1
|
Wu NC, Quevedo R, Nurse M, Hezaveh K, Liu H, Sun F, Muffat J, Sun Y, Simmons CA, McGaha TL, Prinos P, Arrowsmith CH, Ailles L, D'Arcangelo E, McGuigan AP. The use of a multi-metric readout screen to identify EHMT2/G9a-inhibition as a modulator of cancer-associated fibroblast activation state. Biomaterials 2025; 314:122879. [PMID: 39395244 DOI: 10.1016/j.biomaterials.2024.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression, including mediating tumour cell invasion via their pro-invasive secretory profile and ability to remodel the extracellular matrix (ECM). Given that reduced CAF abundance in tumours correlates with improved outcomes in various cancers, we set out to identify epigenetic targets involved in CAF activation in regions of tumour-stromal mixing with the goal of reducing tumour aggressiveness. Using the GLAnCE (Gels for Live Analysis of Compartmentalized Environments) platform, we performed an image-based, phenotypic screen that enabled us to identify modulators of CAF abundance and the capacity of CAFs to induce tumour cell invasion. We identified EHMT2 (also known as G9a), an enzyme that targets the methylation of histone 3 lysine 9 (H3K9), as a potent modulator of CAF abundance and CAF-mediated tumour cell invasion. Transcriptomic and functional analysis of EHMT2-inhibited CAFs revealed EHMT2 participated in driving CAFs towards a pro-invasive phenotype and mediated CAF hyperproliferation, a feature typically associated with activated fibroblasts in tumours. Our study suggests that EHMT2 regulates CAF state within the tumour microenvironment by impacting CAF activation, as well as by magnifying the pro-invasive effects of these activated CAFs on tumour cell invasion through promoting CAF hyperproliferation.
Collapse
Affiliation(s)
- Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Nurse
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Haijiao Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Fumao Sun
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Elisa D'Arcangelo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Luo C, Yang J. Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming. Aging Cell 2024; 23:e14285. [PMID: 39044402 PMCID: PMC11320343 DOI: 10.1111/acel.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.
Collapse
Affiliation(s)
- Chuyang Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsCollege of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsCollege of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| |
Collapse
|
3
|
Varghese N, Grimm A, Cader MZ, Eckert A. From Young to Old: Mimicking Neuronal Aging in Directly Converted Neurons from Young Donors. Cells 2024; 13:1260. [PMID: 39120291 PMCID: PMC11311457 DOI: 10.3390/cells13151260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.
Collapse
Affiliation(s)
- Nimmy Varghese
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - M. Zameel Cader
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DS, UK;
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland; (N.V.); (A.G.)
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
4
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero Domínguez JM, Talaverón-Rey M, Reche-López D, Suárez-Rivero JM, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, Oliveira MCD, Rodríguez-Sacristan A, Sánchez-Alcázar JA. Polydatin and Nicotinamide Rescue the Cellular Phenotype of Mitochondrial Diseases by Mitochondrial Unfolded Protein Response (mtUPR) Activation. Biomolecules 2024; 14:598. [PMID: 38786005 PMCID: PMC11118892 DOI: 10.3390/biom14050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristan
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.D.); (M.T.-R.); (D.R.-L.); (J.M.S.-R.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
5
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
6
|
Liu J, Tan J, Tang B, Guo J. Unveiling the role of iPLA 2β in neurodegeneration: From molecular mechanisms to advanced therapies. Pharmacol Res 2024; 202:107114. [PMID: 38395207 DOI: 10.1016/j.phrs.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Calcium-independent phospholipase A2β (iPLA2β), a member of the phospholipase A2 (PLA2s) superfamily, is encoded by the PLA2G6 gene. Mutations in the PLA2G6 gene have been identified as the primary cause of infantile neuroaxonal dystrophy (INAD) and, less commonly, as a contributor to Parkinson's disease (PD). Recent studies have revealed that iPLA2β deficiency leads to neuroinflammation, iron accumulation, mitochondrial dysfunction, lipid dysregulation, and other pathological changes, forming a complex pathogenic network. These discoveries shed light on potential mechanisms underlying PLA2G6-associated neurodegeneration (PLAN) and offer valuable insights for therapeutic development. This review provides a comprehensive analysis of the fundamental characteristics of iPLA2β, its association with neurodegeneration, the pathogenic mechanisms involved in PLAN, and potential targets for therapeutic intervention. It offers an overview of the latest advancements in this field, aiming to contribute to ongoing research endeavors and facilitate the development of effective therapies for PLAN.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Horisawa K, Suzuki A. The role of pioneer transcription factors in the induction of direct cellular reprogramming. Regen Ther 2023; 24:112-116. [PMID: 37397229 PMCID: PMC10314230 DOI: 10.1016/j.reth.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Regenerative medicine is a highly advanced medical field that aims to restore tissues and organs lost due to diseases and injury using a person's own cells or those of others. Direct cellular reprogramming is a promising technology that can directly induce cell-fate conversion from terminally differentiated cells to other cell types and is expected to play a pivotal role in applications in regenerative medicine. The induction of direct cellular reprogramming requires one or more master transcription factors with the potential to reconstitute cell type-specific transcription factor networks. The set of master transcription factors may contain unique transcription factors called pioneer factors that can open compacted chromatin structures and drive the transcriptional activation of target genes. Therefore, pioneer factors may play a central role in direct cellular reprogramming. However, our understanding of the molecular mechanisms by which pioneer factors induce cell-fate conversion is still limited. This review briefly summarizes the outcomes of recent findings and discusses future perspectives, focusing on the role of pioneer factors in direct cellular reprogramming.
Collapse
|
8
|
Chudakova DA, Samoilova EM, Chekhonin VP, Baklaushev VP. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury. Cells 2023; 12:2499. [PMID: 37887343 PMCID: PMC10605572 DOI: 10.3390/cells12202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5-4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to "scale up" NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested.
