2 expression demonstrated overlapping features including aggressive histology, high Ki-67 proliferation rate and p53 mutant pattern by immunohistochemistry. Comparative analysis disclosed that EZH2 expression correlates with high Ki-67 proliferation rate irrespective of TP53 mutation. Aggressive histology is associated with EZH2 expression or TP53 mutation, possibly via independent mechanisms. p53 mutant pattern is due to TP53 mutation. MCL patients with EZH2 expression or TP53 mutation show inferior outcome and when both are present, patients have dismal outcome.
Collapse
Affiliation(s)
- Do Hwan Kim
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Saima Siddiqui
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Roberto Miranda
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Santasusagna S, Zhu S, Jawalagatti V, Carceles-Cordon M, Ertel A, Garcia-Longarte S, Song WM, Fujiwara N, Li P, Mendizabal I, Petrylak DP, Kelly WK, Reddy EP, Wang L, Schiewer MJ, Lujambio A, Karnes J, Knudsen KE, Cordon-Cardo C, Dong H, Huang H, Carracedo A, Hoshida Y, Rodriguez-Bravo V, Domingo-Domenech J. Master Transcription Factor Reprogramming Unleashes Selective Translation Promoting Castration Resistance and Immune Evasion in Lethal Prostate Cancer. Cancer Discov 2023; 13:2584-2609. [PMID: 37676710 PMCID: PMC10714140 DOI: 10.1158/2159-8290.cd-23-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Sandra Santasusagna
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Shijia Zhu
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Vijayakumar Jawalagatti
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | | | - Adam Ertel
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saioa Garcia-Longarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Won-Min Song
- Department of Genetics and Genome Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiyao Li
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Daniel P. Petrylak
- Department of Oncology, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - William Kevin Kelly
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liguo Wang
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Matthew J. Schiewer
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amaia Lujambio
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey Karnes
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Karen E. Knudsen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlos Cordon-Cardo
- Department of Pathology. Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Haidong Dong
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Immunology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Haojie Huang
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
- CIBERONC, Madrid, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Yujin Hoshida
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
10
|
Kim SJ, Kiser PK, Asfaha S, DeKoter RP, Dick FA. EZH2 inhibition stimulates repetitive element expression and viral mimicry in resting splenic B cells. EMBO J 2023; 42:e114462. [PMID: 37934086 PMCID: PMC10711652 DOI: 10.15252/embj.2023114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of BiochemistryWestern UniversityLondonONCanada
| | - Patti K Kiser
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Samuel Asfaha
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Department of MedicineWestern UniversityLondonONCanada
| | - Rodney P DeKoter
- Department of Microbiology & ImmunologyWestern UniversityLondonONCanada
| | - Frederick A Dick
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
11
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
12
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
13
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Tang C, Lv Y, Ding K, Cao Y, Ma Z, Yang L, Zhang Q, Zhou H, Wang Y, Liu Z, Cao X. Comprehensive Pan-Cancer Analysis of MTF2 Effects on Human Tumors. Curr Probl Cancer 2023; 47:100957. [PMID: 37027952 DOI: 10.1016/j.currproblcancer.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Understanding oncogenic processes and underlying mechanisms to advance research into human tumors is critical for effective treatment. Studies have shown that Metal regulatory transcription factor 2(MTF2) drives malignant progression in liver cancer and glioma. However, no systematic pan-cancer analysis of MTF2 has been performed. Here, we use University of California Santa Cruz, Cancer Genome Atlas , Genotype-Tissue Expression data, Tumor Immune Estimation Resource, and Clinical Proteomic Tumor Analysis Consortium bioinformatics tools to explore differential expression of MTF2 across different tumor types. MTF2 was found to be highly expressed in the cancer lines that were available through the respective databases included in the study, and overexpression of MTF2 may lead to a poor prognosis in tumor patients such as glioblastoma multiforme, brain lower grade glioma, KIPAN, LIHC, adrenocortical carcinoma, etc. We also validated MTF2 mutations in cancer, compared MTF2 methylation levels in normal and primary tumor tissues, analyzed the association of MTF2 with the immune microenvironment, and validated the functional role of MTF2 in glioma U87 and U251 and breast cancer MDA-MB-231 cell lines by cytometry. This also indicates that MTF2 has a promising application prospect in cancer treatment.
Collapse
|
15
|
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A Brief Review on Chemoresistance; Targeting Cancer Stem Cells as an Alternative Approach. Int J Mol Sci 2023; 24:ijms24054487. [PMID: 36901917 PMCID: PMC10003376 DOI: 10.3390/ijms24054487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The acquisition of resistance to traditional chemotherapy and the chemoresistant metastatic relapse of minimal residual disease both play a key role in the treatment failure and poor prognosis of cancer. Understanding how cancer cells overcome chemotherapy-induced cell death is critical to improve patient survival rate. Here, we briefly describe the technical approach directed at obtaining chemoresistant cell lines and we will focus on the main defense mechanisms against common chemotherapy triggers by tumor cells. Such as, the alteration of drug influx/efflux, the enhancement of drug metabolic neutralization, the improvement of DNA-repair mechanisms, the inhibition of apoptosis-related cell death, and the role of p53 and reactive oxygen species (ROS) levels in chemoresistance. Furthermore, we will focus on cancer stem cells (CSCs), the cell population that subsists after chemotherapy, increasing drug resistance by different processes such as epithelial-mesenchymal transition (EMT), an enhanced DNA repair machinery, and the capacity to avoid apoptosis mediated by BCL2 family proteins, such as BCL-XL, and the flexibility of their metabolism. Finally, we will review the latest approaches aimed at decreasing CSCs. Nevertheless, the development of long-term therapies to manage and control CSCs populations within the tumors is still necessary.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Aitor González-Titos
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Correspondence: (P.H.-C.); (M.P.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine, Institute (IBIMER), University of Granada, Centre for Biomedical Research (CIBM), 18071 Granada, Spain
- Correspondence: (P.H.-C.); (M.P.)
| |
Collapse
|
16
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
17
|
Guo Y, Yu Y, Wang GG. Polycomb Repressive Complex 2 in Oncology. Cancer Treat Res 2023; 190:273-320. [PMID: 38113005 DOI: 10.1007/978-3-031-45654-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Wang J, Park KS, Yu X, Gong W, Earp HS, Wang G, Jin J, Cai L. A cryptic transactivation domain of EZH2 binds AR and AR's splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res 2022; 50:10929-10946. [PMID: 36300627 PMCID: PMC9638897 DOI: 10.1093/nar/gkac861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 12/26/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2) and androgen receptor (AR) are crucial chromatin/gene regulators involved in the development and/or progression of prostate cancer, including advanced castration-resistant prostate cancer (CRPC). To sustain prostate tumorigenicity, EZH2 establishes non-canonical biochemical interaction with AR for mediating oncogene activation, in addition to its canonical role as a transcriptional repressor and enzymatic subunit of Polycomb Repressive Complex 2 (PRC2). However, the molecular basis underlying non-canonical activities of EZH2 in prostate cancer remains elusive, and a therapeutic strategy for targeting EZH2:AR-mediated oncogene activation is also lacking. Here, we report that a cryptic transactivation domain of EZH2 (EZH2TAD) binds both AR and AR spliced variant 7 (AR-V7), a constitutively active AR variant enriched in CRPC, mediating assembly and/or recruitment of transactivation-related machineries at genomic sites that lack PRC2 binding. Such non-canonical targets of EZH2:AR/AR-V7:(co-)activators are enriched for the clinically relevant oncogenes. We also show that EZH2TAD is required for the chromatin recruitment of EZH2 to oncogenes, for EZH2-mediated oncogene activation and for CRPC growth in vitro and in vivo. To completely block EZH2's multifaceted oncogenic activities in prostate cancer, we employed MS177, a recently developed proteolysis-targeting chimera (PROTAC) of EZH2. Strikingly, MS177 achieved on-target depletion of both EZH2's canonical (EZH2:PRC2) and non-canonical (EZH2TAD:AR/AR-V7:co-activators) complexes in prostate cancer cells, eliciting far more potent antitumor effects than the catalytic inhibitors of EZH2. Overall, this study reports a previously unappreciated requirement for EZH2TAD for mediating EZH2's non-canonical (co-)activator recruitment and gene activation functions in prostate cancer and suggests EZH2-targeting PROTACs as a potentially attractive therapeutic for the treatment of aggressive prostate cancer that rely on the circuits wired by EZH2 and AR.
