1
|
Deichsel S, Frankenreiter L, Fechner J, Gahr BM, Zimmermann M, Mastel H, Preis I, Preiss A, Nagel AC. Inhibition of the Notch signal transducer CSL by Pkc53E-mediated phosphorylation to fend off parasitic immune challenge in Drosophila. eLife 2024; 12:RP89582. [PMID: 39503739 PMCID: PMC11540305 DOI: 10.7554/elife.89582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Notch signalling activity regulates hematopoiesis in Drosophila and vertebrates alike. Parasitoid wasp infestation of Drosophila larvae, however, requires a timely downregulation of Notch activity to allow the formation of encapsulation-active blood cells. Here, we show that the Drosophila CSL transcription factor Suppressor of Hairless [Su(H)] is phosphorylated at Serine 269 in response to parasitoid wasp infestation. As this phosphorylation interferes with the DNA binding of Su(H), it reversibly precludes its activity. Accordingly, phospho-deficient Su(H)S269A mutants are immune-compromised. A screen for kinases involved in Su(H) phosphorylation identified Pkc53E, required for normal hematopoiesis as well as for parasitoid immune response. Genetic and molecular interactions support the specificity of the Su(H)-Pkc53E relationship. Moreover, phorbol ester treatment inhibits Su(H) activity in vivo and in human cell culture. We conclude that Pkc53E targets Su(H) during parasitic wasp infestation, thereby remodelling the blood cell population required for wasp egg encapsulation.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Medical Genetics and Applied Genomics, University of TübingenTübingenGermany
| | - Lisa Frankenreiter
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Johannes Fechner
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Institute of Biomedical Genetics (IBMG), University of StuttgartStuttgartGermany
| | - Bernd M Gahr
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Internal Medicine II, Molecular Cardiology, University of UlmUlmGermany
| | - Mirjam Zimmermann
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Irina Preis
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anette Preiss
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anja C Nagel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
2
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler TK, MacDonald J, Pallanck LJ. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. PLoS Genet 2024; 20:e1011105. [PMID: 39527642 PMCID: PMC11581407 DOI: 10.1371/journal.pgen.1011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
4
|
Cho B, Shin M, Chang E, Son S, Shin I, Shim J. S-nitrosylation-triggered unfolded protein response maintains hematopoietic progenitors in Drosophila. Dev Cell 2024; 59:1075-1090.e6. [PMID: 38521056 DOI: 10.1016/j.devcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
6
|
Krejčová G, Danielová A, Sehadová H, Dyčka F, Kubásek J, Moos M, Bajgar A. Macrophages play a nutritive role in post-metamorphic maturation in Drosophila. Development 2024; 151:dev202492. [PMID: 38456486 DOI: 10.1242/dev.202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Hana Sehadová
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Filip Dyčka
- Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Martin Moos
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology , Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
7
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Rolandelli A, Laukaitis-Yousey HJ, Bogale HN, Singh N, Samaddar S, O'Neal AJ, Ferraz CR, Butnaru M, Mameli E, Xia B, Mendes MT, Butler LR, Marnin L, Cabrera Paz FE, Valencia LM, Rana VS, Skerry C, Pal U, Mohr SE, Perrimon N, Serre D, Pedra JHF. Tick hemocytes have a pleiotropic role in microbial infection and arthropod fitness. Nat Commun 2024; 15:2117. [PMID: 38459063 PMCID: PMC10923820 DOI: 10.1038/s41467-024-46494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here we use and develop advanced techniques to describe immune cells (hemocytes) from the clinically relevant tick Ixodes scapularis at a single-cell resolution. We observe molecular alterations in hemocytes upon feeding and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We reveal hemocyte clusters exhibiting defined signatures related to immunity, metabolism, and proliferation. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, two I. scapularis hemocyte markers, impacting blood-feeding, molting behavior, and bacterial acquisition. Mechanistically, astakine alters hemocyte proliferation, whereas hemocytin affects the c-Jun N-terminal kinase (JNK) signaling pathway in I. scapularis. Altogether, we discover a role for tick hemocytes in immunophysiology and provide a valuable resource for comparative biology in arthropods.