Collapse
Affiliation(s)
- Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Ekaterina M. Samoilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
9
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
10
|
Ottosson DR, Pereira CF. Reprogramming Stars #13: Establishing Connections with Cellular Reprogramming-An Interview with Dr. Daniella Rylander Ottosson. Cell Reprogram 2023; 25:130-135. [PMID: 37590006 DOI: 10.1089/cell.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Affiliation(s)
- Daniella Rylander Ottosson
- Regenerative Neurophysiology, Lund Stem Cell Centre, Multipark-Multidisciplinary Neuroscience Research, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Li W, Zheng Y. MicroRNAs in Extracellular Vesicles of Alzheimer's Disease. Cells 2023; 12:1378. [PMID: 37408212 PMCID: PMC10216432 DOI: 10.3390/cells12101378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with dysfunction of memory, language and thinking. More than 55 million people were diagnosed with AD or other dementia around the world in 2020. The pathology of AD is still unclear and there are no applicable therapies for AD. MicroRNAs (miRNAs) play key roles in AD pathology and have great potential for the diagnosis and treatment of AD. Extracellular vesicles (EVs) widely exist in body fluids such as blood and cerebrospinal fluid (CSF) and contain miRNAs that are involved in cell-to-cell communication. We summarized the dysregulated miRNAs in EVs derived from the different body fluids of AD patients, as well as their potential function and application in AD. We also compared these dysregulated miRNAs in EVs to those in the brain tissues of AD patients aiming to provide a comprehensive view of miRNAs in AD. After careful comparisons, we found that miR-125b-5p and miR-132-3p were upregulated and downregulated in several different brain tissues of AD and EVs of AD, respectively, suggesting their value in AD diagnosis based on EV miRNAs. Furthermore, miR-9-5p was dysregulated in EVs and different brain tissues of AD patients and had also been tested as a potential therapy for AD in mice and human cell models, suggesting that miR-9-5p could be used to design new therapies for AD.
Collapse
Affiliation(s)
- Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
12
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
13
|
Talaverón-Rey M, Álvarez-Córdoba M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Gómez-Fernández D, Romero-González A, Suárez-Carrillo A, Munuera-Cabeza M, Cilleros-Holgado P, Reche-López D, Piñero-Pérez R, Sánchez-Alcázar JA. Alpha-lipoic acid supplementation corrects pathological alterations in cellular models of pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2023; 18:80. [PMID: 37046296 PMCID: PMC10091671 DOI: 10.1186/s13023-023-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.
Collapse
Affiliation(s)
- Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
14
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
15
|
Sramkó B, Földes A, Kádár K, Varga G, Zsembery Á, Pircs K. The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells. Cell Reprogram 2023; 25:32-44. [PMID: 36719998 PMCID: PMC9963504 DOI: 10.1089/cell.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. In vitro expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for in vitro neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation in vitro and even for direct reprogramming.
Collapse
Affiliation(s)
- Bendegúz Sramkó
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Kristóf Kádár
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Karolina Pircs
- HCEMM-SU Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary.,Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Drouin-Ouellet J, Legault EM, Nilsson F, Pircs K, Bouquety J, Petit F, Shrigley S, Birtele M, Pereira M, Storm P, Sharma Y, Bruzelius A, Vuono R, Kele M, Stoker TB, Ottosson DR, Falk A, Jakobsson J, Barker RA, Parmar M. Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease. Stem Cell Reports 2022; 17:2203-2219. [PMID: 36150382 PMCID: PMC9561608 DOI: 10.1016/j.stemcr.2022.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022] Open
Abstract
We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
Collapse
Affiliation(s)
| | - Emilie M Legault
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Fredrik Nilsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Karolina Pircs
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Florence Petit
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Shelby Shrigley
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Maria Pereira
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Petter Storm
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Yogita Sharma
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Andreas Bruzelius
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Romina Vuono
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK; Medway School of Pharmacy, University of Kent, Chatham Maritime, Chatham ME4 4TB, UK
| | - Malin Kele
- Department of Neuroscience, Karolinska institutet, Stockholm, Sweden
| | - Thomas B Stoker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska institutet, Stockholm, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK
| | - Malin Parmar
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden.
| |
Collapse
|
18
|
Tang P, Chen C, Huang X. miR-29b Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Differentiation and Induces Nerve Repair in Diabetic Retina Rat Model. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs are involved in diabetic retinopathy (DR). This study intends to analyze miR-29b’s role in bone marrow mesenchymal stem cells (BMSCs) differentiation in DR rat models to induce nerve repair. BMSCs from DR rat models were cultured and transfected with miR-29b mimics and
inhibitors followed by measuring miR-29b level, cell proliferation and apoptosis. Retinal ganglion cells (RGC) were treated with high glucose for 24 h, and BMSCs and si-miR-29b-BMSC were cocultured for 24 h, respectively followed by assessing cell proliferation and apoptosis, inflammatory
cytokines by ELISA, MDA, SOD, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) level by ELISA. MiR-29b was up-regulated in BMSCs of DR rats. miR-29b mimics significantly up-regulated miR-29b, inhibited cell proliferation and promoted apoptosis (P <
0.05), which were reversed by miR-29b inhibitor (P < 0.05). Co-culture of BMSCs with si-miR-29b-BMSC promoted RGC proliferation, inhibited apoptosis and IL-6 secretion, decreased MDA, increased SOD, BDNF and CNTF expression (P < 0.05) with more significant changes in si-miR-29b-BMSC
group (P < 0.05). In conclusion, down-regulation of miR-29b promotes BMSCs proliferation in DR rat models, inhibits BMSCs apoptosis, and promotes the recovery of retinal ganglion cell function.
