1
|
Van Haute L, Páleníková P, Tang JX, Nash PA, Simon MT, Pyle A, Oláhová M, Powell CA, Rebelo-Guiomar P, Stover A, Champion M, Deshpande C, Baple EL, Stals KL, Ellard S, Anselem O, Molac C, Petrilli G, Loeuillet L, Grotto S, Attie-Bitach T, Abdenur JE, Taylor RW, Minczuk M. Pathogenic PDE12 variants impair mitochondrial RNA processing causing neonatal mitochondrial disease. EMBO Mol Med 2025; 17:193-210. [PMID: 39567835 PMCID: PMC11729904 DOI: 10.1038/s44321-024-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Pathogenic variants in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial function. Within this group, an increasing number of families have been identified, where Mendelian genetic disorders implicate defective mitochondrial RNA biology. The PDE12 gene encodes the poly(A)-specific exoribonuclease, involved in the quality control of mitochondrial non-coding RNAs. Here, we report that disease-causing PDE12 variants in three unrelated families are associated with mitochondrial respiratory chain deficiencies and wide-ranging clinical presentations in utero and within the neonatal period, with muscle and brain involvement leading to marked cytochrome c oxidase (COX) deficiency in muscle and severe lactic acidosis. Whole exome sequencing of affected probands revealed novel, segregating bi-allelic missense PDE12 variants affecting conserved residues. Patient-derived primary fibroblasts demonstrate diminished steady-state levels of PDE12 protein, whilst mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) revealed an accumulation of spuriously polyadenylated mitochondrial RNA, consistent with perturbed function of PDE12 protein. Our data suggest that PDE12 regulates mitochondrial RNA processing and its loss results in neurological and muscular phenotypes.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jia Xin Tang
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pavel A Nash
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mariella T Simon
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
| | - Angela Pyle
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CB1 2GA, Cambridge, UK
| | - Alexander Stover
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
| | - Michael Champion
- Department of Children's Inherited Metabolic Diseases, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Charulata Deshpande
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Department of Clinical Genetics, Guy's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Emma L Baple
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Karen L Stals
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Olivia Anselem
- Maternité Port-Royal, Département de Gynécologie-Obstétrique, Hôpital Cochin Broca Hôtel-Dieu, APHP, Paris, France
| | - Clémence Molac
- Maternité Port-Royal, Département de Gynécologie-Obstétrique, Hôpital Cochin Broca Hôtel-Dieu, APHP, Paris, France
| | - Giulia Petrilli
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sarah Grotto
- UF de Génétique Clinique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital Trousseau, APHP, Paris, France
| | - Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
- INSERM UMR 1163, Imagine Institute, Genetics and Development of the Cerebral Cortex, Université Paris Cité, Paris, France
| | - Jose E Abdenur
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
- University of California, Irvine, Department of Pediatrics, Irvine, CA, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Yu C, Tigano M, Seifert EL. PDE12 mediated pruning of the poly-A tail of mitochondrial DNA-encoded tRNAs is essential for survival. EMBO Mol Med 2025; 17:3-5. [PMID: 39567836 PMCID: PMC11730969 DOI: 10.1038/s44321-024-00171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
E Seifert, M Tigano, and C Yu discuss the study from Haute et al, published in this issue of EMBO Mol Med , that reports the first pathogenic variants in the human PDE12 gene causing neonatal mitochondrial disease.
Collapse
Affiliation(s)
- Chenxiao Yu
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marco Tigano
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Erin L Seifert
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Wang X, Zhang G. The mitochondrial integrated stress response: A novel approach to anti-aging and pro-longevity. Ageing Res Rev 2025; 103:102603. [PMID: 39608727 DOI: 10.1016/j.arr.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The ISR is a cellular signaling pathway that responds to various physiological changes and types of stimulation. The mitochondrial integrated stress response (ISRmt) is a stress response specific to mitochondria which is initiated by eIF2α phosphorylation and is responsive to mitochondrial stressors. The ISRmt triggers diverse metabolic responses reliant on activating transcription factor 4 (ATF4). The preliminary phases of ISRmt can provoke an adaptive stress response that antagonizes age-related diseases and promotes longevity. In this review, we provide an overview of the molecular mechanisms of the ISRmt, with a particular focus on its potential as a therapeutic target for age-related disease and the promotion of longevity.
Collapse
Affiliation(s)
- Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China.
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, China.
| |
Collapse
|
4
|
Lin HP, Petersen JD, Gilsrud AJ, Madruga A, D'Silva TM, Huang X, Shammas MK, Randolph NP, Johnson KR, Li Y, Jones DR, Pacold ME, Narendra DP. DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy. EMBO J 2024; 43:5548-5585. [PMID: 39379554 PMCID: PMC11574132 DOI: 10.1038/s44318-024-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer D Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra J Gilsrud
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angelo Madruga
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa M D'Silva
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mario K Shammas
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas P Randolph
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Aaltio J, Euro L, Tynninen O, Vu HS, Ni M, DeBerardinis RJ, Suomalainen A, Isohanni P. Niacin supplementation in a child with novel MTTN variant m.5670A>G causing early onset mitochondrial myopathy and NAD + deficiency. Neuromuscul Disord 2024; 43:14-19. [PMID: 39173541 DOI: 10.1016/j.nmd.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.