Collapse
Affiliation(s)
- Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG). Cancers (Basel) 2022; 14:4200. [PMID: 36077742 PMCID: PMC9454898 DOI: 10.3390/cancers14174200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.
Collapse
Affiliation(s)
- Chen Lyu
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
| | - Lili Wang
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Birgit Stadlbauer
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, D-81377 Munich, Germany
| | - Alexander Buchner
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| | - Heike Pohla
- Tumor Immunology Laboratory, LIFE Center, LMU Klinikum, University Munich, D-82152 Planegg, Germany
- Department of Urology, LMU Klinikum, University Munich, D-81377 Munich, Germany
| |
Collapse
|
20
|
Fan X, Gong M, Yu H, Yang H, Wang S, Wang R. Propofol enhances stem-like properties of glioma via GABA AR-dependent Src modulation of ZDHHC5-EZH2 palmitoylation mechanism. Stem Cell Res Ther 2022; 13:398. [PMID: 35927718 PMCID: PMC9351178 DOI: 10.1186/s13287-022-03087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Propofol is a commonly used anesthetic. However, its effects on glioma growth and recurrence remain largely unknown. Methods The effect of propofol on glioma growth was demonstrated by a series of in vitro and in vivo experiments (spheroidal formation assay, western blotting, and xenograft model). The acyl-biotin exchange method and liquid chromatography-mass spectrometry assays identified palmitoylation proteins mediated by the domain containing the Asp-His-His-Cys family. Western blotting, co-immunoprecipitation, quantitative real-time polymerase chain reaction, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were used to explore the mechanisms of the γ-aminobutyric acid receptor (GABAAR)/Src/ZDHHC5/EZH2 signaling axis in the effects of propofol on glioma stem cells (GSCs). Results We found that treatment with a standard dose of propofol promoted glioma growth in nude mice compared with control or low-dose propofol. Propofol-treated GSCs also led to larger tumor growth in nude mice than did vector-treated tumors. Mechanistically, propofol enhances the stem-like properties of gliomas through GABAAR to increase Src expression, thereby enhancing the palmitoylation of ZDHHC5-mediated EZH2 and Oct4 expression. Conclusion These results demonstrate that propofol may promote glioma growth through the GABAAR-Src-ZDHHC5-EZH2 mechanism and are helpful in guiding the clinical use of propofol to obtain a better patient prognosis after the surgical resection of tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03087-5.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China.
| | - Meiting Gong
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Huihan Yu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Haoran Yang
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China.
| | - Ruiting Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China.
| |
Collapse
|
21
|
TP53-Status-Dependent Oncogenic EZH2 Activity in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14143451. [PMID: 35884510 PMCID: PMC9320674 DOI: 10.3390/cancers14143451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Epigenetic alterations contribute to the aggressiveness and therapy resistance of Pancreatic Ductal Adenocarcinoma (PDAC). However, epigenetic regulators, including Enhancer of Zeste Homolog 2 (EZH2), reveal a strong context-dependent activity. Our study aimed to examine the context-defining molecular prerequisites of oncogenic EZH2 activity in PDAC to assess the therapeutic efficacy of targeting EZH2. Our preclinical study using diverse PDAC models demonstrates that the TP53 status determines oncogenic EZH2 activity. Only in TP53-wildtype (wt) PDAC subtypes was EZH2 blockade associated with a favorable PDAC prognosis mainly through cell-death response. We revealed that EZH2 depletion increases p53wt stability by the de-repression of CDKN2A. Therefore, our study provides preclinical evidence that an intact CDKN2A-p53wt axis is indispensable for a beneficial outcome of EZH2 depletion and highlights the significance of molecular stratification to improve epigenetic targeting in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) represents a lethal malignancy with a consistently poor outcome. Besides mutations in PDAC driver genes, the aggressive tumor biology of the disease and its remarkable therapy resistance are predominantly installed by potentially reversible epigenetic dysregulation. However, epigenetic regulators act in a context-dependent manner with opposing implication on tumor progression, thus critically determining the therapeutic efficacy of epigenetic targeting. Herein, we aimed at exploring the molecular prerequisites and underlying mechanisms of oncogenic Enhancer of Zeste Homolog 2 (EZH2) activity in PDAC progression. Preclinical studies in EZH2 proficient and deficient transgenic and orthotopic in vivo PDAC models and transcriptome analysis identified the TP53 status as a pivotal context-defining molecular cue determining oncogenic EZH2 activity in PDAC. Importantly, the induction of pro-apoptotic gene signatures and processes as well as a favorable PDAC prognosis upon EZH2 depletion were restricted to p53 wildtype (wt) PDAC subtypes. Mechanistically, we illustrate that EZH2 blockade de-represses CDKN2A transcription for the subsequent posttranslational stabilization of p53wt expression and function. Together, our findings suggest an intact CDKN2A-p53wt axis as a prerequisite for the anti-tumorigenic consequences of EZH2 depletion and emphasize the significance of molecular stratification for the successful implementation of epigenetic targeting in PDAC.
Collapse
|
22
|
Jiang Z, Cheng L, Wu Z, Zhou L, Wang H, Hong Q, Wu Q, Long Y, Huang Y, Xu G, Yao Y, Tang Z, Zhang Z, Yang L, Luo W, Yang J, Gong L, Liu P, Chen X, Cui S, Zhang Q, Li Y, Li P. Transforming primary human hepatocytes into hepatocellular carcinoma with genetically defined factors. EMBO Rep 2022; 23:e54275. [PMID: 35437924 PMCID: PMC9171684 DOI: 10.15252/embr.202154275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of human hepatocellular carcinoma (HCC) development and progression has been hampered by the lack of in vivo models. We performed a genetic screen of 10 oncogenes and genetic mutations in Fah-ablated immunodeficient mice in which primary human hepatocytes (PHHs) are used to reconstitute a functional human liver. We identified that MYC, TP53R249S , and KRASG12D are highly expressed in induced HCC (iHCC) samples. The overexpression of MYC and TP53R249S transform PHHs into iHCC in situ, though the addition of KRASG12D significantly increases the tumorigenic efficiency. iHCC, which recapitulate the histological architecture and gene expression characteristics of clinical HCC samples, reconstituted HCC after serial transplantations. Transcriptomic analysis of iHCC and PHHs showed that MUC1 and FAP are expressed in iHCC but not in normal livers. Chimeric antigen receptor (CAR) T cells against these two surface markers efficiently lyse iHCC cells. The properties of iHCC model provide a biological basis for several clinical hallmarks of HCC, and iHCC may serve as a model to study HCC initiation and to identify diagnostic biomarkers and targets for cellular immunotherapy.