Collapse
Affiliation(s)
- Ping Tang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Chunmei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| |
Collapse
|
19
|
Ghazale H, Park E, Vasan L, Mester J, Saleh F, Trevisiol A, Zinyk D, Chinchalongporn V, Liu M, Fleming T, Prokopchuk O, Klenin N, Kurrasch D, Faiz M, Stefanovic B, McLaurin J, Schuurmans C. Ascl1 phospho-site mutations enhance neuronal conversion of adult cortical astrocytes in vivo. Front Neurosci 2022; 16:917071. [PMID: 36061596 PMCID: PMC9434350 DOI: 10.3389/fnins.2022.917071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct neuronal reprogramming, the process whereby a terminally differentiated cell is converted into an induced neuron without traversing a pluripotent state, has tremendous therapeutic potential for a host of neurodegenerative diseases. While there is strong evidence for astrocyte-to-neuron conversion in vitro, in vivo studies in the adult brain are less supportive or controversial. Here, we set out to enhance the efficacy of neuronal conversion of adult astrocytes in vivo by optimizing the neurogenic capacity of a driver transcription factor encoded by the proneural gene Ascl1. Specifically, we mutated six serine phospho-acceptor sites in Ascl1 to alanines (Ascl1 SA 6) to prevent phosphorylation by proline-directed serine/threonine kinases. Native Ascl1 or Ascl1 SA 6 were expressed in adult, murine cortical astrocytes under the control of a glial fibrillary acidic protein (GFAP) promoter using adeno-associated viruses (AAVs). When targeted to the cerebral cortex in vivo, mCherry+ cells transduced with AAV8-GFAP-Ascl1 SA 6-mCherry or AAV8-GFAP-Ascl1-mCherry expressed neuronal markers within 14 days post-transduction, with Ascl1 SA 6 promoting the formation of more mature dendritic arbors compared to Ascl1. However, mCherry expression disappeared by 2-months post-transduction of the AAV8-GFAP-mCherry control-vector. To circumvent reporter issues, AAV-GFAP-iCre (control) and AAV-GFAP-Ascl1 (or Ascl1 SA 6)-iCre constructs were generated and injected into the cerebral cortex of Rosa reporter mice. In all comparisons of AAV capsids (AAV5 and AAV8), GFAP promoters (long and short), and reporter mice (Rosa-zsGreen and Rosa-tdtomato), Ascl1 SA 6 transduced cells more frequently expressed early- (Dcx) and late- (NeuN) neuronal markers. Furthermore, Ascl1 SA 6 repressed the expression of astrocytic markers Sox9 and GFAP more efficiently than Ascl1. Finally, we co-transduced an AAV expressing ChR2-(H134R)-YFP, an optogenetic actuator. After channelrhodopsin photostimulation, we found that Ascl1 SA 6 co-transduced astrocytes exhibited a significantly faster decay of evoked potentials to baseline, a neuronal feature, when compared to iCre control cells. Taken together, our findings support an enhanced neuronal conversion efficiency of Ascl1 SA 6 vs. Ascl1, and position Ascl1 SA 6 as a critical transcription factor for future studies aimed at converting adult brain astrocytes to mature neurons to treat disease.
Collapse
Affiliation(s)
- Hussein Ghazale
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - EunJee Park
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lakshmy Vasan
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James Mester
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fermisk Saleh
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrea Trevisiol
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dawn Zinyk
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Mingzhe Liu
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Natalia Klenin
- Department of Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Maryam Faiz
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Drouin-Ouellet J. An Improved Method to Generate Human Induced Astrocytes. Cell Reprogram 2022; 24:163-164. [PMID: 35969675 DOI: 10.1089/cell.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major improvement in the generation of astrocytes directly from human fibroblasts will now facilitate the study of how aging impacts on astrocyte function and whether this contributes to neurodegenerative disorders.
Collapse
|
21
|
Povea-Cabello S, Villanueva-Paz M, Villalón-García I, Talaverón-Rey M, Álvarez-Cordoba M, Suárez-Rivero JM, Montes MÁ, Rodríguez-Moreno A, Andrade-Talavera Y, Armengol JA, Sánchez-Alcázar JA. Modeling Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes Syndrome Using Patient-Derived Induced Neurons Generated by Direct Reprogramming. Cell Reprogram 2022; 24:294-303. [PMID: 35802497 DOI: 10.1089/cell.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) syndrome is mainly caused by the m.3243A>G mutation in the mt-tRNALeu(UUR) (MT-TL1) gene. Owing to the lack of proper animal models, several cellular models have been developed to study the disease, providing insight in the pathophysiological mechanisms of MELAS. In this study, we show a successful direct conversion of MELAS patient-derived fibroblasts into induced neurons (iNs) for the first time, as well as an electrophysiological characterization of iNs cocultured with astrocytes. In addition, we performed bioenergetics analysis to study the consequences of m.3243A>G mutation in this neuronal model of MELAS syndrome.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Mónica Álvarez-Cordoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - María Ángeles Montes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Yuniesky Andrade-Talavera
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - José A Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
22
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
23
|
Quist E, Trovato F, Avaliani N, Zetterdahl OG, Gonzalez-Ramos A, Hansen MG, Kokaia M, Canals I, Ahlenius H. Transcription factor-based direct conversion of human fibroblasts to functional astrocytes. Stem Cell Reports 2022; 17:1620-1635. [PMID: 35750047 PMCID: PMC9287681 DOI: 10.1016/j.stemcr.2022.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are emerging key players in neurological disorders. However, their role in disease etiology is poorly understood owing to inaccessibility of primary human astrocytes. Pluripotent stem cell-derived cells fail to mimic age and due to their clonal origin do not mimic genetic heterogeneity of patients. In contrast, direct conversion constitutes an attractive approach to generate human astrocytes that capture age and genetic diversity. We describe efficient direct conversion of human fibroblasts to functional induced astrocytes (iAs). Expression of the minimal combination Sox9 and Nfib generates iAs with molecular, phenotypic, and functional properties resembling primary human astrocytes. iAs could be obtained by conversion of fibroblasts covering the entire human lifespan. Importantly, iAs supported function of induced neurons obtained through direct conversion from the same fibroblast population. Fibroblast-derived iAs will become a useful tool to elucidate the biology of astrocytes and complement current in vitro models for studies of late-onset neurological disorders. Effective direct conversion of human fibroblasts to induced astrocytes (iAs) iAs resemble human primary astrocytes at molecular, phenotypic, and functional levels iAs can be generated from fibroblasts covering the entire human lifespan iAs support function of induced neurons obtained from the same starting population
Collapse
Affiliation(s)
- Ella Quist
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden.