Collapse
Affiliation(s)
- Juho Aaltio
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland.
| | - Liliya Euro
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland; Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Pelayo G, Paiva Coelho M, Correia J, Bandeira A, Nogueira C, Vilarinho L, Martins E. Phenotyping mitochondrial glutamyl-tRNA synthetase deficiency (EARS2): A case series and systematic literature review. Neurobiol Dis 2024; 200:106644. [PMID: 39173847 DOI: 10.1016/j.nbd.2024.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Mitochondrial glutamyl-aminoacyl tRNA synthetase deficiency, stemming from biallelic mutations in the EARS2 gene, was first described in 2012. With <50 cases reported globally, this condition exhibits a distinct phenotype of neonatal or childhood-onset, often referred to as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). It has also been one of the few reversible mitochondrial disorders described. The natural history of these patients is poorly documented, ranging from clinical and radiological improvement to early death. Herein, we detail three cases from our centre, including follow-up on the Portuguese patient reported by Steenweg et al., These cases illustrate the phenotypic spectrum: i) rapidly progressive neonatal presentation with lactic acidemia and corpus callosum agenesis, leading to early death; ii) early onset with a severe, slowly progressive course; iii) early onset with a milder phenotype, showing some improvement and mild neurological symptoms. Additionally, we conducted a systematic literature review on cases of EARS2-deficient patients, focusing on clinical manifestations, laboratory findings, radiological aspects, and disease progression over time, along with respective data analysis. "Patients with EARS2 deficiency typically present within the first year of life with a well-defined neurometabolic disorder picture, often including hypotonia and/or spasticity, along with neurodevelopmental delay or regression. There are no pathognomonic features specific to EARS2 deficiency, and no genotype-phenotype correlation has been identified." Comparing to initial characterization by Steenweg et al., this analysis reveals an expanded disease spectrum. We propose a novel strategy for clustering phenotypes into severe, moderate, or mild disease based on initial presentation, seemingly correlating with disease progression. The paucity of data on the disease's natural history highlights the need for a multicentric approach to enhance understanding and management. TAKE-HOME MESSAGE: Analysis of all cases published with EARS2 deficiency allows for establish disease spectrum and a novel strategy for clustering phenotypes which correlate to disease progression.
Collapse
Affiliation(s)
- Gonçalo Pelayo
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Margarida Paiva Coelho
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal.
| | - Joana Correia
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Anabela Bandeira
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Célia Nogueira
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal
| | - Esmeralda Martins
- Reference Centre for Metabolic Disorders, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
7
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
8
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
9
|
Neuhofer CM, Prokisch H. Digenic Inheritance in Rare Disorders and Mitochondrial Disease-Crossing the Frontier to a More Comprehensive Understanding of Etiology. Int J Mol Sci 2024; 25:4602. [PMID: 38731822 PMCID: PMC11083678 DOI: 10.3390/ijms25094602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.
Collapse
Affiliation(s)
- Christiane M. Neuhofer
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
- Institute of Human Genetics, Salzburger Landeskliniken, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
10
|
Lin HP, Petersen JD, Gilsrud AJ, Madruga A, D’Silva TM, Huang X, Shammas MK, Randolph NP, Li Y, Jones DR, Pacold ME, Narendra DP. DELE1 promotes translation-associated homeostasis, growth, and survival in mitochondrial myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582673. [PMID: 38529505 PMCID: PMC10962736 DOI: 10.1101/2024.02.29.582673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy. Here, we identified that diverse mitochondrial myopathy models elicit a protective mitochondrial integrated stress response (mt-ISR), mediated by OMA1-DELE1 signaling. The response was similar following disruptions in mtDNA maintenance, from knockout of Tfam, and mitochondrial protein unfolding, from disease-causing mutations in CHCHD10 (G58R and S59L). The preponderance of the response was directed at upregulating pathways for aminoacyl-tRNA biosynthesis, the intermediates for protein synthesis, and was similar in heart and skeletal muscle but more limited in brown adipose challenged with cold stress. Strikingly, models with early DELE1 mt-ISR activation failed to grow and survive to adulthood in the absence of Dele1, accounting for some but not all of OMA1's protection. Notably, the DELE1 mt-ISR did not slow net protein synthesis in stressed striated muscle, but instead prevented loss of translation-associated proteostasis in muscle fibers. Together our findings identify that the DELE1 mt-ISR mediates a stereotyped response to diverse forms of mitochondrial stress and is particularly critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra J. Gilsrud
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Madruga
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theresa M. D’Silva
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario K. Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas P. Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Drew R. Jones
- Department of Radiation Oncology, NYU Langone Health, New York, United States
| | - Michael E. Pacold
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, United States
| | - Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Kleefeld F, Horvath R, Pinal-Fernandez I, Mammen AL, Casal-Dominguez M, Hathazi D, Melchert S, Hahn K, Sickmann A, Muselmann-Genschow C, Hentschel A, Preuße C, Roos A, Schoser B, Stenzel W. Multi-level profiling unravels mitochondrial dysfunction in myotonic dystrophy type 2. Acta Neuropathol 2024; 147:19. [PMID: 38240888 PMCID: PMC10799095 DOI: 10.1007/s00401-023-02673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.
