1
|
van Battum EY, van den Munkhof MH, Pasterkamp RJ. Novel insights into the regulation of neuron migration by axon guidance proteins. Curr Opin Neurobiol 2025; 92:103012. [PMID: 40184989 DOI: 10.1016/j.conb.2025.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Neural circuit development requires precisely coordinated guidance of migrating neurons to their targets within the nervous system. A diverse array of molecular cues has been implicated in neuron migration, including signals originally identified for their ability to dictate the trajectories of growing axons, i.e. axon guidance proteins. These proteins are now known to have pleiotropic effects affecting different stages of neuron migration, from promoting cell mobility to acting as stop signals. In this review, we discuss recent advances in our understanding of how canonical axon guidance proteins influence migrating neurons with a particular focus on recent insights into how neuron migration is controlled in the GnRH system and cortex, and the multifunctional role of Netrin-1. At the molecular level, tight control of receptor expression and crosstalk, and interactions with the extracellular matrix have recently been implicated in neuron migration control.
Collapse
Affiliation(s)
- Eljo Y van Battum
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
2
|
Kacimi L, Prevot V. GnRH and Cognition. Endocrinology 2025; 166:bqaf033. [PMID: 39996304 DOI: 10.1210/endocr/bqaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal "switch" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the "cognitive reserve" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.
Collapse
Affiliation(s)
- Loïc Kacimi
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| |
Collapse
|
3
|
Read JE, Vasile‐Tudorache A, Newsome A, Lorente MJ, Agustín‐Pavón C, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024; 1541:83-99. [PMID: 39431640 PMCID: PMC11580780 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E. Read
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alexandru Vasile‐Tudorache
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Carmen Agustín‐Pavón
- Department of Cell Biology, Functional Biology and Physical AnthropologyFaculty of Biological Sciences, University of ValenciaValenciaSpain
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research InstituteQueen Mary University of LondonLondonUK
- Department of Paediatric EndocrinologyBarts Health NHS TrustLondonUK
| |
Collapse
|
4
|
Chachlaki K, Duc KL, Storme L, Prévot V. Novel insights into minipuberty and GnRH: Implications on neurodevelopment, cognition, and COVID-19 therapeutics. J Neuroendocrinol 2024; 36:e13387. [PMID: 38565500 PMCID: PMC7616535 DOI: 10.1111/jne.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
In humans, the first 1000 days of life are pivotal for brain and organism development. Shortly after birth, gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus are activated, a phenomenon known as minipuberty. This phenomenon, observed in all mammals studied, influences the postnatal development of the hypothalamic-pituitary-gonadal (HPG) axis and reproductive function. This review will put into perspective the results of recent studies showing that the impact of minipuberty extends beyond reproductive function, influencing sensory and cognitive maturation. Studies in mice have revealed the role of nitric oxide (NO) in regulating minipuberty amplitude, with NO deficiency linked to cognitive and olfactory deficits. Additionally, findings indicate that cognitive and sensory defects in adulthood in a mouse model of Down syndrome are associated with an age-dependent decline of GnRH production, whose origin can be traced back to minipuberty, and point to the potential therapeutic role of pulsatile GnRH administration in cognitive disorders. Furthermore, this review delves into the repercussions of COVID-19 on GnRH production, emphasizing potential consequences for neurodevelopment and cognitive function in infected individuals. Notably, GnRH neurons appear susceptible to SARS-CoV-2 infection, raising concerns about potential long-term effects on brain development and function. In conclusion, the intricate interplay between GnRH neurons, GnRH release, and the activity of various extrahypothalamic brain circuits reveals an unexpected role for these neuroendocrine neurons in the development and maintenance of sensory and cognitive functions, supplementing their established function in reproduction. Therapeutic interventions targeting the HPG axis, such as inhaled NO therapy in infancy and pulsatile GnRH administration in adults, emerge as promising approaches for addressing neurodevelopmental cognitive disorders and pathological aging.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| | - Kevin Le Duc
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Laurent Storme
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| |
Collapse
|
5
|
Anderson GM, Hill JW, Kaiser UB, Navarro VM, Ong KK, Perry JRB, Prevot V, Tena-Sempere M, Elias CF. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra's seminal work. Nat Rev Endocrinol 2024; 20:111-123. [PMID: 38049643 PMCID: PMC10843588 DOI: 10.1038/s41574-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/06/2023]
Abstract
An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
- Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken K Ong
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Prévot V, Tena-Sempere M, Pitteloud N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J Clin Endocrinol Metab 2023; 108:2747-2758. [PMID: 37261390 DOI: 10.1210/clinem/dgad319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for activating and maintaining the function of the hypothalamic-pituitary-gonadal axis, which controls the onset of puberty and fertility. Two recent studies suggest that, in addition to controlling reproduction, the neurons in the brain that produce GnRH are also involved in the control of postnatal brain maturation, odor discrimination, and adult cognition. This review will summarize the development and establishment of the GnRH system, with particular attention to the importance of its first postnatal activation, a phenomenon known as minipuberty, for later reproductive and nonreproductive functions. In addition, we will discuss the beneficial effects of restoring physiological (ie, pulsatile) GnRH levels on olfactory and cognitive alterations in preclinical Down syndrome and Alzheimer disease models, as well as the potential risks associated with long-term continuous (ie, nonphysiological) GnRH administration in certain disorders. Finally, this review addresses the intriguing possibility that pulsatile GnRH therapy may hold therapeutic potential for the management of some neurodevelopmental cognitive disorders and pathological aging in elderly people.