Collapse
Affiliation(s)
- Zhiwu Jiang
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Lin Cheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou China
| | - Zhiping Wu
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Linfu Zhou
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Haitao Wang
- Cancer Center Faculty of Health Sciences University of Macau Macau China
| | - Qilan Hong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou China
| | - Qiting Wu
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Youguo Long
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yunlin Huang
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Gaoqi Xu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou China
| | - Yao Yao
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | | | - Zhenfeng Zhang
- The Second Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Lili Yang
- Department of Nutrition Guangdong Provincial Key Laboratory of Food School of Public Health Sun Yat‐sen University Guangzhou China
| | - Wei Luo
- Clinical Research Institute The First People's Hospital of Foshan Foshan Guangdong China
| | - Jie Yang
- Guangdong Women and Children Hospital Panyu, Guangzhou China
| | - Likun Gong
- Shanghai Institute of Materia Medica Chinese Academy of Sciences, Zhang Jiang Hi‐Tech Park Shanghai China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Xinwen Chen
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Shuzhong Cui
- Cancer Hospital and Institute of Guangzhou Medical University Guangzhou China
| | - Qi Zhang
- Guangdong Key Laboratory of Liver Disease Research The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yinxiong Li
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Peng Li
- China‐New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou China
- Centre for Regenerative Medicine and Health Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong China
| |
Collapse
|
23
|
Ji Y, Xu X, Long C, Wang J, Ding L, Zheng Z, Wu H, Yang L, Tao L, Gao F. SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Cell Death Dis 2022; 8:274. [PMID: 35668081 PMCID: PMC9170715 DOI: 10.1038/s41420-022-01038-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
SMYD2, as an oncogene, has been involved in multiple types of cancer, but the potential role of SMYD2 in gastrointestinal stromal tumors (GIST) remains enigmatic and requires further investigation. Hence, this study was conducted with the main objective of analyzing the effect of SMYD2 on GIST. GIST and adjacent normal tissues were collected from 46 patients with GIST where the expression of EZH2, SMYD2, and TET1 was determined, followed by the analysis of their interactions. The functional role of SMYD2 in cell biological functions was determined using a loss-of-function assay in GIST-T1 cells. Nude mouse xenograft experiments were performed to verify the role of the SMYD2/EZH2/TET1 axis in GIST in vivo. EZH2 was upregulated in GIST tissues and cell lines, which was positively correlated with SMYD2 expression and inversely correlated with TET1 expression in GIST tissues. EZH2 silencing due to SMYD2 inhibition reduced GIST-T1 cell proliferation and accelerated cell senescence. EZH2 repressed TET1 expression by promoting H3K27me3 methylation in the TET1 promoter region. TET1 inhibition reversed the effect of EZH2 silencing on the biological functions of GIST-T1 cells. In vivo data further revealed the promoting effect of SMYD2 on the progression of GIST by regulating the EZH2/TET1 axis. Overall, this study demonstrates that SMYD2 can increase EZH2 expression while suppressing TET1 expression, thus accelerating GIST, and creating new treatment opportunities for GIST.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Gastrointestinal Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Xiaofeng Xu
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Cong Long
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Jianjiang Wang
- Department of General Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Zhizhong Zheng
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Huiping Wu
- Department of Science and Education, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Liu Yang
- Department of Clinical Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Lan Tao
- Central Laboratory, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China
| | - Feng Gao
- Department of General Surgery, Jingjiang People's Hospital, 214500, Jingjiang, P.R. China.
| |
Collapse
|
24
|
Schitcu VH, Raduly L, Nutu A, Zanoaga O, Ciocan C, Munteanu VC, Cojocneanu R, Petrut B, Coman I, Braicu C, Berindan-Neagoe I. MicroRNA Dysregulation in Prostate Cancer. Pharmgenomics Pers Med 2022; 15:177-193. [PMID: 35300057 PMCID: PMC8923686 DOI: 10.2147/pgpm.s348565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer biology is complex, and needs to be deciphered. The latest evidence reveals the significant role of non-coding RNAs, particularly microRNAs (miRNAs), as key regulatory factors in cancer. Therefore, the identification of altered miRNA patterns involved in prostate cancer will allow them to be used for development of novel diagnostic and prognostic biomarkers. Patients and Methods: We performed a miRNAs transcriptomic analysis, using microarray (10 matched pairs tumor tissue versus normal adjacent tissue, selected based on inclusion criteria), followed by overlapping with TCGA data. A total of 292 miRNAs were differentially expressed, with 125 upregulated and 167 downregulated in TCGA patients’ cohort with PRAD (prostate adenocarcinoma), respectively for the microarray experiments; 16 upregulated and 44 downregulated miRNAs were found in our cohort. To confirm our results obtained for tumor tissue, we performed validation with qRT-PCR at the tissue and plasma level of two selected transcripts, and finally, we focused on the identification of altered miRNAs involved in key biological processes. Results: A common signature identified a panel of 12 upregulated and 1 downregulated miRNA, targeting and interconnected in a network with the TP53, AGO2, BIRC5 gene and EGFR as a core element. Among this signature, the overexpressed transcripts (miR-20b-5p, miR-96-5p, miR-183-5p) and the downregulated miR-542-5p were validated by qRT-PCR in an additional patients’ cohort of 34 matched tumor and normal adjacent paired samples. Further, we performed the validation of the expression level for miR-20b-5p, miR-96-5p, miR-183-5p plasma, on the same patients’ cohort versus a healthy control group, confirming the overexpression of these transcripts in the PRAD group, demonstrating the liquid biopsy as a potential investigational tool in prostate cancer. Conclusion: In this pilot study, we provide evidence on miRNA dysregulation and its association with key functional components of the PRAD landscape, where an important role is acted by miR-20b-5p, miR-542-5p, or the oncogenic cluster miR-183-96-182.
Collapse
Affiliation(s)
- Vlad Horia Schitcu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Vlad Cristian Munteanu
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Bogdan Petrut
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Ioan Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Correspondence: Cornelia Braicu, Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gh. Marinescu Street, Cluj-Napoca, 400337, Romania, Tel +40-264-597-256, Fax +40-264-597-257, Email ;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| |
Collapse
|
25
|
Sienkiewicz K, Yang C, Paschal BM, Ratan A. Genomic analyses of the metastasis-derived prostate cancer cell lines LNCaP, VCaP, and PC3-AR. Prostate 2022; 82:442-451. [PMID: 34951700 PMCID: PMC8792310 DOI: 10.1002/pros.24290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The lymph node metastasis-derived LNCaP, the bone metastasis-derived PC3 (skull), and VCaP (vertebral) cell lines are widely used as preclinical models of human prostate cancer (CaP) and have been described in more than 19,000 publications. Here, we report on short-read whole-genome sequencing and genomic analyses of LNCaP, VCaP, and PC3 cells stably transduced with WT AR (PC3-AR). METHODS LNCaP, VCaP, and PC3-AR cell lines were sequenced to an average depth of more than 30-fold using Illumina short-read sequencing. Using various computational methods, we identified and compared the single-nucleotide variants, copy-number profiles, and the structural variants observed in the three cell lines. RESULTS LNCaP cells are composed of multiple subpopulations, which results in nonintegral copy number states and a high mutational load when the data is analyzed in bulk. All three cell lines contain pathogenic mutations and homozygous deletions in genes involved in DNA mismatch repair, along with deleterious mutations in cell-cycle, Wnt signaling, and other critical cellular processes. PC3-AR cells have a truncating mutation in TP53 and do not express the p53 protein. The VCaP cells contain a homozygous gain-of-function mutation in TP53 (p.R248W) that promotes cancer invasion, metastasis, and progression and has also been observed in prostate adenocarcinomas. In addition, we detect the signatures of chromothripsis of the q arms of chromosome 5 in both PC3-AR and VCaP cells, strengthening the association of TP53 inactivation with chromothripsis reported in other systems. CONCLUSIONS Our work provides a resource for genetic, genomic, and biological studies employing these commonly-used prostate cancer cell lines.