Collapse
Affiliation(s)
- Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Rancho BioSciences, San Diego, CA, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University; Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila R Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Peng D, Jackson D, Palicha B, Kernfeld E, Laughner N, Shoemaker A, Celniker SE, Loganathan R, Cahan P, Andrew DJ. Organogenetic transcriptomes of the Drosophila embryo at single cell resolution. Development 2024; 151:dev202097. [PMID: 38174902 PMCID: PMC10820837 DOI: 10.1242/dev.202097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorian Jackson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bianca Palicha
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Kernfeld
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathaniel Laughner
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashleigh Shoemaker
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajprasad Loganathan
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Brooks EC, Zeidler MP, Ong ACM, Evans IR. Macrophage subpopulation identity in Drosophila is modulated by apoptotic cell clearance and related signalling pathways. Front Immunol 2024; 14:1310117. [PMID: 38283366 PMCID: PMC10811221 DOI: 10.3389/fimmu.2023.1310117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
In Drosophila blood, plasmatocytes of the haemocyte lineage represent the functional equivalent of vertebrate macrophages and have become an established in vivo model with which to study macrophage function and behaviour. However, the use of plasmatocytes as a macrophage model has been limited by a historical perspective that plasmatocytes represent a homogenous population of cells, in contrast to the high levels of heterogeneity of vertebrate macrophages. Recently, a number of groups have reported transcriptomic approaches which suggest the existence of plasmatocyte heterogeneity, while we identified enhancer elements that identify subpopulations of plasmatocytes which exhibit potentially pro-inflammatory behaviours, suggesting conservation of plasmatocyte heterogeneity in Drosophila. These plasmatocyte subpopulations exhibit enhanced responses to wounds and decreased rates of efferocytosis when compared to the overall plasmatocyte population. Interestingly, increasing the phagocytic requirement placed upon plasmatocytes is sufficient to decrease the size of these plasmatocyte subpopulations in the embryo. However, the mechanistic basis for this response was unclear. Here, we examine how plasmatocyte subpopulations are modulated by apoptotic cell clearance (efferocytosis) demands and associated signalling pathways. We show that loss of the phosphatidylserine receptor Simu prevents an increased phagocytic burden from modulating specific subpopulation cells, while blocking other apoptotic cell receptors revealed no such rescue. This suggests that Simu-dependent efferocytosis is specifically involved in determining fate of particular subpopulations. Supportive of our original finding, mutations in amo (the Drosophila homolog of PKD2), a calcium-permeable channel which operates downstream of Simu, phenocopy simu mutants. Furthermore, we show that Amo is involved in the acidification of the apoptotic cell-containing phagosomes, suggesting that this reduction in pH may be associated with macrophage reprogramming. Additionally, our results also identify Ecdysone receptor signalling, a pathway related to control of cell death during developmental transitions, as a controller of plasmatocyte subpopulation identity. Overall, these results identify fundamental pathways involved in the specification of plasmatocyte subpopulations and so further validate Drosophila plasmatocytes as a heterogeneous population of macrophage-like cells within this important developmental and immune model.
Collapse
Affiliation(s)
- Elliot C. Brooks
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Martin P. Zeidler
- School of Biosciences and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Albert C. M. Ong
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
12
|
Hersperger F, Meyring T, Weber P, Chhatbar C, Monaco G, Dionne MS, Paeschke K, Prinz M, Groß O, Classen AK, Kierdorf K. DNA damage signaling in Drosophila macrophages modulates systemic cytokine levels in response to oxidative stress. eLife 2024; 12:RP86700. [PMID: 38189792 PMCID: PMC10945508 DOI: 10.7554/elife.86700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Environmental factors, infection, or injury can cause oxidative stress in diverse tissues and loss of tissue homeostasis. Effective stress response cascades, conserved from invertebrates to mammals, ensure reestablishment of homeostasis and tissue repair. Hemocytes, the Drosophila blood-like cells, rapidly respond to oxidative stress by immune activation. However, the precise signals how they sense oxidative stress and integrate these signals to modulate and balance the response to oxidative stress in the adult fly are ill-defined. Furthermore, hemocyte diversification was not explored yet on oxidative stress. Here, we employed high-throughput single nuclei RNA-sequencing to explore hemocytes and other cell types, such as fat body, during oxidative stress in the adult fly. We identified distinct cellular responder states in plasmatocytes, the Drosophila macrophages, associated with immune response and metabolic activation upon oxidative stress. We further define oxidative stress-induced DNA damage signaling as a key sensor and a rate-limiting step in immune-activated plasmatocytes controlling JNK-mediated release of the pro-inflammatory cytokine unpaired-3. We subsequently tested the role of this specific immune activated cell stage during oxidative stress and found that inhibition of DNA damage signaling in plasmatocytes, as well as JNK or upd3 overactivation, result in a higher susceptibility to oxidative stress. Our findings uncover that a balanced composition and response of hemocyte subclusters is essential for the survival of adult Drosophila on oxidative stress by regulating systemic cytokine levels and cross-talk to other organs, such as the fat body, to control energy mobilization.
Collapse
Affiliation(s)
- Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | - Tim Meyring
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Pia Weber
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of FreiburgFreiburgGermany
| | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Katrin Paeschke
- Department of Oncology, Haematology and Rheumatology, University Hospital BonnBonnGermany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital BonnBonnGermany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, Faculty of Biology, University of FreiburgFreiburgGermany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of FreiburgFreiburgGermany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
13
|
Hersperger F, Kastl M, Paeschke K, Kierdorf K. Hemocyte Nuclei Isolation from Adult Drosophila melanogaster for snRNA-seq. Methods Mol Biol 2024; 2713:71-79. [PMID: 37639115 DOI: 10.1007/978-1-0716-3437-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In adult Drosophila, most of the hemocytes are macrophage-like cells (so called plasmatocytes), which serve various functions in organ homeostasis and immune defense. Ontogeny and functions are largely conserved between vertebrate and invertebrate macrophages. Hence, Drosophila offers a powerful genetic toolbox to study macrophage function and genetically modulate these cells. Technological advances in high-throughput sequencing approaches allowed to give an in-depth characterization of vertebrate macrophage populations and their heterogenous composition within different organs as well as changes in disease. Embryonic and larval hemocytes in Drosophila have been recently analyzed in single-cell RNA-sequencing (scRNA-seq) approaches during infection and steady state. These analyses revealed anatomical and functional Drosophila hemocyte subtypes dedicated to specific tasks. Only recently, the Fly Cell Atlas provided a whole transcriptomic single-cell atlas via single-nuclei RNA-sequencing (snRNA-seq) of adult Drosophila including many different tissues and cell types where hemocytes were also included. Yet, a specific protocol to isolate nuclei from adult hemocytes for snRNA-seq and study these cells in different experimental conditions was not available. In this chapter, we give a detailed protocol to purify hemocyte nuclei from adult Drosophila, which can be used in subsequent analyses such as snRNA-seq.