Collapse
Affiliation(s)
- Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew L Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria Casal-Dominguez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Melchert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Claudia Muselmann-Genschow
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
13
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
14
|
Pascual JM, Jakkamsetti V, Málaga I, Noble D. Impoverished Conceptions of Gene Causation and Therapy in Developmental Neurology. Pediatr Neurol 2023; 148:198-205. [PMID: 37652816 DOI: 10.1016/j.pediatrneurol.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/09/2023] [Accepted: 07/23/2023] [Indexed: 09/02/2023]
Abstract
We offer a primer to the modifiability of genetic neurological disease, particularly during development. One goal is to harness several unexpected observations made in the course of experimental gene modification or therapy into an explanatory conceptual context based on biological first principles. To this end, we anchor growing, disparate reports of unusual or untoward effects to a plausible framework wherein genes exhibit different degrees of modifiability and may result, when mutated or therapeutically modified, in unsuspected consequences. We propose that genetic pathogenic variant effects and modifiability depend on the number and complexity of associated protein-protein or higher-order interactions. Thus, gene malleability may range from that characteristic of the favorably modifiable primarily structural genes that subserve relatively invariant or circumscribed phenomena such as cell shape to that typical of some transcription factors, which are less functionally predictable when altered. The latter may be expressed developmentally, in compartmentalized manner, or only intermittently and yet exert vastly ramified influences sometimes circumscribed only to select species. We also argue that genetic diseases may steer the organism toward often poorly understood biological end points and co-opt multiple processes into hardly modifiable biology. Addition or modification of genes to approximate a normal state not previously experienced by the organism may lead to further aberration due to extraneous interference with the native biology of the disease state. Therefore, an understanding as perspicuous as possible of gene function, regulation, modifiability, and biological directionality down to seemingly minute but disease-relevant consequences is a prerequisite to intervention. Although we provide some groundwork steps to such an understanding, this may occasionally prove unattainable.
Collapse
Affiliation(s)
- Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas; Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ignacio Málaga
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Denis Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Wu TH, Peng J, Yang L, Chen YH, Lu XL, Huang JT, You JY, Ou-Yang WX, Sun YY, Xue YN, Mao X, Yan HM, Ren RN, Xie J, Chen ZH, Zhang VW, Lyu GZ, He F. Use of dual genomic sequencing to screen mitochondrial diseases in pediatrics: a retrospective analysis. Sci Rep 2023; 13:4193. [PMID: 36918699 PMCID: PMC10015028 DOI: 10.1038/s41598-023-31134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial diseases (MDs) were a large group multisystem disorders, attributable in part to the dual genomic control. The advent of massively sequencing has improved diagnostic rates and speed, and was increasingly being used as a first-line diagnostic test. Paediatric patients (aged < 18 years) who underwent dual genomic sequencing were enrolled in this retrospective multicentre study. We evaluated the mitochondrial disease criteria (MDC) and molecular diagnostic yield of dual genomic sequencing. Causative variants were identified in 177 out of 503 (35.2%) patients using dual genomic sequencing. Forty-six patients (9.1%) had mitochondria-related variants, including 25 patients with nuclear DNA (nDNA) variants, 15 with mitochondrial DNA (mtDNA) variants, and six with dual genomic variants (MT-ND6 and POLG; MT-ND5 and RARS2; MT-TL1 and NARS2; MT-CO2 and NDUFS1; MT-CYB and SMARCA2; and CHRNA4 and MT-CO3). Based on the MDC, 15.2% of the patients with mitochondria-related variants were classified as "unlikely to have mitochondrial disorder". Moreover, 4.5% of the patients with non-mitochondria-related variants and 1.43% with negative genetic tests, were classified as "probably having mitochondrial disorder". Dual genomic sequencing in suspected MDs provided a more comprehensive and accurate diagnosis for pediatric patients, especially for patients with dual genomic variants.