| | - Francesco Trovato
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden; Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | | | - Oskar G Zetterdahl
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Glial and Neuronal Biology, Lund, Sweden
| | - Ana Gonzalez-Ramos
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Epilepsy Center, Lund, Sweden
| | | | - Merab Kokaia
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Epilepsy Center, Lund, Sweden
| | - Isaac Canals
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Glial and Neuronal Biology, Lund, Sweden
| | - Henrik Ahlenius
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund, Sweden; Lund Stem Cell Center, Lund, Sweden.
| |
Collapse
|
24
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Perez R, Sánchez-Alcázar JA. UPR mt activation improves pathological alterations in cellular models of mitochondrial diseases. Orphanet J Rare Dis 2022; 17:204. [PMID: 35581596 PMCID: PMC9115953 DOI: 10.1186/s13023-022-02331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Mitochondrial diseases represent one of the most common groups of genetic diseases. With a prevalence greater than 1 in 5000 adults, such diseases still lack effective treatment. Current therapies are purely palliative and, in most cases, insufficient. Novel approaches to compensate and, if possible, revert mitochondrial dysfunction must be developed. Results In this study, we tackled the issue using as a model fibroblasts from a patient bearing a mutation in the GFM1 gene, which is involved in mitochondrial protein synthesis. Mutant GFM1 fibroblasts could not survive in galactose restrictive medium for more than 3 days, making them the perfect screening platform to test several compounds. Tetracycline enabled mutant GFM1 fibroblasts survival under nutritional stress. Here we demonstrate that tetracycline upregulates the mitochondrial Unfolded Protein Response (UPRmt), a compensatory pathway regulating mitochondrial proteostasis. We additionally report that activation of UPRmt improves mutant GFM1 cellular bioenergetics and partially restores mitochondrial protein expression. Conclusions Overall, we provide compelling evidence to propose the activation of intrinsic cellular compensatory mechanisms as promising therapeutic strategy for mitochondrial diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02331-8.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Carmen J Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - Rocío Piñero-Perez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Seville, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Seville, Spain.
| |
Collapse
|
25
|
Villalón-García I, Álvarez-Córdoba M, Povea-Cabello S, Talaverón-Rey M, Villanueva-Paz M, Luzón-Hidalgo R, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Falcón-Moya R, Rodríguez-Moreno A, Armengol JA, Sánchez-Alcázar JA. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol Dis 2022; 165:105649. [PMID: 35122944 DOI: 10.1016/j.nbd.2022.105649] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Raquel Luzón-Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Sevilla, Spain.
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Armengol
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
26
|
Kumar D, Hassan MI. Neurodegenerative brain models vs. cell replacement or restoration therapy: A review on promises and pitfalls. Biochem Biophys Res Commun 2021; 585:124-131. [PMID: 34801932 DOI: 10.1016/j.bbrc.2021.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023]
Abstract
Disease models have proven useful tools for gaining deeper mechanistic insights into neurodegenerative diseases. In this context, stem cell technology is effective, especially induced pluripotent stem cell (iPSC)-derived brain organoids and cell replacement/restoration which can be used for personalized medicine, allowing physicians to test the efficacy of drugs in vitro before delivering them to patients, enabling more precise and personalized treatment. Nonetheless, it offers the potential to minimize (or even eliminate) the use of animals, provides important clues for disease processes, and accelerates therapeutic strategies. Perhaps in the not-too-distant future, organoid models of the human brain will be able to link blood-brain barrier cultures with other liver cultures, simulating blood flow across organs and as a method of testing medicines, giving crucial pharmacokinetics and pharmacodynamics data. Simultaneously, stem cell interventions for cell replacements or restoration therapy would enable us to realize efficacious and realistic therapeutic options for Neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
27
|
Pircs K, Drouin-Ouellet J, Horváth V, Gil J, Rezeli M, Garza R, Grassi DA, Sharma Y, St-Amour I, Harris K, Jönsson ME, Johansson PA, Vuono R, Fazal SV, Stoker T, Hersbach BA, Sharma K, Lagerwall J, Lagerström S, Storm P, Hébert SS, Marko-Varga G, Parmar M, Barker RA, Jakobsson J. Distinct subcellular autophagy impairments in induced neurons from Huntington’s disease patients. Brain 2021; 145:3035-3057. [PMID: 34936701 PMCID: PMC9473361 DOI: 10.1093/brain/awab473] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/09/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.
Collapse
Affiliation(s)
- Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Janelle Drouin-Ouellet
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, H3 T 1J4, Canada
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jeovanis Gil
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, Lund University, S-221 85, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Daniela A. Grassi
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
- CERVO Brain Research Center – Université Laval, Québec, QC G1E 1T2, Canada
| | - Kate Harris
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Pia A. Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Romina Vuono
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Shaline V. Fazal
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Thomas Stoker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Bob A. Hersbach
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Kritika Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jessica Lagerwall
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Stina Lagerström
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
| | - György Marko-Varga
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Roger A. Barker
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| |
Collapse
|
28
|
Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 2021; 110:366-393. [PMID: 34921778 DOI: 10.1016/j.neuron.2021.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Differentiated cells have long been considered fixed in their identity. However, about 20 years ago, the first direct conversion of glial cells into neurons in vitro opened the field of "direct neuronal reprogramming." Since then, neuronal reprogramming has achieved the generation of fully functional, mature neurons with remarkable efficiency, even in diseased brain environments. Beyond their clinical implications, these discoveries provided basic insights into crucial mechanisms underlying conversion of specific cell types into neurons and maintenance of neuronal identity. Here we discuss such principles, including the importance of the starter cell for shaping the outcome of neuronal reprogramming. We further highlight technical concerns for in vivo reprogramming and propose a code of conduct to avoid artifacts and pitfalls. We end by pointing out next challenges for development of less invasive cell replacement therapies for humans.