Collapse
Affiliation(s)
- Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Kastl
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Cinege G, Magyar LB, Kovács H, Varga V, Bodai L, Zsindely N, Nagy G, Hegedűs Z, Hultmark D, Andó I. Distinctive features of Zaprionus indianus hemocyte differentiation and function revealed by transcriptomic analysis. Front Immunol 2023; 14:1322381. [PMID: 38187383 PMCID: PMC10768004 DOI: 10.3389/fimmu.2023.1322381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background Insects have specialized cell types that participate in the elimination of parasites, for instance, the lamellocytes of the broadly studied species Drosophila melanogaster. Other drosophilids, such as Drosophila ananassae and the invasive Zaprionus indianus, have multinucleated giant hemocytes, a syncytium of blood cells that participate in the encapsulation of the eggs or larvae of parasitoid wasps. These cells can be formed by the fusion of hemocytes in circulation or originate from the lymph gland. Their ultrastructure highly resembles that of the mammalian megakaryocytes. Methods Morphological, protein expressional, and functional features of blood cells were revealed using epifluorescence and confocal microscopy. The respective hemocyte subpopulations were identified using monoclonal antibodies in indirect immunofluorescence assays. Fluorescein isothiocyanate (FITC)-labeled Escherichia coli bacteria were used in phagocytosis tests. Gene expression analysis was performed following mRNA sequencing of blood cells. Results D. ananassae and Z. indianus encapsulate foreign particles with the involvement of multinucleated giant hemocytes and mount a highly efficient immune response against parasitoid wasps. Morphological, protein expressional, and functional assays of Z. indianus blood cells suggested that these cells could be derived from large plasmatocytes, a unique cell type developing specifically after parasitoid wasp infection. Transcriptomic analysis of blood cells, isolated from naïve and wasp-infected Z. indianus larvae, revealed several differentially expressed genes involved in signal transduction, cell movements, encapsulation of foreign targets, energy production, and melanization, suggesting their role in the anti-parasitoid response. A large number of genes that encode proteins associated with coagulation and wound healing, such as phenoloxidase activity factor-like proteins, fibrinogen-related proteins, lectins, and proteins involved in the differentiation and function of platelets, were constitutively expressed. The remarkable ultrastructural similarities between giant hemocytes and mammalian megakaryocytes, and presence of platelets, and giant cell-derived anucleated fragments at wound sites hint at the involvement of this cell subpopulation in wound healing processes, in addition to participation in the encapsulation reaction. Conclusion Our observations provide insights into the broad repertoire of blood cell functions required for efficient defense reactions to maintain the homeostasis of the organism. The analysis of the differentiation and function of multinucleated giant hemocytes gives an insight into the diversification of the immune mechanisms.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Henrietta Kovács
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Viktória Varga
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
16
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler T, MacDonald J, Pallanck L. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571406. [PMID: 38168223 PMCID: PMC10760128 DOI: 10.1101/2023.12.13.571406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol 2023; 14:1330312. [PMID: 38124757 PMCID: PMC10730662 DOI: 10.3389/fimmu.2023.1330312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
Collapse
Affiliation(s)
- Tomas Dolezal
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
18
|
Mari M, Voutyraki C, Zacharioudaki E, Delidakis C, Filippidis G. Lipid content evaluation of Drosophila tumour associated haemocytes through Third Harmonic Generation measurements. JOURNAL OF BIOPHOTONICS 2023; 16:e202300171. [PMID: 37643223 DOI: 10.1002/jbio.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Non-linear microscopy is a powerful imaging tool to examine structural properties and subcellular processes of various biological samples. The competence of Third Harmonic Generation (THG) includes the label free imaging with diffraction-limited resolution and three-dimensional visualization with negligible phototoxicity effects. In this study, THG records and quantifies the lipid content of Drosophila haemocytes, upon encountering normal or tumorigenic neural cells, in correlation with their shape or their state. We show that the lipid accumulations of adult haemocytes are similar before and after encountering normal cells. In contrast, adult haemocytes prior to their interaction with cancer cells have a low lipid index, which increases while they are actively engaged in phagocytosis only to decrease again when haemocytes become exhausted. This dynamic change in the lipid accrual of haemocytes upon encountering tumour cells could potentially be a useful tool to assess the phagocytic capacity or activation state of tumour-associated haemocytes.
Collapse
Affiliation(s)
- Meropi Mari
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Chrysanthi Voutyraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Eva Zacharioudaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
19
|
Yoon SH, Cho B, Lee D, Kim H, Shim J, Nam JW. Molecular traces of Drosophila hemocytes reveal transcriptomic conservation with vertebrate myeloid cells. PLoS Genet 2023; 19:e1011077. [PMID: 38113249 PMCID: PMC10763942 DOI: 10.1371/journal.pgen.1011077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/03/2024] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Drosophila hemocytes serve as the primary defense system against harmful threats, allowing the animals to thrive. Hemocytes are often compared to vertebrate innate immune system cells due to the observed functional similarities between the two. However, the similarities have primarily been established based on a limited number of genes and their functional homologies. Thus, a systematic analysis using transcriptomic data could offer novel insights into Drosophila hemocyte function and provide new perspectives on the evolution of the immune system. Here, we performed cross-species comparative analyses using single-cell RNA sequencing data from Drosophila and vertebrate immune cells. We found several conserved markers for the cluster of differentiation (CD) genes in Drosophila hemocytes and validated the role of CG8501 (CD59) in phagocytosis by plasmatocytes, which function much like macrophages in vertebrates. By comparing whole transcriptome profiles in both supervised and unsupervised analyses, we showed that Drosophila hemocytes are largely homologous to vertebrate myeloid cells, especially plasmatocytes to monocytes/macrophages and prohemocyte 1 (PH1) to hematopoietic stem cells. Furthermore, a small subset of prohemocytes with hematopoietic potential displayed homology with hematopoietic progenitor populations in vertebrates. Overall, our results provide a deeper understanding of molecular conservation in the Drosophila immune system.