Collapse
Affiliation(s)
| | - Chunsong Yang
- Center for Cell Signaling, University of Virginia, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Virginia, USA
| | - Bryce M. Paschal
- Center for Cell Signaling, University of Virginia, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Virginia, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Virginia, USA
- Department of Public Health Sciences, University of Virginia, Virginia, USA
| |
Collapse
|
26
|
Zhao Y, Guan YY, Zhao F, Yu T, Zhang SJ, Zhang YZ, Duan YC, Zhou XL. Recent strategies targeting Embryonic Ectoderm Development (EED) for cancer therapy: Allosteric inhibitors, PPI inhibitors, and PROTACs. Eur J Med Chem 2022; 231:114144. [DOI: 10.1016/j.ejmech.2022.114144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
|
27
|
EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 2022; 24:384-399. [PMID: 35210568 PMCID: PMC9710513 DOI: 10.1038/s41556-022-00850-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.
Collapse
|
28
|
Han W, Liu M, Han D, Li M, Toure AA, Wang Z, Besschetnova A, Patalano S, Macoska JA, Gao S, He HH, Cai C. RB1 loss in castration-resistant prostate cancer confers vulnerability to LSD1 inhibition. Oncogene 2022; 41:852-864. [PMID: 34975152 PMCID: PMC8818029 DOI: 10.1038/s41388-021-02135-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
Genomic loss of RB1 is a common alteration in castration-resistant prostate cancer (CRPC) and is associated with poor patient outcomes. RB1 loss is also a critical event that promotes the neuroendocrine transdifferentiation of prostate cancer (PCa) induced by the androgen receptor (AR) signaling inhibition (ARSi). The loss of Rb protein disrupts the Rb-E2F repressor complex and thus hyperactivates E2F transcription activators. While the impact of Rb inactivation on PCa progression and linage plasticity has been previously studied, there is a pressing need to fully understand underlying mechanisms and identify vulnerabilities that can be therapeutically targeted in Rb-deficient CRPC. Using an integrated cistromic and transcriptomic analysis, we have characterized Rb activities in multiple CRPC models by identifying Rb-directly regulated genes and revealed that Rb has distinct binding sites and targets in CRPC with different genomic backgrounds. Significantly, we show that E2F1 chromatin binding and transcription activity in Rb-deficient CRPC are highly dependent on LSD1/KDM1A, and that Rb inactivation sensitizes CRPC tumor to the LSD1 inhibitor treatment. These results provide new molecular insights into Rb activity in PCa progression and suggest that targeting LSD1 activity with small molecule inhibitors may be a potential treatment strategy to treat Rb-deficient CRPC.
Collapse
Affiliation(s)
- Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Anthia A Toure
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Anna Besschetnova
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA.
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
29
|
Dong Y, Lin X, Kapoor A, Gu Y, Xu H, Major P, Tang D. Insights of RKIP-Derived Suppression of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13246388. [PMID: 34945007 PMCID: PMC8699807 DOI: 10.3390/cancers13246388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite an intensive research effort in the past few decades, prostate cancer (PC) remains a top cause of cancer death in men, particularly in the developed world. The major cause of fatality is the progression of local prostate cancer to metastasis disease. Treatment of patients with metastatic prostate cancer (mPC) is generally ineffective. Based on the discovery of mPC relying on androgen for growth, many patients with mPC show an initial response to the standard of care: androgen deprivation therapy (ADT). However, lethal castration resistant prostate cancers (CRPCs) commonly develop. It is widely accepted that intervention of metastatic progression of PC is a critical point of intervention to reduce PC death. Accumulative evidence reveals a role of RKIP in suppression of PC progression towards mPC. We will review current evidence and discuss the potential utilization of RKIP in preventing mPC progression. Abstract Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms underpinning metastatic progression represents the overarching challenge in PC research. This progression is regulated by complex mechanisms, including those regulating PC cell proliferation, epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein (RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC. In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze RKIP’s tumor suppression actions in PC.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35168)
| |
Collapse
|
30
|
Martinez-Baquero D, Sakhdari A, Mo H, Kim DH, Kanagal-Shamanna R, Li S, Young KH, O'Malley DP, Dogan A, Jain P, Wang ML, McDonnell TJ, Miranda RN, Vega F, Medeiros LJ, Ok CY. EZH2 expression is associated with inferior overall survival in mantle cell lymphoma. Mod Pathol 2021; 34:2183-2191. [PMID: 34376807 PMCID: PMC10563799 DOI: 10.1038/s41379-021-00885-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic component of the polycomb repressive complex 2 (PRC2) which reduces gene expression via trimethylation of a lysine residue of histone 3 (H3K27me3). Expression of EZH2 has not been assessed systematically in mantle cell lymphoma (MCL). Expression of EZH2 was assessed by immunohistochemistry in 166 patients with MCL. We also assessed other PRC2 components and H3K27me3. Fifty-seven (38%) of MCL patients were positive for EZH2 using 40% cutoff. EZH2 expression was associated with aggressive histologic variants (65% vs. 29%, p < 0.001), high Ki-67 proliferation rate (median, 72% vs. 19%, p < 0.001), and p53 overexpression (43% vs. 2%, p < 0.001). EZH2 expression did not correlate with expression of other PRC2 components (EED and SUZ12), H3K27me3, MHC-I, and MHC-II. Patients with EZH2 expression (EZH2+) had a poorer overall survival (OS) compared with patients without EZH2 expression (EZH2-) (median OS: 3.9 years versus 9.4 years, respectively, p < 0.001). EZH2 expression also predicted a poorer prognosis in MCL patients with classic histology (median OS, 4.6 years for EZH2+ and 9.6 years for EZH2-negative, respectively, p < 0.001) as well as aggressive histology (median OS, 3.7 years for EZH2+ and 7.9 years for EZH2-negative, respectively, p = 0.046). However, EZH2 expression did not independently correlate with overall survival in a multivariate analysis. Gene expression analysis and pathway enrichment analysis demonstrated a significant enrichment in cell cycle and mitotic transition pathways in MCL with EZH2 expression. EZH2 expression detected by immunohistochemistry is present in 38% of MCL cases and it is associated with high proliferation rate, p53 overexpression, aggressive histologic variants, and poorer OS. Based on gene expression profiling data, EZH2 expression could potentiate cell cycle machinery in MCL. These data suggest that assessment of EZH2 expression could be useful to stratify MCL patients into low- and high-risk groups.