Collapse
|
29
|
Parmar M, Pereira CF. Reprogramming Stars #4: A Reprogramming Approach for Parkinson's Disease-An Interview with Dr. Malin Parmar. Cell Reprogram 2021; 23:319-325. [PMID: 34889661 DOI: 10.1089/cell.2021.29049.mp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Bruzelius A, Kidnapillai S, Drouin-Ouellet J, Stoker T, Barker RA, Rylander Ottosson D. Reprogramming Human Adult Fibroblasts into GABAergic Interneurons. Cells 2021; 10:cells10123450. [PMID: 34943958 PMCID: PMC8699824 DOI: 10.3390/cells10123450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Direct reprogramming is an appealing strategy to generate neurons from a somatic cell by forced expression of transcription factors. The generated neurons can be used for both cell replacement strategies and disease modelling. Using this technique, previous studies have shown that γ-aminobutyric acid (GABA) expressing interneurons can be generated from different cell sources, such as glia cells or fetal fibroblasts. Nevertheless, the generation of neurons from adult human fibroblasts, an easily accessible cell source to obtain patient-derived neurons, has proved to be challenging due to the intrinsic blockade of neuronal commitment. In this paper, we used an optimized protocol for adult skin fibroblast reprogramming based on RE1 Silencing Transcription Factor (REST) inhibition together with a combination of GABAergic fate determinants to convert human adult skin fibroblasts into GABAergic neurons. Our results show a successful conversion in 25 days with upregulation of neuronal gene and protein expression levels. Moreover, we identified specific gene combinations that converted fibroblasts into neurons of a GABAergic interneuronal fate. Despite the well-known difficulty in converting adult fibroblasts into functional neurons in vitro, we could detect functional maturation in the induced neurons. GABAergic interneurons have relevance for cognitive impairments and brain disorders, such as Alzheimer’s and Parkinson’s diseases, epilepsy, schizophrenia and autism spectrum disorders.
Collapse
Affiliation(s)
- Andreas Bruzelius
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
| | - Srisaiyini Kidnapillai
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
| | | | - Tom Stoker
- Wellcome-MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (T.S.); (R.A.B.)
| | - Roger A. Barker
- Wellcome-MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (T.S.); (R.A.B.)
| | - Daniella Rylander Ottosson
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
- Correspondence: ; Tel.: +46-222-0559
| |
Collapse
|
31
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
33
|
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Front Cell Dev Biol 2021; 9:681087. [PMID: 34291049 PMCID: PMC8287587 DOI: 10.3389/fcell.2021.681087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.
Collapse
Affiliation(s)
- Lakshmy Vasan
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eunjee Park
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Parmar M, Björklund A, Björklund T. In vivo conversion of dopamine neurons in mouse models of Parkinson's disease - a future approach for regenerative therapy? Curr Opin Genet Dev 2021; 70:76-82. [PMID: 34175529 DOI: 10.1016/j.gde.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Recent advances in cell reprogramming have made it possible to form new therapeutic cells within the body itself via a process called direct conversion or lineage reprogramming. A series of studies have shown that it is possible to reprogram resident glia into new neurons within the brain parenchyma. These studies opened up for the targeted attempts to achieve functional brain repair using in vivo conversion. Because of the relatively focal degeneration, Parkinson's Disease (PD) is an attractive target for both transplantation-based and in vivo conversion-based reparative approaches. Fetal cell transplants have provided proof-of-concept and stem cell-based therapies for PD are now on the verge of entering clinical trials. In the future, in vivo conversion may be an alternative to transplantation-based therapies.
Collapse
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| |
Collapse
|
35
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
36
|
REST Inhibits Direct Reprogramming of Pancreatic Exocrine to Endocrine Cells by Preventing PDX1-Mediated Activation of Endocrine Genes. Cell Rep 2021; 31:107591. [PMID: 32375045 DOI: 10.1016/j.celrep.2020.107591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The emerging appreciation of plasticity among pancreatic lineages has created interest in harnessing cellular reprogramming for β cell replacement therapy of diabetes. Current reprogramming methodologies are inefficient, largely because of a limited understanding of the underlying mechanisms. Using an in vitro reprogramming system, we reveal the transcriptional repressor RE-1 silencing transcription factor (REST) as a barrier for β cell gene expression in the reprogramming of pancreatic exocrine cells. We observe that REST-bound loci lie adjacent to the binding sites of multiple key β cell transcription factors, including PDX1. Accordingly, a loss of REST function combined with PDX1 expression results in the synergistic activation of endocrine genes. This is accompanied by increased histone acetylation and PDX1 binding at endocrine gene loci. Collectively, our data identify a mechanism for REST activity involving the prevention of PDX1-mediated activation of endocrine genes and uncover REST downregulation and the resulting chromatin alterations as key events in β cell reprogramming.