Collapse
Affiliation(s)
- Teng-Hui Wu
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, China
| | - Xiu-Lan Lu
- Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Jiao-Tian Huang
- Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Jie-Yu You
- Department of Gastroenterology and Nutrition, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Wen-Xian Ou-Yang
- Department of Hepatopathy, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan, China
| | - Yue-Yu Sun
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences (GAMS), 106 Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Yi-Nan Xue
- Department of Pediatrics, Brain Hospital of Hunan Province, 427 Furong Road, Changsha, Hunan, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal,, Child Health Hospital of Hunan Province, 53 Xiangchun Road, Changsha, Hunan, China
| | - Hui-Ming Yan
- Department of Medical Genetics, Maternal,, Child Health Hospital of Hunan Province, 53 Xiangchun Road, Changsha, Hunan, China
| | - Rong-Na Ren
- Department of Pediatrics, The 900Th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Jing Xie
- Department of Pediatrics, The First Hospital of Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, China
| | - Zhi-Heng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Victor-Wei Zhang
- Amcare Genomics Laboratory, Guangzhou, Guangdong, China.,Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gui-Zhen Lyu
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fang He
- Department of Pediatrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
17
|
Blood biomarkers of mitochondrial disease-One for all or all for one? HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:251-257. [PMID: 36813317 DOI: 10.1016/b978-0-12-821751-1.00006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The mitochondrial disease group consists of different disorders with unprecedented variability of clinical manifestations and tissue-specific symptoms. Their tissue-specific stress responses vary depending on the patients' age and type of dysfunction. These responses include secretion of metabolically active signal molecules to systemic circulation. Such signals-metabolites or metabokines-can be also utilized as biomarkers. During the past 10 years, metabolite and metabokine biomarkers have been described for mitochondrial disease diagnosis and follow-up, to complement the conventional blood biomarkers lactate, pyruvate and alanine. These new tools include metabokines FGF21 and GDF15; cofactors (NAD-forms); sets of metabolites (multibiomarkers) and the full metabolome. FGF21 and GDF15 are messengers of mitochondrial integrated stress response that together outperform the conventional biomarkers in specificity and sensitivity for muscle-manifesting mitochondrial diseases. Metabolite or metabolomic imbalance (e.g., NAD+ deficiency) is a secondary consequence to the primary cause in some diseases, but relevant as a biomarker and a potential indicator of therapy targets. For therapy trials, the optimal biomarker set needs to be tailored to match the disease of interest. The new biomarkers have increased the value of blood samples in mitochondrial disease diagnosis and follow-up, enabling prioritization of patients to different diagnostic paths and having crucial roles in follow-up of therapy effect.
Collapse
|
18
|
Chen Z, Bordieanu B, Kesavan R, Lesner NP, Venigalla SSK, Shelton SD, DeBerardinis RJ, Mishra P. Lactate metabolism is essential in early-onset mitochondrial myopathy. SCIENCE ADVANCES 2023; 9:eadd3216. [PMID: 36598990 PMCID: PMC9812384 DOI: 10.1126/sciadv.add3216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Myopathies secondary to mitochondrial electron transport chain (ETC) dysfunction can result in devastating disease. While the consequences of ETC defects have been extensively studied in culture, little in vivo data are available. Using a mouse model of severe, early-onset mitochondrial myopathy, we characterized the proteomic, transcriptomic, and metabolic characteristics of disease progression. Unexpectedly, ETC dysfunction in muscle results in reduced expression of glycolytic enzymes in our animal model and patient muscle biopsies. The decrease in glycolysis was mediated by loss of constitutive Hif1α signaling, down-regulation of the purine nucleotide cycle enzyme AMPD1, and activation of AMPK. In vivo isotope tracing experiments indicated that myopathic muscle relies on lactate import to supply central carbon metabolites. Inhibition of lactate import reduced steady-state levels of tricarboxylic acid cycle intermediates and compromised the life span of myopathic mice. These data indicate an unexpected mode of metabolic reprogramming in severe mitochondrial myopathy that regulates disease progression.