Collapse
Affiliation(s)
- Diana Martinez-Baquero
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ali Sakhdari
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Laboratory Medicine and Pathobiology, University Health Network, The University of Toronto, Toronto, ON, Canada
| | - Huan Mo
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Do Hwan Kim
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Division of Hematopathology and Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Dennis P O'Malley
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- NeoGenomics, Aliso Viejo, CA, USA
| | - Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Michael L Wang
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Timothy J McDonnell
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Gao X, Zhao N, Dong L, Zheng X, Zhang Y, Ding C, Zhao S, Ma Z, Wang Y. A Novel Lipid Prognostic Signature of ADCY2, LIPE, and OLR1 in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:735993. [PMID: 34900686 PMCID: PMC8655234 DOI: 10.3389/fonc.2021.735993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
SIMPLE SUMMARY Clinically, aberrant lipid metabolism is responsible for overweight and/or obesity. Overweight is considered as an independent factor of cancer risk in 2019. Therefore, lipid metabolic reprogramming is an emerging hallmark of malignancy. It is an urgent need to comprehensively understand the relationship among lipid metabolism and HNSCC and identify a valuable biomarker for predicting prognosis of HNSCC patients. Three new findings were found in this study. Firstly, we identified the lipid-related differentially expressed genes (DEGs) by using the GEO microarrays and TCGA dataset. A novel lipid-related mRNA prognostic signature (LRPS, consisting of ADCY2, LIPE and OLR1) was developed, which could predict the survival and prognosis of HNSCC patients as an independent effective prognostic factor. Secondly, we found that the LRPS could indicate the type of infiltrated immune cells in HNSCC tumor microenvironment. Thirdly, we verified that the LPPS score could interpret the TP53 status of HNSCC. Our new findings indicated that LRPS has a potential to be a promising indicator of overall survival, TP53 status, and immune characteristics in HNSCC, and perhaps can monitor and guide the treatment efficacy and prognosis of HNSCC in the future. BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is characterized by a high frequency of lymph node metastasis and a high mortality. Lipid metabolic reprogramming is an emerging carcinogen as its role in fulfilling cancer growth and spread. However, little is known about the correlation between lipid metabolism and HNSCC. MATERIALS AND METHODS Expressions of lipid-related genes were obtained from the Cancer Genome Atlas (TCGA) and Gene expression Omnibus (GEO) databases for differential and functional analyses. A total number of 498 patients from TCGA with complete information were included to identify a lipid-related prognostic signature (LRPS), based on ADCY2, LIPE, and OLR1, by using univariate and multivariate Cox regression analyses. LRPS-high and LRPS-low groups were accordingly divided to pathway and cell enrichment analyses. RESULTS LRS-low patients had a better overall survival and relapse - free survival than LRS-high ones in HNSCC. The LRPS-high group was significantly related to perineural invasion of cancer, cancer-related pathways, high TP53 mutation rate, high proportion of natural killer T cells (NKT), dendritic cells, monocytes, Treg, and M1 and M2 macrophage infiltration in HNSCC tumor tissues. Conversely, the LRPS-low group correlated with DNA damage-related and T-cell-regulated pathways, low frequency of mutated TP53, and high infiltration of B cells and CD4+ effector cells including Th1 and Th2. CONCLUSION LRPS has a potential to be a promising indicator of overall survival, prognosis, TP53 status, and immune characteristics in HNSCC.
Collapse
Affiliation(s)
- Xiaolei Gao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liying Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixin Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuyan Zhao
- The Fifth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
32
|
Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun 2021; 12:6276. [PMID: 34725325 PMCID: PMC8560912 DOI: 10.1038/s41467-021-26502-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a collection of biologically diverse cancers characterized by distinct transcriptional patterns, biology, and immune composition. TNBCs subtypes include two basal-like (BL1, BL2), a mesenchymal (M) and a luminal androgen receptor (LAR) subtype. Through a comprehensive analysis of mutation, copy number, transcriptomic, epigenetic, proteomic, and phospho-proteomic patterns we describe the genomic landscape of TNBC subtypes. Mesenchymal subtype tumors display high mutation loads, genomic instability, absence of immune cells, low PD-L1 expression, decreased global DNA methylation, and transcriptional repression of antigen presentation genes. We demonstrate that major histocompatibility complex I (MHC-I) is transcriptionally suppressed by H3K27me3 modifications by the polycomb repressor complex 2 (PRC2). Pharmacological inhibition of PRC2 subunits EZH2 or EED restores MHC-I expression and enhances chemotherapy efficacy in murine tumor models, providing a rationale for using PRC2 inhibitors in PD-L1 negative mesenchymal tumors. Subtype-specific differences in immune cell composition and differential genetic/pharmacological vulnerabilities suggest additional treatment strategies for TNBC. Triple negative breast cancer can be divided into additional subtypes. Here, using omics analyses, the authors show that in the mesenchymal subtype expression of MHC-1 is repressed and that this can be restored by using drugs that target subunits of the epigenetic modifier PRC2.
Collapse
|
33
|
Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 2021; 21:638-654. [PMID: 34131295 PMCID: PMC8463487 DOI: 10.1038/s41568-021-00365-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
The human proteome contains approximately 20,000 proteins, and it is estimated that more than 600 of them are functionally important for various types of cancers, including nearly 400 non-enzyme proteins that are challenging to target by traditional occupancy-driven pharmacology. Recent advances in the development of small-molecule degraders, including molecular glues and heterobifunctional degraders such as proteolysis-targeting chimeras (PROTACs), have made it possible to target many proteins that were previously considered undruggable. In particular, PROTACs form a ternary complex with a hijacked E3 ubiquitin ligase and a target protein, leading to polyubiquitination and degradation of the target protein. The broad applicability of this approach is facilitated by the flexibility of individual E3 ligases to recognize different substrates. The vast majority of the approximately 600 human E3 ligases have not been explored, thus presenting enormous opportunities to develop degraders that target oncoproteins with tissue, tumour and subcellular selectivity. In this Review, we first discuss the molecular basis of targeted protein degradation. We then offer a comprehensive account of the most promising degraders in development as cancer therapies to date. Lastly, we provide an overview of opportunities and challenges in this exciting field.
Collapse
Affiliation(s)
- Brandon Dale
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Cullgen Inc., San Diego, CA, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
The roles of epigenetics in cancer progression and metastasis. Biochem J 2021; 478:3373-3393. [PMID: 34520519 DOI: 10.1042/bcj20210084] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
Cancer metastasis remains a major clinical challenge for cancer treatment. It is therefore crucial to understand how cancer cells establish and maintain their metastatic traits. However, metastasis-specific genetic mutations have not been identified in most exome or genome sequencing studies. Emerging evidence suggests that key steps of metastasis are controlled by reversible epigenetic mechanisms, which can be targeted to prevent and treat the metastatic disease. A variety of epigenetic mechanisms were identified to regulate metastasis, including the well-studied DNA methylation and histone modifications. In the past few years, large scale chromatin structure alterations including reprogramming of the enhancers and chromatin accessibility to the transcription factors were shown to be potential driving force of cancer metastasis. To dissect the molecular mechanisms and functional output of these epigenetic changes, it is critical to use advanced techniques and alternative animal models for interdisciplinary and translational research on this topic. Here we summarize our current understanding of epigenetic aberrations in cancer progression and metastasis, and their implications in developing new effective metastasis-specific therapies.