Collapse
Affiliation(s)
- Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hanji Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
21
|
Bazzi W, Monticelli S, Delaporte C, Riet C, Giangrande A, Cattenoz PB. Gcm counteracts Toll-induced inflammation and impacts hemocyte number through cholinergic signaling. Front Immunol 2023; 14:1293766. [PMID: 38035083 PMCID: PMC10684909 DOI: 10.3389/fimmu.2023.1293766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.
Collapse
Affiliation(s)
- Wael Bazzi
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Sara Monticelli
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claude Delaporte
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Céline Riet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Angela Giangrande
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Pierre B. Cattenoz
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
22
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
23
|
Hirschhäuser A, Molitor D, Salinas G, Großhans J, Rust K, Bogdan S. Single-cell transcriptomics identifies new blood cell populations in Drosophila released at the onset of metamorphosis. Development 2023; 150:dev201767. [PMID: 37681301 PMCID: PMC10560556 DOI: 10.1242/dev.201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.
Collapse
Affiliation(s)
- Alexander Hirschhäuser
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Darius Molitor
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| |
Collapse
|
24
|
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23:563-579. [PMID: 36922638 PMCID: PMC10017071 DOI: 10.1038/s41577-023-00848-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Lenz J, Brehm A. Conserved mechanisms of NuRD function in hematopoetic gene expression. Enzymes 2023; 53:7-32. [PMID: 37748838 DOI: 10.1016/bs.enz.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The Nucleosome Remodeling and Deacetylating Complex (NuRD) is ubiquitously expressed in all metazoans. It combines nucleosome remodeling and histone deacetylating activities to generate inaccessible chromatin structures and to repress gene transcription. NuRD is involved in the generation and maintenance of a wide variety of lineage-specific gene expression programs during differentiation and in differentiated cells. A close cooperation with a large number of lineage-specific transcription factors is key to allow NuRD to function in many distinct differentiation contexts. The molecular nature of this interplay between transcription factors and NuRD is complex and not well understood. This review uses hematopoiesis as a paradigm to highlight recent advances in our understanding of how transcription factors and NuRD cooperate at the molecular level during differentiation. A comparison of vertebrate and invertebrate systems serves to identify the conserved and fundamental concepts guiding functional interactions between transcription factors and NuRD. We also discuss how the transcription factor-NuRD axis constitutes a potential therapeutic target for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Jonathan Lenz
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
26
|
Hong X, Wang Y, Wang K, Wei C, Li W, Yu L, Xu H, Zhu J, Zhu X, Liu X. Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. BIOLOGY 2023; 12:994. [PMID: 37508424 PMCID: PMC10376416 DOI: 10.3390/biology12070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Hibernation in turtle species is an adaptive survival strategy to colder winter conditions or food restrictions. However, the mechanisms underlying seasonal adaptions remain unclear. In the present study, we collected hemocytes from Pelochelys cantorii and compared the molecular signature of these cells between the active state and hibernation period based on single-cell RNA sequencing (scRNA-seq) analysis. We found six cell types and identified a list of new marker genes for each cell subpopulation. Moreover, several heat shock genes, including the Hsp40 family chaperone gene (DNAJ) and HSP temperature-responsive genes (HSPs), were upregulated during the hibernation period, which predicted these genes may play crucial roles in the stress response during hibernation. Additionally, compared to hemocytes in the active state, several upregulated differentially expressed immune-related genes, such as stat1, traf3, and socs6, were identified in hemocytes during the hibernation period, thus indicating the important immune function of hemocytes. Therefore, our findings provide a unified classification of P. cantorii hemocytes and identify the genes related to the stress response, thereby providing a better understanding of the adaptive mechanisms of hibernation.