Collapse
Affiliation(s)
- Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bogdan Bordieanu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas P. Lesner
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Associations between serum mitokine levels and outcomes in stable COPD: an observational prospective study. Sci Rep 2022; 12:17315. [PMID: 36243733 PMCID: PMC9569360 DOI: 10.1038/s41598-022-21757-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Mitokines (Humanin (HN), GDF15 and FGF21) are produced as a result of mitochondrial dysfunction and may have major roles in chronic inflammation, malnutrition and exercise capacity in people with COPD. Except for GDF15, studies on this subject are lacking. A total of 165 patients with stable COPD and 49 smokers without COPD were enrolled. We assessed their serum mitokine levels and clinical characteristics at baseline. We recorded moderate and severe exacerbation for the next 12 months. Baseline serum HN (p = 0.037) and GDF-15 (p = 0.013) levels were higher in the COPD group. High HN levels were independently associated with a high risk of exacerbation (HRE) (OR 2.798, 95% CI 1.266-6.187, p = 0.011), malnutrition (OR 6.645, 95% CI 1.859-23.749, p = 0.004), and 6MWD (OR 0.995, 95% CI 0.991-0.999, p = 0.008), and future moderate (HR 1.826, 95% CI 1.181-2.822, p = 0.007) and severe exacerbations (HR 3.445, 95% CI 1.357-8.740, p = 0.009). High GDF15 levels were associated with HRE (OR 3.028, 95% CI 1.134-8.083, p = 0.027), 6MWD (OR 0.995, 95% CI 0.990-0.999, p = 0.017) and predicted desaturation in 6MWT (OR 3.999, 95% CI 1.487-10.757, p = 0.006). High FGF21 levels were associated with HRE (OR 2.144, 95% CI 1.000-4.600, p = 0.05), and predicted future severe exacerbation (HR 4.217, 95% CI 1.459-12.193, p = 0.008). The mitokine levels were higher in patients with COPD than smokers without COPD, and were associated with important clinical outcomes such as exercise capacity and COPD exacerbation. Among the mitokines, HN showed the strongest association with COPD and may serve as a future risk biomarker in this disease.Trial registation NCT04449419.
Collapse
|
20
|
Shammas MK, Huang X, Wu BP, Fessler E, Song I, Randolph NP, Li Y, Bleck CK, Springer DA, Fratter C, Barbosa IA, Powers AF, Quirós PM, Lopez-Otin C, Jae LT, Poulton J, Narendra DP. OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. J Clin Invest 2022; 132:157504. [PMID: 35700042 PMCID: PMC9282932 DOI: 10.1172/jci157504] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial stress triggers a response in the cell’s mitochondria and nucleus, but how these stress responses are coordinated in vivo is poorly understood. Here, we characterize a family with myopathy caused by a dominant p.G58R mutation in the mitochondrial protein CHCHD10. To understand the disease etiology, we developed a knockin (KI) mouse model and found that mutant CHCHD10 aggregated in affected tissues, applying a toxic protein stress to the inner mitochondrial membrane. Unexpectedly, the survival of CHCHD10-KI mice depended on a protective stress response mediated by the mitochondrial metalloendopeptidase OMA1. The OMA1 stress response acted both locally within mitochondria, causing mitochondrial fragmentation, and signaled outside the mitochondria, activating the integrated stress response through cleavage of DAP3-binding cell death enhancer 1 (DELE1). We additionally identified an isoform switch in the terminal complex of the electron transport chain as a component of this response. Our results demonstrate that OMA1 was critical for neonatal survival conditionally in the setting of inner mitochondrial membrane stress, coordinating local and global stress responses to reshape the mitochondrial network and proteome.
Collapse
Affiliation(s)
- Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Beverly P Wu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Insung Song
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Nicholas P Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States of America
| | - Christopher Ke Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Danielle A Springer
- Mouse Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Carl Fratter
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Ines A Barbosa
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | | - Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| |
Collapse
|
21
|
Vásquez-Trincado C, Dunn J, Han JI, Hymms B, Tamaroff J, Patel M, Nguyen S, Dedio A, Wade K, Enigwe C, Nichtova Z, Lynch DR, Csordas G, McCormack SE, Seifert EL. Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. JCI Insight 2022; 7:e155201. [PMID: 35531957 PMCID: PMC9090249 DOI: 10.1172/jci.insight.155201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Dunn
- Division of Endocrinology and Diabetes and
| | - Ji In Han
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Briyanna Hymms
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Monika Patel
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Dedio
- Division of Endocrinology and Diabetes and
| | | | | | - Zuzana Nichtova
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin L. Seifert
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
THE INTEGRATED STRESS RESPONSE AS A KEY PATHWAY DOWNSTREAM OF MITOCHONDRIAL DYSFUNCTION. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Sayles NM, Southwell N, McAvoy K, Kim K, Pesini A, Anderson CJ, Quinzii C, Cloonan S, Kawamata H, Manfredi G. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep 2022; 38:110475. [PMID: 35263592 PMCID: PMC9013208 DOI: 10.1016/j.celrep.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt. Sayles et al. report that mutant CHCHD10 proteotoxicity activates the mitochondrial integrated stress response (ISRmt) in a mouse model of mitochondrial cardiomyopathy. Chronic ISRmt causes profound metabolic imbalances, culminating in oxidative stress and iron dysregulation, ultimately resulting in mitochondrial dysfunction and contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Nicole M Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Nneka Southwell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alba Pesini
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Corey J Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Catarina Quinzii
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Suzanne Cloonan
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; The School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Pearse St, Dublin 2 52-160, Ireland; Tallaght University Hospital, Tallaght, Dublin 24 D24 NR0A, Ireland