Collapse
Affiliation(s)
- Vincent Prévot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR S1172, Lille F-59000, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
- Faculty of Biology and Medicine, Université of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
7
|
Sauve F, Nampoothiri S, Clarke SA, Fernandois D, Ferreira Coêlho CF, Dewisme J, Mills EG, Ternier G, Cotellessa L, Iglesias-Garcia C, Mueller-Fielitz H, Lebouvier T, Perbet R, Florent V, Baroncini M, Sharif A, Ereño-Orbea J, Mercado-Gómez M, Palazon A, Mattot V, Pasquier F, Catteau-Jonard S, Martinez-Chantar M, Hrabovszky E, Jourdain M, Deplanque D, Morelli A, Guarnieri G, Storme L, Robil C, Trottein F, Nogueiras R, Schwaninger M, Pigny P, Poissy J, Chachlaki K, Maurage CA, Giacobini P, Dhillo W, Rasika S, Prevot V. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023; 96:104784. [PMID: 37713808 PMCID: PMC10507138 DOI: 10.1016/j.ebiom.2023.104784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR).
Collapse
Affiliation(s)
- Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Sophie A Clarke
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Julie Dewisme
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Thibaud Lebouvier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France
| | - Vincent Florent
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Marc Baroncini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Maria Mercado-Gómez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Asis Palazon
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Virginie Mattot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Florence Pasquier
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Neurology, Memory Centre, Reference Centre for Early-Onset Alzheimer Disease and Related Disorders, Lille, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Gynecology and Obstetrics, Jeanne de Flandres Hospital, F-59000, Lille, France
| | - Maria Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTACentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mercé Jourdain
- Univ. Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France
| | - Dominique Deplanque
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; University Lille, Inserm, CHU Lille, Centre d'investigation Clinique (CIC) 1403, F-59000, Lille, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Laurent Storme
- CHU Lille, Department of Neonatology, Hôpital Jeanne de Flandre, FHU 1000 Days for Health, F-59000, France
| | - Cyril Robil
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille, France
| | - Julien Poissy
- LICORNE Study Group, CHU Lille, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de Réanimation, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France; CHU Lille, Department of Pathology, Centre Biologie Pathologie, France; LICORNE Study Group, CHU Lille, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France
| | - Waljit Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, DistAlz, Lille, France.
| |
Collapse
|
8
|
Prévot V, Duittoz A. A role for GnRH in olfaction and cognition: Implications for veterinary medicine. Reprod Domest Anim 2023; 58 Suppl 2:109-124. [PMID: 37329313 DOI: 10.1111/rda.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for the activation and maintenance of the function of the hypothalamic-pituitary-gonadal (HPG) axis, which controls the onset of puberty and fertility. Two provocative recent studies suggest that, in addition to control reproduction, the neurons in the brain that produce GnRH are also involved in the control postnatal brain maturation, odour discrimination and adult cognition. Long-acting GnRH antagonists and agonists are commonly used to control fertility and behaviour in veterinary medicine, primarily in males. This review puts into perspective the potential risks of these androgen deprivation therapies and immunization on olfactory and cognitive performances and well-aging in domestic animals, including pets. We will also discuss the results reporting beneficial effects of pharmacological interventions restoring physiological GnRH levels on olfactory and cognitive alterations in preclinical models of Alzheimer's disease, which shares many pathophysiological and behavioural hallmarks with canine cognitive dysfunction. These novel findings raise the intriguing possibility that pulsatile GnRH therapy holds therapeutic potential for the management of this behavioural syndrome affecting older dogs.