Collapse
|
35
|
Li Y, Tian M, Zhang D, Zhuang Y, Li Z, Xie S, Sun K. Long Non-Coding RNA Myosin Light Chain Kinase Antisense 1 Plays an Oncogenic Role in Gallbladder Carcinoma by Promoting Chemoresistance and Proliferation. Cancer Manag Res 2021; 13:6219-6230. [PMID: 34393514 PMCID: PMC8357316 DOI: 10.2147/cmar.s323759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to play critical roles in human tumours, including gallbladder carcinoma (GBC). However, their biological functions and molecular mechanisms in tumorigenesis and progression remain largely unknown. Methods Quantitative polymerase chain reaction (qPCR) was used to verify the expression of lncRNA myosin light chain kinase antisense RNA 1 (MYLK-AS1) in 120 pairs of GBC tissues and paired adjacent non-tumour tissues, as well as in six different GBC cell lines (NOZ, EH-GB1, OCUG-1, GBC-SD, SGC-996 and QBC-939). Cell counting kit 8 was applied to explore cell proliferation and drug sensitivity assays. The target miRNAs (miR) of MYLK-AS1 and downstream target genes were predicted using Starbase 3.0 software and confirmed by double luciferase reporting test. The expression of proteins was assessed using Western blot assay. Results Here, we demonstrated that MYLK-AS1 was significantly upregulated and correlated with a poor prognosis and poor clinical characteristics in GBC. Furthermore, the forced expression of MYLK-AS1 significantly promoted GBC cell proliferation and resistance to gemcitabine in vitro. Mechanistically, MYLK-AS1 functioned as an efficient miR-217 sponge, thereby releasing the inhibition of enhancer of zeste 2 polycomb repressive complex 2 (EZH2) subunit expression. MYLK-AS1 promoted GBC cell proliferation and resistance to gemcitabine by upregulating EZH2 expression, and EZH2 was confirmed as a direct target of miR-217. Discussion Our results confirmed that the chemoresistant driver MYLK-AS1 might be a promising candidate as a therapeutic target for the treatment of advanced GBC.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Dongqing Zhang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yifei Zhuang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhimin Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shenqi Xie
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Keyu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
36
|
Tang Y, Zhao L, Yu X, Zhang J, Qian L, Jin J, Lu R, Zhou Y. Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming. Stem Cell Res 2021; 53:102365. [PMID: 34087994 PMCID: PMC8238038 DOI: 10.1016/j.scr.2021.102365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, until now, is still the leading cause of death in the United States. Due to the limited regenerative capacity of adult hearts, the damage caused by heart injury cannot be reversed and eventually progress into heart failure. In need of cardiovascular disease treatment, many therapies aimed at either cell transplantation or cell regeneration have been proposed. Direct reprogramming of somatic cells into induced cardiomyocytes (iCMs) is considered to be a promising strategy for regenerative medicine. The induction of cardiomyocytes from non-myocytes can be achieved efficiently via ectopic expression of reprogramming factors both in vitro and in vivo in the mouse model, however, the generation of human induced cardiomyocyte-like cells (hiCMs) remains challenging. The inefficiency of hiCMs production called for the identification of the additional epigenetic memories in non-myocytes which might be damping the hiCM reprogramming. Here, we conducted an unbiased loss-of-function screening focusing on epigenetic regulators and identified enhancer of zeste homolog 2 (EZH2) as an important epigenetic barrier during hiCM reprogramming. We found that the removal of EZH2 via genetic knockdown or treatment of EZH2 selective degrader significantly increased the hiCM reprogramming efficiency and led to profound activation of cardiac genes and repression of collagen and extracellular matrix genes. Furthermore, EZH2 inhibitors targeting its catalytic activity also promotes hiCM reprogramming, suggesting that EZH2 may restrain cardiac conversion through H3K27me3-mediated gene repression. Indeed, genomic profiling of H3K27me3 revealed a subset of cardiac genes that remain repressed with high levels of H3K27me3 despite of the delivery of the reprogramming factors. Inhibition of EZH2, however, leads to reduced H3K27me3 occupancy and robust activation of these cardiac genes. Taken together, our data suggested that EZH2 inhibition facilitates the activation of cardiac genes in fibroblasts and eases the production of hiCMs.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lianzhong Zhao
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
37
|
Guo J, Zhu H, Li Q, Dong J, Xiong W, Yu K. SPRY4 suppresses proliferation and induces apoptosis of colorectal cancer cells by repressing oncogene EZH2. Aging (Albany NY) 2021; 13:11665-11677. [PMID: 33879635 PMCID: PMC8109073 DOI: 10.18632/aging.202859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC), a common malignant tumor in the digestive tract, is a leading cause of cancer-related death. SPRY4 has been reported to act as a tumor suppressor gene in various tumors. This study aims to assess the role of SPRY4 in colorectal cancer (CRC) and uncover its underlying mechanisms. Firstly, the expression levels of SPRY4 were measured in CRC cell lines. SPRY4-overexpressing or silencing plasmids were transfected into CRC cells to regulate its expression level. CCK-8, colony formation, EdU assay, wound-healing and Transwell assays were performed to determine cell proliferation, invasion and migration abilities. Then, apoptosis was measured by flow cytometry analysis, and the expression of apoptosis-related protein was analyzed by western-blotting. Next, the in vivo tumorigenesis assay was performed in nude mice. According to the results, there was a lower expression of SPRY4 in CRC cell lines compared with normal cell line, and the overexpression of SPRY4 significantly suppressed cell proliferation, migration and invasion, and promoted apoptosis in SW480 cells. Moreover, the enhanced proliferation, invasion and migration upon SPRY4 silencing was reversed by EZH2 inhibition. In addition, we found that the overexpression of SPRY4 inhibited tumorigenesis in vivo by diminishing the size and weight of the tumors. Our study indicates that SPRY4 might be a potential tumor suppressor gene and prognostic factor for patients with CRC.
Collapse
Affiliation(s)
- Jia Guo
- Department of Gastroenterology, Sunshine Union Hospital, Weifang 261000, China
| | - Huadong Zhu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Qiang Li
- Department of Colorectal Cancer Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Jianhua Dong
- Department of Colorectal Cancer Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Wei Xiong
- Department of Colorectal Cancer Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Kun Yu
- Department of Colorectal Cancer Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| |
Collapse
|
38
|
A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation. Nat Cell Biol 2021; 23:341-354. [PMID: 33795875 DOI: 10.1038/s41556-021-00653-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
Dysregulated translation is a common feature of cancer. Uncovering its governing factors and underlying mechanism are important for cancer therapy. Here, we report that enhancer of zeste homologue 2 (EZH2), previously known as a transcription repressor and lysine methyltransferase, can directly interact with fibrillarin (FBL) to exert its role in translational regulation. We demonstrate that EZH2 enhances rRNA 2'-O methylation via its direct interaction with FBL. Mechanistically, EZH2 strengthens the FBL-NOP56 interaction and facilitates the assembly of box C/D small nucleolar ribonucleoprotein. Strikingly, EZH2 deficiency impairs the translation process globally and reduces internal ribosome entry site (IRES)-dependent translation initiation in cancer cells. Our findings reveal a previously unrecognized role of EZH2 in cancer-related translational regulation.
Collapse
|
39
|
Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, Zhao T. The noncanonical role of EZH2 in cancer. Cancer Sci 2021; 112:1376-1382. [PMID: 33615636 PMCID: PMC8019201 DOI: 10.1111/cas.14840] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2). Dysregulation of EZH2 causes alteration of gene expression and functions, thereby promoting cancer development. The regulatory function of EZH2 varies across different tumor types. The canonical role of EZH2 is gene silencing through catalyzing the trimethylation of lysine 27 of histone H3 (H3K27me3) in a PRC2-dependent manner. Accumulating evidence indicates that EZH2 has an H3K27me3-independent function as a transcriptional coactivator and plays a critical role in cancer initiation, development, and progression. In this review, we summarize the regulation and function of EZH2 and focus on the current understanding of the noncanonical role of EZH2 in cancer.