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
24
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
25
|
Roos S, Hedberg-Oldfors C, Visuttijai K, Stein M, Kollberg G, Elíasdóttir Ó, Lindberg C, Darin N, Oldfors A. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients with mitochondrial myopathy associated with the homoplasmic m.14674T>C variant. Brain Pathol 2021; 32:e13038. [PMID: 34806237 PMCID: PMC9245933 DOI: 10.1111/bpa.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Two homoplasmic variants in tRNAGlu (m.14674T>C/G) are associated with reversible infantile respiratory chain deficiency. This study sought to further characterize the expression of the individual mitochondrial respiratory chain complexes and to describe the natural history of the disease. Seven patients from four families with mitochondrial myopathy associated with the homoplasmic m.14674T>C variant were investigated. All patients underwent skeletal muscle biopsy and mtDNA sequencing. Whole-genome sequencing was performed in one family. Western blot and immunohistochemical analyses were used to characterize the expression of the individual respiratory chain complexes. Patients presented with hypotonia and feeding difficulties within the first weeks or months of life, except for one patient who first showed symptoms at 4 years of age. Histopathological findings in muscle included lipid accumulation, numerous COX-deficient fibers, and mitochondrial proliferation. Ultrastructural abnormalities included enlarged mitochondria with concentric cristae and dense mitochondrial matrix. The m.14674T>C variant in MT-TE was identified in all patients. Immunohistochemistry and immunoblotting demonstrated pronounced deficiency of the complex I subunit NDUFB8. The expression of MTCO1, a complex IV subunit, was also decreased, but not to the same extent as NDUFB8. Longitudinal follow-up data demonstrated that not all features of the disorder are entirely transient, that the disease may be progressive, and that signs and symptoms of myopathy may develop during childhood. This study sheds new light on the involvement of complex I in reversible infantile respiratory chain deficiency, it shows that the disorder may be progressive, and that myopathy can develop without an infantile episode.
Collapse
Affiliation(s)
- Sara Roos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - My Stein
- Department of Pediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - Gittan Kollberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ólöf Elíasdóttir
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Olimpio C, Tiet MY, Horvath R. Primary mitochondrial myopathies in childhood. Neuromuscul Disord 2021; 31:978-987. [PMID: 34736635 DOI: 10.1016/j.nmd.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
Primary mitochondrial myopathies are genetic metabolic disorders of mitochondrial dysfunction affecting mainly, but not exclusively, skeletal muscle. Although individually rare, they are the most common inherited metabolic disorders in childhood. They can be similar to other childhood muscle diseases such as congenital myopathies, dystrophies, myasthenic syndromes or metabolic myopathies and a muscle biopsy and genetic testing are important in the differential diagnosis. Mitochondrial myopathies can present at any age but typically childhood onset myopathies have more significant muscle involvement and are caused by genes encoded in the nuclear DNA. Mitochondrial myopathy in infants presents with hypotonia, muscle weakness and difficulty feeding. In toddlers and older children delayed motor development, exercise intolerance and premature fatigue are common. A number of nuclear DNA and mitochondrial DNA encoded genes are known to cause isolated myopathy in childhood and they are important in a range of mitochondrial functions such as oxidative phosphorylation, mitochondrial transcription/translation and mitochondrial fusion/fission. A rare cause of isolated myopathy in children, reversible infantile respiratory chain deficiency myopathy, is non-progressive and typically associated with spontaneous full recovery. Promising targeted treatments have been reported for a number or mitochondrial myopathies including riboflavin in ACAD9 and ETFDH-myopathies and deoxynucleoside for TK2-related disease.
Collapse
Affiliation(s)
- Catarina Olimpio
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - May Yung Tiet
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Elstner M, Olszewski K, Prokisch H, Klopstock T, Murgia M. Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers. Int J Mol Sci 2021; 22:ijms222011080. [PMID: 34681740 PMCID: PMC8537949 DOI: 10.3390/ijms222011080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.
Collapse
Affiliation(s)
- Matthias Elstner
- Department of Neurology, Technical University Munich, 81675 Munich, Germany;
| | - Konrad Olszewski
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland;
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany;
- Institute of Neurogenomics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, 80336 Munich, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81675 Munich, Germany
| | - Marta Murgia
- Department of Proteomics a Signal Transduction, Max Planck Institute of Biochemistry, 82352 Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
28
|
A recurrent de novo ATP5F1A substitution associated with neonatal complex V deficiency. Eur J Hum Genet 2021; 29:1719-1724. [PMID: 34483339 DOI: 10.1038/s41431-021-00956-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of rare, degenerative multisystem disorders affecting the cell's core bioenergetic and signalling functions. Spontaneous improvement is rare. We describe a novel neonatal-onset mitochondriopathy in three infants with failure to thrive, hyperlactatemia, hyperammonemia, and apparent clinical resolution before 18 months. Exome sequencing showed all three probands to be identically heterozygous for a recurrent de novo substitution, c.620G>A [p.(Arg207His)] in ATP5F1A, encoding the α-subunit of complex V. Patient-derived fibroblasts exhibited multiple deficits in complex V function and expression in vitro. Structural modelling predicts the observed substitution to create an abnormal region of negative charge on ATP5F1A's β-subunit-interacting surface, adjacent to the nearby β subunit's active site. This disorder, which presents with life-threatening neonatal manifestations, appears to follow a remitting course; the long-term prognosis remains unknown.