Collapse
Affiliation(s)
- Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
| | - Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAE Val de Loire, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
9
|
Duittoz AH, Kenny DA. Review: Early and late determinants of puberty in ruminants and the role of nutrition. Animal 2023; 17 Suppl 1:100812. [PMID: 37567653 DOI: 10.1016/j.animal.2023.100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 08/13/2023] Open
Abstract
This article reviews the scientific literature on puberty with a focus on ruminants and draws inference, where appropriate, from recent findings in transgenic mouse models and human pathology. Early genetic determinants of puberty have been discovered in humans suffering from hypogonadotropic hypogonadism or central precocious puberty. Transgenic mouse models selected on the basis of the causative defective genes helped in discovering the cellular and molecular mechanisms involved. Most of the genes found are involved in the development of neuroendocrine networks during embryo development and early postnatal life. Notwithstanding that the development of neuroendocrine networks takes place early in puberty, a delay or acceleration in the development of Gonadotropin Releasing Hormone (GnRH) neurons has an impact on puberty onset inducing a delay or an advance, respectively. Among the genes discovered in humans and laboratory models, only a few of them displayed polymorphisms associated with advanced sexual maturity, but also marbling, growth traits and callipygian conformation. This could be related to the fact that rather than puberty onset, most research monitored sexual maturity. Sexual maturity occurs after puberty onset and involves factors regulating the maturation of gonads and in the expression of sexual behaviour. The association with growth and metabolic traits is not surprising since nutrition is the major environmental factor that will act on late genetic determinants of puberty onset. However, a recent hypothesis emerged suggesting that it is the postnatal activation of the GnRH neuronal network that induces the acceleration of growth and weight gain. Hence, nutritional factors need the activation of GnRH neurons first before acting on late genetic determinants. Moreover, nutritional factors can also affect the epigenetic landscape of parental gamete's genome with the consequence of specific methylation of genes involved in GnRH neuron development in the embryo. Season is another important regulator of puberty onset in seasonal small ruminants and appears to involve the same mechanisms that are involved in seasonal transition in adults. The social environment is also an underestimated factor affecting puberty onset in domestic ruminants, most research studies focused on olfactory cues, but the genetic basis has not heretofore been adequately tackled by the scientific community. Additionally, there is some evidence to suggest transgenerational effects exist, in that nutritional and social cues to which parents were exposed, could affect the epigenetic landscape of parental gametes resulting in the epigenetic regulation of early genetic determinants of puberty onset in their offspring.
Collapse
Affiliation(s)
- A H Duittoz
- UMR 0083 BOA, INRAE, Centre Val de Loire, 37380 Nouzilly, France.
| | - D A Kenny
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath. C15 PW93, Ireland
| |
Collapse
|
10
|
Chung WCJ, Tsai PS. The initiation and maintenance of gonadotropin-releasing hormone neuron identity in congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 14:1166132. [PMID: 37181038 PMCID: PMC10173152 DOI: 10.3389/fendo.2023.1166132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Neurons that secrete gonadotropin-releasing hormone (GnRH) drive vertebrate reproduction. Genetic lesions that disrupt these neurons in humans lead to congenital hypogonadotropic hypogonadism (CHH) and reproductive failure. Studies on CHH have largely focused on the disruption of prenatal GnRH neuronal migration and postnatal GnRH secretory activity. However, recent evidence suggests a need to also focus on how GnRH neurons initiate and maintain their identity during prenatal and postnatal periods. This review will provide a brief overview of what is known about these processes and several gaps in our knowledge, with an emphasis on how disruption of GnRH neuronal identity can lead to CHH phenotypes.