Collapse
|
37
|
Fiorenzano A, Sozzi E, Parmar M, Storm P. Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells 2021; 10:cells10061366. [PMID: 34206038 PMCID: PMC8226961 DOI: 10.3390/cells10061366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are not amenable to being reproduced in animal models. The establishment of human cell-based systems combined with advanced computational single-cell transcriptomics holds great promise for decoding the mechanisms underlying maturation and diversification of human DA neurons, and linking their molecular heterogeneity to functions in the midbrain. Human pluripotent stem cells have emerged as a useful tool to recapitulate key molecular features of mature DA neuron subtypes. Here, we review some of the most recent advances and discuss the current challenges in using stem cells, to model human DA biology. We also describe how single cell RNA sequencing may provide key insights into the molecular programs driving DA progenitor specification into mature DA neuron subtypes. Exploiting the state-of-the-art approaches will lead to a better understanding of stem cell-derived DA neurons and their use in disease modeling and regenerative medicine.
Collapse
|
38
|
Monk R, Lee K, Jones KS, Connor B. Directly reprogrammed Huntington's disease neural precursor cells generate striatal neurons exhibiting aggregates and impaired neuronal maturation. STEM CELLS (DAYTON, OHIO) 2021; 39:1410-1422. [PMID: 34028139 DOI: 10.1002/stem.3420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Using a highly efficient protocol for direct reprogramming of adult human fibroblasts with chemically modified mRNA, we report the first generation of HD induced neural precursor cells (iNPs) expressing striatal lineage markers that differentiated into DARPP32+ neurons from individuals with adult-onset HD (41-57 CAG). While no transcriptional differences between normal and HD reprogrammed neurons were detected by NanoString nCounter analysis, a subpopulation of HD reprogrammed neurons contained ubiquitinated polyglutamine aggregates. Importantly, reprogrammed HD neurons exhibited impaired neuronal maturation, displaying altered neurite morphology and more depolarized resting membrane potentials. Reduced BDNF protein expression in reprogrammed HD neurons correlated with increased CAG repeat lengths and earlier symptom onset. This model represents a platform for investigating impaired neuronal maturation and screening for neuronal maturation modifiers to treat HD.
Collapse
Affiliation(s)
- Ruth Monk
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn S Jones
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Álvarez-Córdoba M, Talaverón-Rey M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Salas JJ, Sánchez-Alcázar JA. Down regulation of the expression of mitochondrial phosphopantetheinyl-proteins in pantothenate kinase-associated neurodegeneration: pathophysiological consequences and therapeutic perspectives. Orphanet J Rare Dis 2021; 16:201. [PMID: 33952316 PMCID: PMC8101147 DOI: 10.1186/s13023-021-01823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic neurological disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is the most widespread NBIA disorder. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) which catalyzes the first reaction of coenzyme A (CoA) biosynthesis. Thus, altered PANK2 activity is expected to induce CoA deficiency as well as low levels of essential metabolic intermediates such as 4′-phosphopantetheine which is a necessary cofactor for critical proteins involved in cytosolic and mitochondrial pathways such as fatty acid biosynthesis, mitochondrial respiratory complex I assembly and lysine and tetrahydrofolate metabolism, among other metabolic processes. Methods In this manuscript, we examined the effect of PANK2 mutations on the expression levels of proteins with phosphopantetheine cofactors in fibroblast derived from PKAN patients. These proteins include cytosolic acyl carrier protein (ACP), which is integrated within the multifunctional polypeptide chain of the fatty acid synthase involved in cytosolic fatty acid biosynthesis type I (FASI); mitochondrial ACP (mtACP) associated with mitocondrial fatty acid biosynthesis type II (FASII); mitochondrial alpha-aminoadipic semialdehyde synthase (AASS); and 10-formyltetrahydrofolate dehydrogenases (cytosolic, ALD1L1, and mitochondrial, ALD1L2). Results In PKAN fibroblasts the expression levels of cytosolic FAS and ALD1L1 were not affected while the expression levels of mtACP, AASS and ALD1L2 were markedly reduced, suggesting that 4′-phosphopantetheinylation of mitochondrial but no cytosolic proteins were markedly affected in PKAN patients. Furthermore, the correction of PANK2 expression levels by treatment with pantothenate in selected mutations with residual enzyme content was able to correct the expression levels of mitochondrial phosphopantetheinyl-proteins and restore the affected pathways. The positive effects of pantothenate in particular mutations were also corroborated in induced neurons obtained by direct reprograming of mutant PANK2 fibroblasts. Conclusions Our results suggest that the expression levels of mitochondrial phosphopantetheinyl-proteins are severely reduced in PKAN cells and that in selected mutations pantothenate increases the expression levels of both PANK2 and mitochondrial phosphopantetheinyl-proteins associated with remarkable improvement of cell pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01823-3.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Departamento de Bioquímica Y Biología Molecular de Productos Vegetales, Instituto de La Grasa (CSIC), Sevilla, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain. .,Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013, Sevilla, Spain.
| |
Collapse
|
40
|
Natarajan K, Ullgren A, Khoshnood B, Johansson C, Laffita-Mesa JM, Pannee J, Zetterberg H, Blennow K, Graff C. Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: a pilot study. Ann Clin Transl Neurol 2021; 8:579-591. [PMID: 33476461 PMCID: PMC7951103 DOI: 10.1002/acn3.51296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE PSEN1-H163Y carriers, at the presymptomatic stage, have reduced 18 FDG-PET binding in the cerebrum of the brain (Scholl et al., Neurobiol Aging 32:1388-1399, 2011). This could imply dysfunctional energy metabolism in the brain. In this study, plasma of presymptomatic PSEN1 mutation carriers was analyzed to understand associated metabolic changes. METHODS We analyzed plasma from noncarriers (NC, n = 8) and presymptomatic PSEN1-H163Y mutation carriers (MC, n = 6) via untargeted metabolomics using gas and liquid chromatography coupled with mass spectrometry, which identified 1199 metabolites. All the metabolites were compared between MC and NC using univariate analysis, as well as correlated with the ratio of Aβ1-42/A β 1-40 , using Spearman's correlation. Altered metabolites were subjected to Ingenuity Pathway Analysis (IPA). RESULTS Based on principal component analysis the plasma metabolite profiles were divided into dataset A and dataset B. In dataset A, when comparing between presymptomatic MC and NC, the levels of 79 different metabolites were altered. Out of 79, only 14 were annotated metabolites. In dataset B, 37 metabolites were significantly altered between presymptomatic MC and NC and nine metabolites were annotated. In both datasets, annotated metabolites represent amino acids, fatty acyls, bile acids, hexoses, purine nucleosides, carboxylic acids, and glycerophosphatidylcholine species. 1-docosapentaenoyl-GPC was positively correlated, uric acid and glucose were negatively correlated with the ratio of plasma Aβ1-42 /Aβ1-40 (P < 0.05). INTERPRETATION This study finds dysregulated metabolite classes, which are changed before the disease symptom onset. Also, it provides an opportunity to compare with sporadic Alzheimer's Disease. Observed findings in this study need to be validated in a larger and independent Familial Alzheimer's Disease (FAD) cohort.