Collapse
Affiliation(s)
- Jinhua Huang
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Hongwei Gou
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Jia Yao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Kaining Yi
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Zhigang Jin
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious DiseaseGraduate School of Medical SciencesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tiejun Zhao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
- Laboratory of Virus ControlInstitute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| |
Collapse
|
40
|
Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, Wadhwani N, Aye JM, Stewart JE, Yoon KJ, Mroczek-Musulman E, Beierle EA. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS One 2021; 16:e0246244. [PMID: 33690617 PMCID: PMC7942994 DOI: 10.1371/journal.pone.0246244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karina J. Yoon
- Division of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
41
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F, Wang H. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Am J Cancer Res 2021; 11:361-378. [PMID: 33391480 PMCID: PMC7681085 DOI: 10.7150/thno.46360] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: As the central hallmark of liver fibrosis, transdifferentiation of hepatic stellate cells (HSCs), the predominant contributor to fibrogenic hepatic myofibroblast responsible for extracellular matrix (ECM) deposition, is characterized with transcriptional and epigenetic remodeling. We aimed to characterize the roles of H3K27 methyltransferase EZH2 and demethylase JMJD3 and identify their effective pathways and novel target genes in HSCs activation and liver fibrosis. Methods: In primary HSCs, we analyzed effects of pharmacological inhibitions and genetic manipulations of EZH2 and JMJD3 on HSCs activation. In HSCs cell lines, we evaluated effects of EZH2 inhibition by DZNep on proliferation, cell cycling, senescence and apoptosis. In CCl4 and BDL murine models of liver fibrosis, we assessed in vivo effects of DZNep administration and Ezh2 silencing. We profiled rat primary HSCs transcriptomes with RNA-seq, screened the pathways and genes associated with DZNep treatment, analyzed EZH2 and JMJD3 regulation towards target genes by ChIP-qPCR. Results: EZH2 inhibition by DZNep resulted in retarded growth, lowered cell viability, cell cycle arrest in S and G2 phases, strengthened senescence, and enhanced apoptosis of HSCs, decreased hepatic collagen deposition and rescued the elevated serum ALT and AST activities of diseased mice, and downregulated cellular and hepatic expressions of H3K27me3, EZH2, α-SMA and COL1A. Ezh2 silencing by RNA interference in vitro and in vivo showed similar effects. JMJD3 inhibition by GSK-J4 and overexpression of wild-type but not mutant Jmjd3 enhanced or repressed HSCs activation respectively. EZH2 inhibition by DZNep transcriptionally inactivated TGF-β1 pathway, cell cycle pathways and vast ECM components in primary HSCs. EZH2 inhibition decreased H3K27me3 recruitment at target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, and increased their expressions, while Jmjd3 overexpression manifested alike effects. Conclusions: EZH2 and JMJD3 antagonistically modulate HSCs activation. The therapeutic effects of DZNep as epigenetic drug in liver fibrosis are associated with the regulation of EZH2 towards direct target genes encoding TGF-β1 pseudoreceptor BAMBI, anti-inflammatory cytokine IL10 and cell cycle regulators CDKN1A, GADD45A and GADD45B, which are also regulated by JMJD3. Our present study provides new mechanistic insight into the epigenetic modulation of EZH2 and JMJD3 in HSCs biology and hepatic fibrogenesis.
Collapse
|
43
|
Pan CW, Wen S, Chen L, Wei Y, Niu Y, Zhao Y. Functional roles of antisense enhancer RNA for promoting prostate cancer progression. Am J Cancer Res 2021; 11:1780-1794. [PMID: 33408781 PMCID: PMC7778597 DOI: 10.7150/thno.51931] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Enhancer RNA (eRNA) bi-directionally expresses from enhancer region and sense eRNA regulates adjacent mRNA in cis and in trans. However, it has remained unclear whether antisense eRNAs in different direction are functional or merely a reflection of enhancer activation. Methods: Strand-specific, ribosome-minus RNA sequencing (RNA-seq) were performed in AR positive prostate cancer cells. RNA-seq, GRO-seq, ChIP-seq, 4C-seq and DNA-methylation-seq that published in our and other labs were re-analyzed to define bi-directional enhancer RNA and DNA methylation regions. Molecular mechanisms were demonstrated by 3C, ChIP, ChIRP, CLIP, RT-PCR and western blot assays. The biological functions of antisense-eRNA were assessed using mice xenograft model and RT-PCR analysis in human tissues. Results: In this study, we identified that antisense eRNA was regulated by androgen receptor (AR) activity in prostate cancer cells. Antisense eRNA negatively regulated antisense ncRNA in AR-related target genes' loci, through recruiting DNMT1 on the antisense enhancer in the gene-ending regions and elevating DNA methylation. Importantly, the chromatin exhibited a double looping manner that facilitated sense-eRNA to promoter and antisense-eRNA to gene-ending region in cis. Depletion of antisense eRNA impaired its neighbor mRNA expression, cancer growth and invasion. The expressions of antisense eRNA were correlated with biochemical recurrence and clinical marker PSA's levels in patients' tissues. Conclusions: The findings indicated that antisense eRNA was a functional RNA and may be a novel target that when suppressed improved prostate cancer therapy and diagnosis. New chromatin interaction among enhancer, promoter and gene-ending region might provide new insight into the spatiotemporal mechanism of the gene transcription and acting of bi-directional eRNAs.
Collapse
|
44
|
No Easy Way Out for EZH2: Its Pleiotropic, Noncanonical Effects on Gene Regulation and Cellular Function. Int J Mol Sci 2020; 21:ijms21249501. [PMID: 33327550 PMCID: PMC7765048 DOI: 10.3390/ijms21249501] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) plays critical roles in a range of biological processes including organ development and homeostasis, epigenomic and transcriptomic regulation, gene repression and imprinting, and DNA damage repair. A widely known function of EZH2 is to serve as an enzymatic subunit of Polycomb repressive complex 2 (PRC2) and catalyze trimethylation of histone H3 lysine 27 (H3K27me3) for repressing target gene expression. However, an increasing body of evidence demonstrates that EZH2 has many "non-conventional" functions that go beyond H3K27 methylation as a Polycomb factor. First, EZH2 can methylate a number of nonhistone proteins, thereby regulating cellular processes in an H3K27me3-independent fashion. Furthermore, EZH2 relies on both methyltransferase-dependent and methyltransferase-independent mechanisms for modulating gene-expression programs and/or epigenomic patterns of cells. Importantly, independent of PRC2, EZH2 also forms physical interactions with a number of DNA-binding factors and transcriptional coactivators to context-dependently influence gene expression. The purpose of this review is to detail the complex, noncanonical roles of EZH2, which are generally less appreciated in gene and (epi)genome regulation. Because EZH2 deregulation is prevalent in human diseases such as cancer, there is increased dependency on its noncanonical function, which shall have important implications in developing more effective therapeutics.