Collapse
Affiliation(s)
- Wilson CJ Chung
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
11
|
Chachlaki K, Messina A, Delli V, Leysen V, Maurnyi C, Huber C, Ternier G, Skrapits K, Papadakis G, Shruti S, Kapanidou M, Cheng X, Acierno J, Rademaker J, Rasika S, Quinton R, Niedziela M, L'Allemand D, Pignatelli D, Dirlewander M, Lang-Muritano M, Kempf P, Catteau-Jonard S, Niederländer NJ, Ciofi P, Tena-Sempere M, Garthwaite J, Storme L, Avan P, Hrabovszky E, Carleton A, Santoni F, Giacobini P, Pitteloud N, Prevot V. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci Transl Med 2022; 14:eabh2369. [PMID: 36197968 PMCID: PMC7613826 DOI: 10.1126/scitranslmed.abh2369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.,University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens 115 27, Greece
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Csilla Maurnyi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Chieko Huber
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Gaëtan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Georgios Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sonal Shruti
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xu Cheng
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Jesse Rademaker
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Richard Quinton
- Translational and Clinical Research Institute and the Royal Victoria Infirmary, University of Newcastle , Tyne NE1 3BZ, UK
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan 61-701, Poland
| | - Dagmar L'Allemand
- Department of Endocrinology, Children's Hospital of Eastern Switzerland, St. Gallen 9000, Switzerland
| | - Duarte Pignatelli
- Department of Endocrinology, Hospital S João; Department of Biomedicine, Faculty of Medicine of the University of Porto; IPATIMUP Research Institute, Porto 4200-319, Portugal
| | - Mirjam Dirlewander
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva CH1205, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zürich 8032, Switzerland
| | - Patrick Kempf
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Gynaecology and Obstretic, Jeanne de Flandres Hospital, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Ciofi
- Inserm, U1215, Neurocentre Magendie, Université de Bordeaux, Bordeaux F-33077, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba 14004, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba 14004, Spain
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6DH, UK
| | - Laurent Storme
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Neonatology, Hôpital Jeanne de Flandre, CHU of Lille, Lille F-59000, France
| | - Paul Avan
- Université de Clerremont-Ferrand, Clermont-Ferrand F-63000, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| |
Collapse
|
12
|
Precocious puberty in narcolepsy type 1: Orexin loss and/or neuroinflammation, which is to blame? Sleep Med Rev 2022; 65:101683. [PMID: 36096986 DOI: 10.1016/j.smrv.2022.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Narcolepsy type 1 (NT1) is a rare neurological sleep disorder triggered by postnatal loss of the orexin/hypocretin neuropeptides. Overweight/obesity and precocious puberty are highly prevalent comorbidities of NT1, with a close temporal correlation with disease onset, suggesting a common origin. However, the underlying mechanisms remain unknown and merit further investigation. The main question we address in this review is whether the occurrence of precocious puberty in NT1 is due to the lack of orexin/hypocretin or rather to a wider hypothalamic dysfunction in the context of neuroinflammation, which is likely to accompany the disease given its autoimmune origins. Our analysis suggests that the suspected generalized neuroinflammation of the hypothalamus in NT1 would tend to delay puberty rather than hastening it. In contrast, that the brutal loss of orexin/hypocretin would favor an early reactivation of gonadotropin-releasing hormone (GnRH) secretion during the prepubertal period in vulnerable children, leading to early puberty onset. Orexin/hypocretin replacement could thus be envisaged as a potential treatment for precocious puberty in NT1. Additionally, we put forward an alternative hypothesis regarding the concomitant occurrence of sleepiness, weight gain and early puberty in NT1.
Collapse
|
13
|
Shen WB, Elahi M, Logue J, Yang P, Baracco L, Reece EA, Wang B, Li L, Blanchard TG, Han Z, Rissman RA, Frieman MB, Yang P. SARS-CoV-2 invades cognitive centers of the brain and induces Alzheimer's-like neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.31.478476. [PMID: 35132414 PMCID: PMC8820661 DOI: 10.1101/2022.01.31.478476] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotropism of SARS-CoV-2 and the phenotypes of infected neurons are still in debate. Long COVID manifests with "brain diseases" and the cause of these brain dysfunction is mysterious. Here, we analyze 34 age- and underlying disease-matched COVID-19 or non-COVID-19 human brains. SARS-CoV-2 RNA, nucleocapsid, and spike proteins are present in neurons of the cognitive centers of all COVID-19 patients, with its non-structural protein NSF2 detected in adult cases but not in the infant case, indicating viral replications in mature neurons. In adult COVID-19 patients without underlying neurodegeneration, SARS-CoV-2 infection triggers Aβ and p-tau deposition, degenerating neurons, microglia activation, and increased cytokine, in some cases with Aβ plaques and p-tau pretangles. The number of SARS-CoV-2 + cells is higher in patients with neurodegenerative diseases than in those without such conditions. SARS-CoV-2 further activates microglia and induces Aβ and p-tau deposits in non-Alzheimer's neurodegenerative disease patients. SARS-CoV-2 infects mature neurons derived from inducible pluripotent stem cells from healthy and Alzheimer's disease (AD) individuals through its receptor ACE2 and facilitator neuropilin-1. SARS-CoV-2 triggers AD-like gene programs in healthy neurons and exacerbates AD neuropathology. An AD infectious etiology gene signature is identified through SARS-CoV-2 infection and silencing the top three downregulated genes in human primary neurons recapitulates the neurodegenerative phenotypes of SARS-CoV-2. Thus, our data suggest that SARS-CoV-2 invades the brain and activates an AD-like program.