Collapse
|
29
|
Hathazi D, Cox D, D'Amico A, Tasca G, Charlton R, Carlier RY, Baumann J, Kollipara L, Zahedi RP, Feldmann I, Deleuze JF, Torella A, Cohn R, Robinson E, Ricci F, Jungbluth H, Fattori F, Boland A, O’Connor E, Horvath R, Barresi R, Lochmüller H, Urtizberea A, Jacquemont ML, Nelson I, Swan L, Bonne G, Roos A. INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain 2021; 144:2427-2442. [PMID: 33792664 PMCID: PMC8418339 DOI: 10.1093/brain/awab133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Marinesco-Sjögren syndrome is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms which are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between Marinesco-Sjögren syndrome and the INPP5K phenotype. We applied unbiased proteomic profiling on cells derived from Marinesco-Sjögren syndrome and INPP5K patients and identified alterations in d-3-PHGDH as a common molecular feature. d-3-PHGDH modulates the production of l-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with Marinesco-Sjögren syndrome and INPP5K disease. As l-serine administration represents a promising therapeutic strategy for d-3-PHGDH patients, we tested the effect of l-serine in generated sil1, phgdh and inpp5k a+b zebrafish models, which showed an improvement in their neuronal phenotype. Thus, our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.
Collapse
Affiliation(s)
- Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Dan Cox
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Adele D'Amico
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Richard Charlton
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert-Yves Carlier
- AP-HP, Service d’Imagerie Médicale, Raymond Poincaré Hospital, 92380 Garches, France
- Inserm U 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), 78180 Versailles, France
| | - Jennifer Baumann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ronald Cohn
- SickKids Research Institute, Department of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Emily Robinson
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Francesco Ricci
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Heinz Jungbluth
- Guy’s and St Thomas’ NHS Trust, King’s College London, London, SE1 7EH, UK
| | - Fabiana Fattori
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH) (A.B., J.F.D.), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France
| | - Emily O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center—University of Freiburg, Faculty of Medicine, 79095 Freiburg, Germany
| | | | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pôle Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, 97410 La Réunion, France
| | - Isabelle Nelson
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Laura Swan
- Department of molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS974, Centre de Recherche en Myologie, Institut de Myologie, 75013 Paris, France
| | - Andreas Roos
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada
- Department of Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Faculty of Medicine, 45147 Essen, Germany
| |
Collapse
|
30
|
Richter U, McFarland R, Taylor RW, Pickett SJ. The molecular pathology of pathogenic mitochondrial tRNA variants. FEBS Lett 2021; 595:1003-1024. [PMID: 33513266 PMCID: PMC8600956 DOI: 10.1002/1873-3468.14049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous disorders, caused by pathogenic variants in either the nuclear or mitochondrial genome. This heterogeneity is particularly striking for disease caused by variants in mitochondrial DNA-encoded tRNA (mt-tRNA) genes, posing challenges for both the treatment of patients and understanding the molecular pathology. In this review, we consider disease caused by the two most common pathogenic mt-tRNA variants: m.3243A>G (within MT-TL1, encoding mt-tRNALeu(UUR) ) and m.8344A>G (within MT-TK, encoding mt-tRNALys ), which together account for the vast majority of all mt-tRNA-related disease. We compare and contrast the clinical disease they are associated with, as well as their molecular pathologies, and consider what is known about the likely molecular mechanisms of disease. Finally, we discuss the role of mitochondrial-nuclear crosstalk in the manifestation of mt-tRNA-associated disease and how research in this area not only has the potential to uncover molecular mechanisms responsible for the vast clinical heterogeneity associated with these variants but also pave the way to develop treatment options for these devastating diseases.