Collapse
Affiliation(s)
- Karthick Natarajan
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Abbe Ullgren
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Behzad Khoshnood
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Charlotte Johansson
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - José M Laffita-Mesa
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, England
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Caroline Graff
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
41
|
Merlevede A, Legault EM, Drugge V, Barker RA, Drouin-Ouellet J, Olariu V. A quantitative model of cellular decision making in direct neuronal reprogramming. Sci Rep 2021; 11:1514. [PMID: 33452356 PMCID: PMC7810861 DOI: 10.1038/s41598-021-81089-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022] Open
Abstract
The direct reprogramming of adult skin fibroblasts to neurons is thought to be controlled by a small set of interacting gene regulators. Here, we investigate how the interaction dynamics between these regulating factors coordinate cellular decision making in direct neuronal reprogramming. We put forward a quantitative model of the governing gene regulatory system, supported by measurements of mRNA expression. We found that nPTB needs to feed back into the direct neural conversion network most likely via PTB in order to accurately capture quantitative gene interaction dynamics and correctly predict the outcome of various overexpression and knockdown experiments. This was experimentally validated by nPTB knockdown leading to successful neural conversion. We also proposed a novel analytical technique to dissect system behaviour and reveal the influence of individual factors on resulting gene expression. Overall, we demonstrate that computational analysis is a powerful tool for understanding the mechanisms of direct (neuronal) reprogramming, paving the way for future models that can help improve cell conversion strategies.
Collapse
Affiliation(s)
- Adriaan Merlevede
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden
| | - Emilie M Legault
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Viktor Drugge
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden
| | - Roger A Barker
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | - Victor Olariu
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden.
| |
Collapse
|
42
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
43
|
Patel AS, Yoo S, Kong R, Sato T, Sinha A, Karam S, Bao L, Fridrikh M, Emoto K, Nudelman G, Powell CA, Beasley MB, Zhu J, Watanabe H. Prototypical oncogene family Myc defines unappreciated distinct lineage states of small cell lung cancer. SCIENCE ADVANCES 2021; 7:7/5/eabc2578. [PMID: 33514539 PMCID: PMC7846160 DOI: 10.1126/sciadv.abc2578] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/10/2020] [Indexed: 05/11/2023]
Abstract
Comprehensive genomic analyses of small cell lung cancer (SCLC) have revealed frequent mutually exclusive genomic amplification of MYC family members. Hence, it has been long suggested that they are functionally equivalent; however, more recently, their expression has been associated with specific neuroendocrine markers and distinct histopathology. Here, we explored a previously undescribed role of L-Myc and c-Myc as lineage-determining factors contributing to SCLC molecular subtypes and histology. Integrated transcriptomic and epigenomic analyses showed that L-Myc and c-Myc impart neuronal and non-neuroendocrine-associated transcriptional programs, respectively, both associated with distinct SCLC lineage. Genetic replacement of c-Myc with L-Myc in c-Myc-SCLC induced a neuronal state but was insufficient to induce ASCL1-SCLC. In contrast, c-Myc induced transition from ASCL1-SCLC to NEUROD1-SCLC characterized by distinct large-cell neuroendocrine carcinoma-like histopathology. Collectively, we characterize a role of historically defined general oncogenes, c-Myc and L-Myc, for regulating lineage plasticity across molecular and histological subtypes.
Collapse
Affiliation(s)
- Ayushi S Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Ranran Kong
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Thoracic Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Karam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Bao
- Ningxia People's Hospital, Yinchuan, Ningxia Province 750001, China
| | - Maya Fridrikh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katsura Emoto
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo 160-8582, Japan
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles A Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Beth Beasley
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Zhu
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
44
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
45
|
D’Souza GX, Rose SE, Knupp A, Nicholson DA, Keene CD, Young JE. The application of in vitro-derived human neurons in neurodegenerative disease modeling. J Neurosci Res 2021; 99:124-140. [PMID: 32170790 PMCID: PMC7487003 DOI: 10.1002/jnr.24615] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/02/2023]
Abstract
The development of safe and effective treatments for age-associated neurodegenerative disorders is an on-going challenge faced by the scientific field. Key to the development of such therapies is the appropriate selection of modeling systems in which to investigate disease mechanisms and to test candidate interventions. There are unique challenges in the development of representative laboratory models of neurodegenerative diseases, including the complexity of the human brain, the cumulative and variable contributions of genetic and environmental factors over the course of a lifetime, inability to culture human primary neurons, and critical central nervous system differences between small animal models and humans. While traditional rodent models have advanced our understanding of neurodegenerative disease mechanisms, key divergences such as the species-specific genetic background can limit the application of animal models in many cases. Here we review in vitro human neuronal systems that employ stem cell and reprogramming technology and their application to a range of neurodegenerative diseases. Specifically, we compare human-induced pluripotent stem cell-derived neurons to directly converted, or transdifferentiated, induced neurons, as both model systems can take advantage of patient-derived human tissue to produce neurons in culture. We present recent technical developments using these two modeling systems, as well as current limitations to these systems, with the aim of advancing investigation of neuropathogenic mechanisms using these models.