Collapse
|
45
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 2020; 19:171. [PMID: 33308223 PMCID: PMC7733260 DOI: 10.1186/s12943-020-01293-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in mammalian cells. However, the disease relevant function of m6A on specific oncogenic long non-coding RNAs (ncRNAs) is not well understood. Methods We analyzed the m6A status using patients samples and bone metastatic PDXs. Through m6A high-throughput sequencing, we identified the m6A sites on NEAT1–1 in prostate bone metastatic PDXs. Mass spec assay showed interaction among NEAT1–1, CYCLINL1 and CDK19. RNA EMSA, RNA pull-down, mutagenesis, CLIP, western blot, ChIP and ChIRP assays were used to investigate the molecular mechanisms underlying the functions of m6A on NEAT1–1. Loss-of function and rescued experiments were executed to detect the biological roles of m6A on NEAT1–1 in the PDX cell phenotypes in vivo. Results In this study, we identified 4 credible m6A sites on long ncRNA NEAT1–1. High m6A level of NEAT1–1 was related to bone metastasis of prostate cancer and m6A level of NEAT1–1 was a powerful predictor of eventual death. Transcribed NEAT1–1 served as a bridge to facility the binding between CYCLINL1 and CDK19 and promoted the Pol II ser2 phosphorylation. Importantly, depletion of NEAT1–1or decreased m6A of NEAT1–1 impaired Pol II Ser-2p level in the promoter of RUNX2. Overexpression of NEAT1–1 induced cancer cell metastasis to lung and bone; xenograft growth and shortened the survival of mice, but NEAT1–1 with m6A site mutation failed to do these. Conclusion Collectively, the findings indicate that m6A on ncRNA NEAT1–1 takes critical role in regulating Pol II ser2 phosphorylation and may be novel specific target for bone metastasis cancer therapy and diagnosis. New complex CYCLINL1/CDK19/NEAT1–1 might provide new insight into the potential mechanism of the pathogenesis and development of bone metastatic prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01293-4.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
| | - Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chong Zen
- Department of Urology, Central South University, Changsha, 410011, China
| | - Wei Xiong
- Department of Urology, Central South University, Changsha, 410011, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China.
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
46
|
Martin MC, Zeng G, Yu J, Schiltz GE. Small Molecule Approaches for Targeting the Polycomb Repressive Complex 2 (PRC2) in Cancer. J Med Chem 2020; 63:15344-15370. [PMID: 33283516 DOI: 10.1021/acs.jmedchem.0c01344] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is composed of three core subunits, enhancer of zeste 2 (EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 (SUZ12), along with a number of accessory proteins. It is the key enzymatic protein complex that catalyzes histone H3 lysine 27 (H3K27) methylation to mediate epigenetic silencing of target genes. PRC2 thus plays essential roles in maintaining embryonic stem cell identity and in controlling cellular differentiation. Studies in the past decade have reported frequent overexpression or mutation of PRC2 in various cancers including prostate cancer and lymphoma. Aberrant PRC2 function has been extensively studied and proven to contribute to a large number of abnormal cellular processes, including those that lead to uncontrolled proliferation and tumorigenesis. Significant efforts have recently been made to develop small molecules targeting PRC2 function for potential use as anticancer therapeutics. In this review, we describe recent approaches to identify and develop small molecules that target PRC2. These various strategies include the inhibition of the function of individual PRC2 core proteins, the disruption of PRC2 complex formation, and the degradation of its subunits.
Collapse
Affiliation(s)
- M Cynthia Martin
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| | - Guihua Zeng
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
47
|
Topatana W, Juengpanich S, Li S, Cao J, Hu J, Lee J, Suliyanto K, Ma D, Zhang B, Chen M, Cai X. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol 2020; 13:118. [PMID: 32883316 PMCID: PMC7470446 DOI: 10.1186/s13045-020-00956-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Synthetic lethality is a lethal phenomenon in which the occurrence of a single genetic event is tolerable for cell survival, whereas the co-occurrence of multiple genetic events results in cell death. The main obstacle for synthetic lethality lies in the tumor biology heterogeneity and complexity, the inadequate understanding of synthetic lethal interactions, drug resistance, and the challenges regarding screening and clinical translation. Recently, DNA damage response inhibitors are being tested in various trials with promising results. This review will describe the current challenges, development, and opportunities for synthetic lethality in cancer therapy. The characterization of potential synthetic lethal interactions and novel technologies to develop a more effective targeted drug for cancer patients will be explored. Furthermore, this review will discuss the clinical development and drug resistance mechanisms of synthetic lethality in cancer therapy. The ultimate goal of this review is to guide clinicians at selecting patients that will receive the maximum benefits of DNA damage response inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Diana Ma
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
48
|
Midorikawa Y, Yamamoto S, Tatsuno K, Renard-Guillet C, Tsuji S, Hayashi A, Ueda H, Fukuda S, Fujita T, Katoh H, Ishikawa S, Covington KR, Creighton CJ, Sugitani M, Wheeler DA, Shibata T, Nagae G, Takayama T, Aburatani H. Accumulation of Molecular Aberrations Distinctive to Hepatocellular Carcinoma Progression. Cancer Res 2020; 80:3810-3819. [DOI: 10.1158/0008-5472.can-20-0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
|
49
|
Cossío FP, Esteller M, Berdasco M. Towards a more precise therapy in cancer: Exploring epigenetic complexity. Curr Opin Chem Biol 2020; 57:41-49. [PMID: 32480315 DOI: 10.1016/j.cbpa.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
A plethora of preclinical evidences suggests that pharmacological targeting of epigenetic dysregulation is a potent strategy to combat human diseases. Nevertheless, the implementation of epidrugs in clinical practice is very scarce and mainly limited to haematological malignancies. In this review, we discuss cutting-edge strategies to foster the chemical design, the biological rationale and the clinical trial development of epidrugs. Specifically, we focus on the development of dual hybrids to exploit multitargeting of key epigenetic molecules deregulated in cancer; the study of epigenetic-synthetic lethality interactions as a mechanism to address loss-of-function mutations, and the combination of epidrugs with other therapies such as immunotherapy to avoid acquired chemoresistance and increase therapy sensitivity. By exploring these challenges, among others, the field of epigenetic chemical biology will increase its potential for clinical benefit, and more effective strategies targeting the aberrant epigenome in cancer are likely to be developed both in haematological and solid tumours.
Collapse
Affiliation(s)
- Fernando P Cossío
- Kimika Fakultatea, Kimika Organikoa I Saila, Universidad del País Vasco - Euskal Herriko Unibertsitaea, and Donostia International Physics Center (DIPC), San Sebastián-Donostia, Spain; Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - María Berdasco
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, Schwarz M, Leshchenko V, Rialdi A, Dale B, Lagana A, Guccione E, Parekh S, Parsons R, Jin J. Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol 2020; 16:214-222. [PMID: 31819273 PMCID: PMC6982609 DOI: 10.1038/s41589-019-0421-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/27/2019] [Indexed: 12/27/2022]
Abstract
The enhancer of zeste homolog 2 (EZH2) is the main enzymatic subunit of the PRC2 complex, which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to promote transcriptional silencing. EZH2 is overexpressed in multiple types of cancer including triple-negative breast cancer (TNBC), and high expression levels correlate with poor prognosis. Several EZH2 inhibitors, which inhibit the methyltransferase activity of EZH2, have shown promise in treating sarcoma and follicular lymphoma in clinics. However, EZH2 inhibitors are ineffective at blocking proliferation of TNBC cells, even though they effectively reduce the H3K27me3 mark. Using a hydrophobic tagging approach, we generated MS1943, a first-in-class EZH2 selective degrader that effectively reduces EZH2 levels in cells. Importantly, MS1943 has a profound cytotoxic effect in multiple TNBC cells, while sparing normal cells, and is efficacious in vivo, suggesting that pharmacologic degradation of EZH2 can be advantageous for treating the cancers that are dependent on EZH2.
Collapse
Affiliation(s)
- Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias Stratikopoulos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Violetta Leshchenko
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Rialdi
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brandon Dale
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Genetics and Genomic Sciences, Institute for Next Generation Healthcare, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|