Collapse
Affiliation(s)
- Uwe Richter
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiFinland
- Newcastle University Biosciences InstituteNewcastle UniversityUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| | - Sarah J. Pickett
- Wellcome Centre for Mitochondrial ResearchThe Medical SchoolNewcastle UniversityUK
- Newcastle University Translational and Clinical Research InstituteNewcastle UniversityUK
| |
Collapse
|
31
|
Gusic M, Prokisch H. Genetic basis of mitochondrial diseases. FEBS Lett 2021; 595:1132-1158. [PMID: 33655490 DOI: 10.1002/1873-3468.14068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Germany
| |
Collapse
|
32
|
Cotta A, Carvalho E, da-Cunha-Junior A, Navarro MM, Paim JF, Valicek J, Baptista-Junior S, da Silveira EB, Lima MI, Carellos EVM, de-La-Rocque-Ferreira A, Takata RI, Horvath R. Muscle fat replacement and modified ragged red fibers in two patients with reversible infantile respiratory chain deficiency. Neuromuscul Disord 2021; 31:551-557. [PMID: 33832841 DOI: 10.1016/j.nmd.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022]
Abstract
Reversible infantile respiratory chain deficiency is a severe neonatal mitochondrial myopathy that resolves spontaneously. It is caused by the homoplasmic m.14674T>C mtDNA mutation and additional nuclear variants in genes interacting with mt-tRNAGlu have been detected in some patients. We present detailed clinical, imaging, and muscle biopsy findings in a boy and a girl with neonatal hypotonia, feeding difficulties, lactic acidosis, and ragged red fibers. Both patients show fat replacement on muscle imaging, which was mild in the boy, but severe in the girl, affecting mostly the posterior leg muscles. In addition to the homoplasmic m.14674T>C, both patients carried heterozygous variants in QRSL1 (c. 686T>G; p.Val299Gly) and EARS2 (c.358C>T; p.Arg120Trp), respectively. It is very important to recognize the clinical and morphological signs of reversible infantile respiratory chain deficiency as patients should receive intensive supportive care in the first 6 months of life. Understanding the mechanism of the spontaneous recovery may lead to novel therapeutic perspectives in other mitochondrial diseases.
Collapse
Affiliation(s)
- Ana Cotta
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil.
| | - Elmano Carvalho
- Neurophysiology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | | | - Mônica Machado Navarro
- Pediatrics and Genetics Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Julia Filardi Paim
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Jaquelin Valicek
- Neurophysiology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Sidney Baptista-Junior
- Pathology Department, The SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Eni Braga da Silveira
- Electron Microscopy Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Maria Isabel Lima
- Electron Microscopy Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Ericka Viana Machado Carellos
- Department of Pediatrics, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Joao Paulo II Children Hospital, Minas Gerais Hospitalar Foundation, Belo Horizonte, Brazil
| | | | - Reinaldo Issao Takata
- Molecular Biology Department, The SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Cotta A, Carvalho E, da-Cunha-Júnior AL, Valicek J, Navarro MM, Junior SB, da Silveira EB, Lima MI, Cordeiro BA, Cauhi AF, Menezes MM, Nunes SV, Vargas AP, Neto RX, Paim JF. Muscle biopsy essential diagnostic advice for pathologists. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-020-00085-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Muscle biopsies are important diagnostic procedures in neuromuscular practice. Recent advances in genetic analysis have profoundly modified Myopathology diagnosis.
Main body
The main goals of this review are: (1) to describe muscle biopsy techniques for non specialists; (2) to provide practical information for the team involved in the diagnosis of muscle diseases; (3) to report fundamental rules for muscle biopsy site choice and adequacy; (4) to highlight the importance of liquid nitrogen in diagnostic workup. Routine techniques include: (1) histochemical stains and reactions; (2) immunohistochemistry and immunofluorescence; (3) electron microscopy; (4) mitochondrial respiratory chain enzymatic studies; and (5) molecular studies. The diagnosis of muscle disease is a challenge, as it should integrate data from different techniques.
Conclusion
Formalin-fixed paraffin embedded muscle samples alone almost always lead to inconclusive or unspecific results. Liquid nitrogen frozen muscle sections are imperative for neuromuscular diagnosis. Muscle biopsy interpretation is possible in the context of detailed clinical, neurophysiological, and serum muscle enzymes data. Muscle imaging studies are strongly recommended in the diagnostic workup. Muscle biopsy is useful for the differential diagnosis of immune mediated myopathies, muscular dystrophies, congenital myopathies, and mitochondrial myopathies. Muscle biopsy may confirm the pathogenicity of new gene variants, guide cost-effective molecular studies, and provide phenotypic diagnosis in doubtful cases. For some patients with mitochondrial myopathies, a definite molecular diagnosis may be achieved only if performed in DNA extracted from muscle tissue due to organ specific mutation load.
Collapse
|
34
|
Hathazi D, Griffin H, Jennings MJ, Giunta M, Powell C, Pearce SF, Munro B, Wei W, Boczonadi V, Poulton J, Pyle A, Calabrese C, Gomez‐Duran A, Schara U, Pitceathly RDS, Hanna MG, Joost K, Cotta A, Paim JF, Navarro MM, Duff J, Mattman A, Chapman K, Servidei S, Della Marina A, Uusimaa J, Roos A, Mootha V, Hirano M, Tulinius M, Giri M, Hoffmann EP, Lochmüller H, DiMauro S, Minczuk M, Chinnery PF, Müller JS, Horvath R. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J 2020; 39:e105364. [PMID: 33128823 PMCID: PMC7705457 DOI: 10.15252/embj.2020105364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.
Collapse
|