Collapse
Affiliation(s)
- Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kaikuo Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haoyang Xu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
27
|
Chen D, Lan X, Huang X, Huang J, Zhou X, Miao Z, Ma Y, Goto A, Ji S, Hoffmann JA. Single Cell Analysis of the Fate of Injected Oncogenic RasV12 Cells in Adult Wild Type Drosophila. J Innate Immun 2023; 15:442-467. [PMID: 36996781 PMCID: PMC10066352 DOI: 10.1159/000529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023] Open
Abstract
We have injected dish-cultured oncogenic RasV12 cells into adult male flies and analyzed by single cell transcriptomics their destiny within the host after 11 days. We identified in the preinjection samples and in the 11-day postinjection samples in all 16 clusters of cells, of which 5 disappeared during the experiment in the host. The other cell clusters expanded and expressed genes involved in the regulation of cell cycle, metabolism, and development. In addition, three clusters expressed genes related to inflammation and defense. Predominant among these were genes coding for phagocytosis and/or characteristic for plasmatocytes (the fly equivalent of macrophages). A pilot experiment indicated that the injection into flies of oncogenic cells, in which two of most strongly expressed genes had been previously silenced by RNA interference, into flies resulted in a dramatic reduction of their proliferation in the host flies as compared to controls. As we have shown earlier, the proliferation of the injected oncogenic cells in the adult flies is a hallmark of the disease and induces a wave of transcriptions in the experimental flies. We hypothesize that this results from a bitter dialogue between the injected cells and the host, while the experiments presented here should contribute to deciphering this dialogue.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jieqing Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuting Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Akira Goto
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Shanming Ji
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
| |
Collapse
|
28
|
Touré H, Galindo LA, Lagune M, Glatigny S, Waterhouse RM, Guénal I, Herrmann JL, Girard-Misguich F, Szuplewski S. Mycobacterium abscessus resists the innate cellular response by surviving cell lysis of infected phagocytes. PLoS Pathog 2023; 19:e1011257. [PMID: 36972320 PMCID: PMC10079227 DOI: 10.1371/journal.ppat.1011257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/06/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host’s innate responses to colonize and multiply within the host.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Lee Ann Galindo
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Marion Lagune
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Simon Glatigny
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- * E-mail: (FGM); (SS)
| | | |
Collapse
|
29
|
Yu J, Fu Y, Li Z, Huang Q, Tang J, Sun C, Zhou P, He L, Sun F, Cheng X, Ji L, Yu H, Shi Y, Gu Z, Sun F, Zhao X. Single-cell RNA sequencing reveals cell landscape following antimony exposure during spermatogenesis in Drosophila testes. Cell Death Discov 2023; 9:86. [PMID: 36894529 PMCID: PMC9998446 DOI: 10.1038/s41420-023-01391-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antimony (Sb), is thought to induce testicular toxicity, although this remains controversial. This study investigated the effects of Sb exposure during spermatogenesis in the Drosophila testis and the underlying transcriptional regulatory mechanism at single-cell resolution. Firstly, we found that flies exposed to Sb for 10 days led to dose-dependent reproductive toxicity during spermatogenesis. Protein expression and RNA levels were measured by immunofluorescence and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing (scRNA-seq) was performed to characterize testicular cell composition and identify the transcriptional regulatory network after Sb exposure in Drosophila testes. scRNA-seq analysis revealed that Sb exposure influenced various testicular cell populations, especially in GSCs_to_Early_Spermatogonia and Spermatids clusters. Importantly, carbon metabolism was involved in GSCs/early spermatogonia maintenance and positively related with SCP-Containing Proteins, S-LAPs, and Mst84D signatures. Moreover, Seminal Fluid Proteins, Mst57D, and Serpin signatures were highly positively correlated with spermatid maturation. Pseudotime trajectory analysis revealed three novel states for the complexity of germ cell differentiation, and many novel genes (e.g., Dup98B) were found to be expressed in state-biased manners during spermatogenesis. Collectively, this study indicates that Sb exposure negatively impacts GSC maintenance and spermatid elongation, damaging spermatogenesis homeostasis via multiple signatures in Drosophila testes and therefore supporting Sb-mediated testicular toxicity.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yangbo Fu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhiran Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Peiyao Zhou
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Lei He
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Feiteng Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
30
|
Kúthy-Sutus E, Kharrat B, Gábor E, Csordás G, Sinka R, Honti V. A Novel Method for Primary Blood Cell Culturing and Selection in Drosophila melanogaster. Cells 2022; 12:24. [PMID: 36611818 PMCID: PMC9818912 DOI: 10.3390/cells12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.
Collapse
Affiliation(s)
- Enikő Kúthy-Sutus
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Erika Gábor
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| |
Collapse
|
31
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
32
|
Söderhäll I, Söderhäll K. Blood cell formation in crustaceans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1335-1342. [PMID: 36216230 DOI: 10.1016/j.fsi.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
In crustacean animals the hemocytes are key players in immunity and of crucial importance for the health of the animals. Hemocytes are mainly produced in the hematopoietic tissue and from there released into the circulation where they finally mature. In this review we summarize the latest findings about crustacean hemocyte formation. The role of the extracellular matrix and crosslinking enzyme transglutaminase is discussed. Moreover, important growth factors, transcriptional regulation and recent findings about inducers of hematopoiesis are covered. Finally, we discuss the use of different markers for classification of crustacean hemocytes.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
33
|
An anti-inflammatory transcriptional cascade conserved from flies to humans. Cell Rep 2022; 41:111506. [DOI: 10.1016/j.celrep.2022.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
|
34
|
Stephenson HN, Streeck R, Grüblinger F, Goosmann C, Herzig A. Hemocytes are essential for Drosophila melanogaster post-embryonic development, independent of control of the microbiota. Development 2022; 149:dev200286. [PMID: 36093870 PMCID: PMC9641648 DOI: 10.1242/dev.200286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/19/2022] [Indexed: 09/22/2023]
Abstract
Proven roles for hemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the crucial role of hemocytes in post-embryonic development has long thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in hemocyte-ablation models under germ-free conditions. Here, we show that hemocytes have an essential role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated strong hemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of hemocytes is early pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a hemocyte-specific phenomenon. RNA-seq data suggests that dysregulation of the midgut is a prominent consequence of hemocyte ablation in larval stages, resulting in reduced gut lengths. Dissection suggests that multiple processes may be affected during metamorphosis. We believe this previously unreported role for hemocytes during metamorphosis is a major finding for the field.