Collapse
Affiliation(s)
- Gary X. D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shannon E. Rose
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Allison Knupp
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Daniel A. Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jessica E. Young
- Department of Pathology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine (ISCRM), University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Povea-Cabello S, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Precision Medicine in Rare Diseases. Diseases 2020; 8:diseases8040042. [PMID: 33202892 PMCID: PMC7709101 DOI: 10.3390/diseases8040042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023] Open
Abstract
Rare diseases are those that have a low prevalence in the population (less than 5 individuals per 10,000 inhabitants). However, infrequent pathologies affect a large number of people, since according to the World Health Organization (WHO), there are about 7000 rare diseases that affect 7% of the world’s population. Many patients with rare diseases have suffered the consequences of what is called the diagnostic odyssey, that is, extensive and prolonged serial tests and clinical visits, sometimes for many years, all with the hope of identifying the etiology of their disease. For patients with rare diseases, obtaining the genetic diagnosis can mean the end of the diagnostic odyssey, and the beginning of another, the therapeutic odyssey. This scenario is especially challenging for the scientific community, since more than 90% of rare diseases do not currently have an effective treatment. This therapeutic failure in rare diseases means that new approaches are necessary. Our research group proposes that the use of precision or personalized medicine techniques can be an alternative to find potential therapies in these diseases. To this end, we propose that patients’ own cells can be used to carry out personalized pharmacological screening for the identification of potential treatments.
Collapse
|
47
|
Direct Conversion of Human Stem Cell-Derived Glial Progenitor Cells into GABAergic Interneurons. Cells 2020; 9:cells9112451. [PMID: 33182669 PMCID: PMC7698048 DOI: 10.3390/cells9112451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Glial progenitor cells are widely distributed in brain parenchyma and represent a suitable target for future therapeutic interventions that generate new neurons via in situ reprogramming. Previous studies have shown successful reprogramming of mouse glia into neurons whereas the conversion of human glial cells remains challenging due to the limited accessibility of human brain tissue. Here, we have used a recently developed stem cell-based model of human glia progenitor cells (hGPCs) for direct neural reprogramming by overexpressing a set of transcription factors involved in GABAergic interneuron fate specification. GABAergic interneurons play a key role in balancing excitatory and inhibitory neural circuitry in the brain and loss or dysfunction of these have been implicated in several neurological disorders such as epilepsy, schizophrenia, and autism. Our results demonstrate that hGPCs successfully convert into functional induced neurons with postsynaptic activity within a month. The induced neurons have properties of GABAergic neurons, express subtype-specific interneuron markers (e.g. parvalbumin) and exhibit a complex neuronal morphology with extensive dendritic trees. The possibility of inducing GABAergic interneurons from a renewable in vitro hGPC system could provide a foundation for the development of therapies for interneuron pathologies.
Collapse
|
48
|
Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y. How to reprogram human fibroblasts to neurons. Cell Biosci 2020; 10:116. [PMID: 33062254 PMCID: PMC7549215 DOI: 10.1186/s13578-020-00476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction and death of neurons can lead to neurodegenerative diseases. One possible way to treat neurodegenerative diseases and damage of the nervous system is replacing damaged and dead neurons by cell transplantation. If new neurons can replace the lost neurons, patients may be able to regain the lost functions of memory, motor, and so on. Therefore, acquiring neurons conveniently and efficiently is vital to treat neurological diseases. In recent years, studies on reprogramming human fibroblasts into neurons have emerged one after another, and this paper summarizes all these studies. Scientists find small molecules and transcription factors playing a crucial role in reprogramming and inducing neuron production. At the same time, both the physiological microenvironment in vivo and the physical and chemical factors in vitro play an essential role in the induction of neurons. Therefore, this paper summarized and analyzed these relevant factors. In addition, due to the unique advantages of physical factors in the process of reprogramming human fibroblasts into neurons, such as safe and minimally invasive, it has a more promising application prospect. Therefore, this paper also summarizes some successful physical mechanisms of utilizing fibroblasts to acquire neurons, which will provide new ideas for somatic cell reprogramming.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Shengnan Su
- The Second Hospital of Jilin University, Jilin, Changchun, 130041 China
| | - Siyan Zhou
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Wentao Yang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Xin Deng
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China.,Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| |
Collapse
|
49
|
Nolbrant S, Giacomoni J, Hoban DB, Bruzelius A, Birtele M, Chandler-Militello D, Pereira M, Ottosson DR, Goldman SA, Parmar M. Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons. Stem Cell Reports 2020; 15:869-882. [PMID: 32976765 PMCID: PMC7562948 DOI: 10.1016/j.stemcr.2020.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors has been obtained in mouse models in vivo, but conversion using human cells has not yet been demonstrated. Such studies have been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, we show proof of concept of hGPC conversion using fetal cells and also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, we have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson's disease. The induced DA neurons show a progressive, subtype-specific phenotypic maturation and acquire functional electrophysiological properties indicative of DA phenotype. Human glial progenitors (hGPCs) can be directly converted into functional neurons Specific transcription factor combinations result in dopaminergic conversion Reprogrammed neurons show subtype-specific and functional maturation over time
Collapse
Affiliation(s)
- Sara Nolbrant
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jessica Giacomoni
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deirdre B Hoban
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcella Birtele
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maria Pereira
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniella Rylander Ottosson
- Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
50
|
Lee C, Willerth SM, Nygaard HB. The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer’s Disease Modeling. Prog Neurobiol 2020; 192:101804. [DOI: 10.1016/j.pneurobio.2020.101804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
|