Collapse
|
14
|
The role of ciliopathy-associated type 3 adenylyl cyclase in infanticidal behavior in virgin adult male mice. iScience 2022; 25:104534. [PMID: 35754726 PMCID: PMC9218507 DOI: 10.1016/j.isci.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Virgin adult male mice often display killing of alien newborns, defined as infanticide, and this behavior is dependent on olfactory signaling. Olfactory perception is achieved by the main olfactory system (MOS) or vomeronasal system (VNS). Although it has been established that the VNS is crucial for infanticide in male mice, the role of the MOS in infanticide remains unknown. Herein, by producing lesions via ZnSO4 perfusion and N-methyl-D-aspartic acid stereotactic injection, we demonstrated that the main olfactory epithelium (MOE), anterior olfactory nucleus (AON), or ventromedial hypothalamus (VMH) is crucial for infanticide in adult males. By using CRISPR-Cas9 coupled with adeno-associated viruses to induce specific knockdown of type 3 adenylyl cyclase (AC3) in these tissues, we further demonstrated that AC3, a ciliopathy-associated protein, in the MOE and the expression of related proteins in the AON or VMH are necessary for infanticidal behavior in virgin adult male mice. MOE lesions and knockdown of AC3 in the MOE result in abnormal infanticidal behavior The infanticidal behavior of male mice is impaired by lesioning of the AON or VMH AC3 knockdown in the AON or VMH affects the infanticidal behavior of male mice
Collapse
|
15
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
17
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
18
|
GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat Neurosci 2021; 24:1660-1672. [PMID: 34795451 DOI: 10.1038/s41593-021-00960-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.
Collapse
|
19
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
20
|
Vanacker C, Bouret SG, Giacobini P, Prévot V. [Precocious puberty and neuropilin-1 signaling in GnRH neurons]. Med Sci (Paris) 2021; 37:366-371. [PMID: 33908854 DOI: 10.1051/medsci/2021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The survival of the species depends on two closely interlinked processes: the correct functioning of the reproductive system, and the balance between the energy needs of an individual and the supply of energy sources through feeding. These two processes are regulated in the hypothalamus, which produces neurohormones that control various physiological functions. Among these neurohormones, GnRH controls not only the maturation and function of the reproductive organs, including the ovaries and the testes, during puberty and in adulthood, but also sexual attraction. Recent evidence suggest that neuropilin-1-mediated signaling in GnRH-synthesizing neurons could be a linchpin that holds together various neuroanatomical, physiological and behavioral adaptations involved in triggering puberty and achieving reproductive function.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Sébastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
21
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
23
|
Vanacker C, Trova S, Shruti S, Casoni F, Messina A, Croizier S, Malone S, Ternier G, Hanchate NK, Rasika S, Bouret SG, Ciofi P, Giacobini P, Prevot V. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39:e104633. [PMID: 32761635 PMCID: PMC7527814 DOI: 10.15252/embj.2020104633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sonal Shruti
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Filippo Casoni
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Andrea Messina
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Samuel Malone
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Naresh Kumar Hanchate
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sebastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Philippe Ciofi
- Inserm U1215Neurocentre MagendieBordeauxFrance
- Université de BordeauxBordeauxFrance
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| |
Collapse
|
24
|
Barredo CG, Gil-Marti B, Deveci D, Romero NM, Martin FA. Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution. Front Endocrinol (Lausanne) 2020; 11:602285. [PMID: 33643219 PMCID: PMC7909313 DOI: 10.3389/fendo.2020.602285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Puberty and metamorphosis are two major developmental transitions linked to the reproductive maturation. In mammals and vertebrates, the central brain acts as a gatekeeper, timing the developmental transition through the activation of a neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and the sustaining genetic network play additional roles in metabolism, sleep and behavior. Although neurohormonal axes regulating juvenile-adult transition have been classically considered the result of convergent evolution (i.e., analogous) between mammals and insects, recent findings challenge this idea, suggesting that at least some neuroendocrine circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling pathways that trigger the transition in different species appear to be of a single evolutionary origin and, consequently, many of the resulting functions are conserved with a few other molecular players being co-opted during evolution.
Collapse
Affiliation(s)
- Celia G. Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Derya Deveci
- Sartorius Netherlands BV, Amersfoor, Netherlands
| | - Nuria M. Romero
- Developmental Timing, Environment and Behaviors Laboratory, Institut Sophia Agrobiotech, Université Côte d’Azur-INRAE-CNRS-INSERM, Sophia Antipolis, France
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| | - Francisco A. Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| |
Collapse
|