Collapse
Affiliation(s)
- Holly N. Stephenson
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
- Peninsula Medical School, Faculty of Health,University of Plymouth, Plymouth, Devon PL4 8AA, UK
| | - Robert Streeck
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Florian Grüblinger
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Christian Goosmann
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - Alf Herzig
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
35
|
Pichon R, Pinaud S, Vignal E, Chaparro C, Pratlong M, Portet A, Duval D, Galinier R, Gourbal B. Single cell RNA sequencing reveals hemocyte heterogeneity in Biomphalaria glabrata: Plasticity over diversity. Front Immunol 2022; 13:956871. [PMID: 36131936 PMCID: PMC9484523 DOI: 10.3389/fimmu.2022.956871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The freshwater snail Biomphalaria glabrata is an intermediate host of Schistosoma mansoni, the agent of human intestinal schistosomiasis. However, much is to be discovered about its innate immune system that appears as a complex black box, in which the immune cells (called hemocytes) play a major role in both cellular and humoral response towards pathogens. Until now, hemocyte classification has been based exclusively on cell morphology and ultrastructural description and depending on the authors considered from 2 to 5 hemocyte populations have been described. In this study, we proposed to evaluate the hemocyte heterogeneity at the transcriptomic level. To accomplish this objective, we used single cell RNA sequencing (scRNAseq) technology coupled to a droplet-based system to separate hemocytes and analyze their transcriptome at a unique cell level in naive Biomphalaria glabrata snails. We were able to demonstrate the presence of 7 hemocyte transcriptomic populations defined by the expression of specific marker genes. As a result, scRNAseq approach showed a high heterogeneity within hemocytes, but provides a detailed description of the different hemocyte transcriptomic populations in B. glabrata supported by distinct cellular functions and lineage trajectory. As a main result, scRNAseq revealed the 3 main population as a super-group of hemocyte diversity but, on the contrary, a great hemocytes plasticity with a probable capacity of hemocytes to engage to different activation pathways. This work opens a new field of research to understand the role of hemocytes particularly in response to pathogens, and towards S. mansoni parasites.
Collapse
Affiliation(s)
- Rémi Pichon
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Silvain Pinaud
- Cambridge Institute, Li Ka Shing Center, Cancer Research UK, Cambridge, United Kingdom
| | - Emmanuel Vignal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Marine Pratlong
- Plateforme MGX - Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Anaïs Portet
- Molecular Immunity Unit, Department of Medicine, Medical Research Council (MRC) Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
- *Correspondence: Benjamin Gourbal,
| |
Collapse
|
36
|
Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. eLife 2022; 11:e78906. [PMID: 35920811 PMCID: PMC9348853 DOI: 10.7554/elife.78906] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Hemocytes, similar to vertebrate blood cells, play important roles in insect development and immunity, but it is not well understood how they perform their tasks. New technology, in particular single-cell transcriptomic analysis in combination with Drosophila genetics, may now change this picture. This review aims to make sense of recently published data, focusing on Drosophila melanogaster and comparing to data from other drosophilids, the malaria mosquito, Anopheles gambiae, and the silkworm, Bombyx mori. Basically, the new data support the presence of a few major classes of hemocytes: (1) a highly heterogenous and plastic class of professional phagocytes with many functions, called plasmatocytes in Drosophila and granular cells in other insects. (2) A conserved class of cells that control melanin deposition around parasites and wounds, called crystal cells in D. melanogaster, and oenocytoids in other insects. (3) A new class of cells, the primocytes, so far only identified in D. melanogaster. They are related to cells of the so-called posterior signaling center of the larval hematopoietic organ, which controls the hematopoiesis of other hemocytes. (4) Different kinds of specialized cells, like the lamellocytes in D. melanogaster, for the encapsulation of parasites. These cells undergo rapid evolution, and the homology relationships between such cells in different insects are uncertain. Lists of genes expressed in the different hemocyte classes now provide a solid ground for further investigation of function.
Collapse
Affiliation(s)
- Dan Hultmark
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - István Andó
- Biological Research Centre, Institute of Genetics, Innate Immunity Group, Eötvös Loránd Research NetworkSzegedHungary
| |
Collapse
|
37
|
von Bredow YM, Müller A, Popp PF, Iliasov D, von Bredow CR. Characterization and mode of action analysis of black soldier fly (Hermetia illucens) larva-derived hemocytes. INSECT SCIENCE 2022; 29:1071-1095. [PMID: 34687131 DOI: 10.1111/1744-7917.12977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
With the growing importance of the black soldier fly (Hermetia illucens) for both sustainable food production and waste management as well as for science, a great demand of understanding its immune system arises. Here, we present the first description of the circulating larval hemocytes with special emphasis on uptake of microorganisms and distinguishing hemocyte types. With histological, zymographic, and cytometric methods and with a set of hemocyte binding lectins and antibodies, the hemocytes of H. illucens are identified as plasmatocytes, crystal cells, and putative prohemocytes. Total hemocyte counts (THC) are determined, and methods for THC determination are compared. Approximately 1100 hemocytes per microliter hemolymph are present in naive animals, while hemocyte density decreases dramatically shortly after wounding, indicating a role of hemocytes in response to wounding (and immune response in general). The determination of the relative abundance of each hemocyte type (differential hemocyte count, DHC) revealed that plasmatocytes are highly abundant, whereas prohemocytes and crystal cells make up only a small percentage of the circulating cells. Plasmatocytes are not only the most abundant but also the professional phagocytes in H. illucens. They rapidly engulf and take up bacteria both in vivo and in vitro, indicating a very potent cellular defense against invading pathogens. Larger bioparticles such as yeasts are also removed from circulation by phagocytosis, but slower than bacteria. This is the first analysis of the potent cellular immune response in the black soldier fly, and a first toolbox that helps to identify hemocyte (types) is presented.
Collapse
Affiliation(s)
- Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Gießen, Germany
| | - Ariane Müller
- Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Dresden, Germany
| | - Philipp F Popp
- Technische Universität Dresden, Fakultät Biologie, Institut für Mikrobiologie, Dresden, Germany
- Present address: Philipp F. Popp, Institute for Biology-Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Iliasov
- Technische Universität Dresden, Fakultät Biologie, Institut für Mikrobiologie, Dresden, Germany
| | | |
Collapse
|
38
|
Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer RH. Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and promote survival. Dis Model Mech 2022; 15:dmm049591. [PMID: 35972154 PMCID: PMC9403751 DOI: 10.1242/dmm.049591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Activating anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK) mutations occur in pediatric neuroblastoma and are associated with poor prognosis. To study ALK-activating mutations in a genetically controllable system, we employed CRIPSR/Cas9, incorporating orthologs of the human oncogenic mutations ALKF1174L and ALKY1278S in the Drosophila Alk locus. AlkF1251L and AlkY1355S mutant Drosophila exhibited enhanced Alk signaling phenotypes, but unexpectedly depended on the Jelly belly (Jeb) ligand for activation. Both AlkF1251L and AlkY1355S mutant larval brains displayed hyperplasia, represented by increased numbers of Alk-positive neurons. Despite this hyperplasic phenotype, no brain tumors were observed in mutant animals. We showed that hyperplasia in Alk mutants was not caused by significantly increased rates of proliferation, but rather by decreased levels of apoptosis in the larval brain. Using single-cell RNA sequencing, we identified perturbations during temporal fate specification in AlkY1355S mutant mushroom body lineages. These findings shed light on the role of Alk in neurodevelopmental processes and highlight the potential of Alk-activating mutations to perturb specification and promote survival in neuronal lineages. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
39
|
Luo W, Liu S, Zhang F, Zhao L, Su Y. Metabolic strategy of macrophages under homeostasis or immune stress in Drosophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:291-302. [PMID: 37073169 PMCID: PMC10077226 DOI: 10.1007/s42995-022-00134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 05/03/2023]
Abstract
Macrophages are well known for their phagocytic functions in innate immunity across species. In mammals, they rapidly consume a large amount of energy by shifting their metabolism from mitochondrial oxidative phosphorylation toward aerobic glycolysis, to perform the effective bactericidal function upon infection. Meanwhile, they strive for sufficient energy resources by restricting systemic metabolism. In contrast, under nutrient deprivation, the macrophage population is down-regulated to save energy for survival. Drosophila melanogaster possesses a highly conserved and comparatively simple innate immune system. Intriguingly, recent studies have shown that Drosophila plasmatocytes, the macrophage-like blood cells, adopt comparable metabolic remodeling and signaling pathways to achieve energy reassignment when challenged by pathogens, indicating the conservation of such metabolic strategies between insects and mammals. Here, focusing on Drosophila macrophages (plasmatocytes), we review recent advances regarding their comprehensive roles in local or systemic metabolism under homeostasis or stress, emphasizing macrophages as critical players in the crosstalk between the immune system and organic metabolism from a Drosophila perspective.
Collapse
Affiliation(s)
- Wang Luo
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Sumin Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Fang Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Long Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Fisheries College, Ocean University of China, Qingdao, 266003 China
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao, 266003 China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
40
|
Kharrat B, Csordás G, Honti V. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int J Mol Sci 2022; 23:7767. [PMID: 35887113 PMCID: PMC9319083 DOI: 10.3390/ijms23147767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
During the past 60 years, the fruit fly, Drosophila melanogaster, has proven to be an excellent model to study the regulation of hematopoiesis. This is not only due to the evolutionarily conserved signalling pathways and transcription factors contributing to blood cell fate, but also to convergent evolution that led to functional similarities in distinct species. An example of convergence is the compartmentalization of blood cells, which ensures the quiescence of hematopoietic stem cells and allows for the rapid reaction of the immune system upon challenges. The lymph gland, a widely studied hematopoietic organ of the Drosophila larva, represents a microenvironment with similar features and functions to classical hematopoietic stem cell niches of vertebrates. Lymph gland studies were effectively supported by the unparalleled toolkit developed in Drosophila, which enabled the high-resolution investigation of the cellular composition and regulatory interaction networks of the lymph gland. In this review, we summarize how our understanding of lymph gland structure and hematopoietic cell-to-cell communication evolved during the past decades and compare their analogous features to those of the vertebrate hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| |
Collapse
|
41
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
42
|
Bakopoulos D, Whisstock JC, Warr CG, Johnson TK. Macrophage self‐renewal is regulated by transient expression of
PDGF‐ and VEGF‐related factor 2. FEBS J 2022; 289:3735-3751. [DOI: 10.1111/febs.16364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Bakopoulos
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - James C. Whisstock
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University Clayton Vic. Australia
- Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Coral G. Warr
- School of Biological Sciences Monash University Clayton Vic. Australia
- School of Molecular Sciences La Trobe University Bundoora Vic. Australia
| | - Travis K. Johnson
- School of Biological Sciences Monash University Clayton Vic. Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University Clayton Vic. Australia
| |
Collapse
|
43
|
Wertheim B. Adaptations and counter-adaptations in Drosophila host-parasitoid interactions: advances in the molecular mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100896. [PMID: 35240335 DOI: 10.1016/j.cois.2022.100896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Both hosts and parasitoids evolved a diverse array of traits and strategies for their antagonistic interactions, affecting their chances of encounter, attack and survival after parasitoid attack. This review summarizes the recent progress that has been made in elucidating the molecular mechanisms of these adaptations and counter-adaptations in various Drosophila host-parasitoid interactions. For the hosts, it focuses on the neurobiological and genetic control of strategies in Drosophila adults and larvae of avoidance or escape behaviours upon sensing the parasitoids, and the immunological defences involving diverse classes of haemocytes. For the parasitoids, it highlights their behavioural strategies in host finding, as well as the rich variety of venom components that evolved and were partially acquired through horizontal gene transfer. Recent studies revealed the mechanisms by which these venom components manipulate their parasitized hosts in exhibiting escape behaviour to avoid superparasitism, and their counter-strategies to evade or obstruct the hosts' immunological defences.
Collapse
Affiliation(s)
- Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
44
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Bando T, Okumura M, Bando Y, Hagiwara M, Hamada Y, Ishimaru Y, Mito T, Kawaguchi E, Inoue T, Agata K, Noji S, Ohuchi H. Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages. Development 2022; 149:272415. [PMID: 34622924 DOI: 10.1242/dev.199916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.
Collapse
Affiliation(s)
- Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Misa Okumura
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yuki Bando
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Marou Hagiwara
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshimasa Hamada
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Eri Kawaguchi
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Takeshi Inoue
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| |
Collapse
|
46
|
Carboni AL, Hanson MA, Lindsay SA, Wasserman SA, Lemaitre B. Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Genetics 2022; 220:iyab188. [PMID: 34791204 PMCID: PMC8733632 DOI: 10.1093/genetics/iyab188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.
Collapse
Affiliation(s)
- Alexia L Carboni
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mark A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Scott A Lindsay
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Steven A Wasserman
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Yousefian S, Musillo MJ, Bageritz J. Analysis of Single-Cell Transcriptome Data in Drosophila. Methods Mol Biol 2022; 2540:93-111. [PMID: 35980574 DOI: 10.1007/978-1-0716-2541-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fly Drosophila is a versatile model organism that has led to fascinating biological discoveries. In the past few years, Drosophila researchers have used single-cell RNA-sequencing (scRNA-seq) to gain insights into the cellular composition, and developmental processes of various tissues and organs. Given the success of single-cell technologies a variety of computational tools and software packages were developed to enable and facilitate the analysis of scRNA-seq data. In this book chapter we want to give guidance on analyzing droplet-based scRNA-seq data from Drosophila. We will initially describe the preprocessing commonly done for Drosophila, point out possible downstream analyses, and finally highlight computational methods developed using Drosophila scRNA-seq data.
Collapse
Affiliation(s)
- Schayan Yousefian
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Jelena Musillo
- Centre for Organismal Studies Heidelberg (COS), Universität Heidelberg, Heidelberg, Germany
| | - Josephine Bageritz
- Centre for Organismal Studies Heidelberg (COS), Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
48
|
Cinege G, Magyar LB, Kovács AL, Lerner Z, Juhász G, Lukacsovich D, Winterer J, Lukacsovich T, Hegedűs Z, Kurucz É, Hultmark D, Földy C, Andó I. Broad Ultrastructural and Transcriptomic Changes Underlie the Multinucleated Giant Hemocyte Mediated Innate Immune Response against Parasitoids. J Innate Immun 2021; 14:335-354. [PMID: 34864742 PMCID: PMC9275024 DOI: 10.1159/000520110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Lilla B Magyar
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Zita Lerner
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Kurucz
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - István Andó
- Institute of Genetics, Innate Immunity Group, Immunology Unit, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
49
|
Boulet M, Renaud Y, Lapraz F, Benmimoun B, Vandel L, Waltzer L. Characterization of the Drosophila Adult Hematopoietic System Reveals a Rare Cell Population With Differentiation and Proliferation Potential. Front Cell Dev Biol 2021; 9:739357. [PMID: 34722521 PMCID: PMC8550105 DOI: 10.3389/fcell.2021.739357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
While many studies have described Drosophila embryonic and larval blood cells, the hematopoietic system of the imago remains poorly characterized and conflicting data have been published concerning adult hematopoiesis. Using a combination of blood cell markers, we show that the adult hematopoietic system is essentially composed of a few distinct mature blood cell types. In addition, our transcriptomics results indicate that adult and larval blood cells have both common and specific features and it appears that adult hemocytes reactivate many genes expressed in embryonic blood cells. Interestingly, we identify a small set of blood cells that does not express differentiation markers but rather maintains the expression of the progenitor marker domeMeso. Yet, we show that these cells are derived from the posterior signaling center, a specialized population of cells present in the larval lymph gland, rather than from larval blood cell progenitors, and that their maintenance depends on the EBF transcription factor Collier. Furthermore, while these cells are normally quiescent, we find that some of them can differentiate and proliferate in response to bacterial infection. In sum, our results indicate that adult flies harbor a small population of specialized cells with limited hematopoietic potential and further support the idea that no substantial hematopoiesis takes place during adulthood.
Collapse
Affiliation(s)
- Manon Boulet
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - François Lapraz
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Billel Benmimoun
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Laurence Vandel
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Lucas Waltzer
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
50
|
Girard JR, Goins LM, Vuu DM, Sharpley MS, Spratford CM, Mantri SR, Banerjee U. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. eLife 2021; 10:e67516. [PMID: 34713801 PMCID: PMC8610493 DOI: 10.7554/elife.67516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Juliet R Girard
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lauren M Goins
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Dung M Vuu
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Shreya R Mantri
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|