1
|
Reid KT, Colpitts SJ, Mathews JA, Santos Carreira A, Murphy JM, Borovsky DT, Jegatheeswaran S, Cui W, Alfaro Moya T, Sachewsky N, An J, Xia Y, Mortha A, Lee JB, Zhang L, Novitzky-Basso I, Mattsson J, Crome SQ. Cell therapy with human IL-10-producing ILC2s limits xenogeneic graft-versus-host disease by inhibiting pathogenic T cell responses. Cell Rep 2025; 44:115102. [PMID: 39721022 DOI: 10.1016/j.celrep.2024.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Interleukin-10 (IL-10)-producing group 2 innate lymphoid cells (ILC210) regulate inflammatory immune responses, yet their therapeutic potential remains largely unexplored. Here, we demonstrate that cell therapy with human ILC210 inhibits pathogenic T cell responses in humanized mouse models of graft-versus-host disease (GVHD), resulting in reduced GVHD severity and improved overall survival without limiting the graft-versus-leukemia effect. ILC210 conferred superior protection from GVHD than IL-10-/low ILC2s, and blocking IL-10 and IL-4 abrogated ILC210 protective effects, indicating that these cytokines are important for the protective effects of ILC210. Notably, ILC210 provided comparable protection from GVHD to regulatory T cells without impairing T cell engraftment, instead decreasing intestinal T cell infiltration and suppressing CD4+ Th1 and CD8+ Tc1 cells. CITE-seq of expanded ILC2s revealed CD49d and CD86 are markers that allow for enrichment of ILC210 from conventional ILC2s and tracking of ILC210 in patient studies. Altogether, these findings demonstrate the potential of ILC210 in cell therapies for GVHD and other immune-mediated diseases.
Collapse
Affiliation(s)
- Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Abel Santos Carreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Julia M Murphy
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dorota T Borovsky
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Wenhui Cui
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tommy Alfaro Moya
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Postgraduate Medical Education Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nadia Sachewsky
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James An
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yubing Xia
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Arthur Mortha
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Li Zhang
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Novitzky-Basso
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Jonas Mattsson
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
2
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
3
|
Qiu X, Zhang H, Tang Z, Fan Y, Yuan W, Feng C, Chen C, Cui P, Cui Y, Qi Z, Li T, Zhu Y, Xie L, Peng F, Deng T, Jiang X, Peng L, Dai H. Homoharringtonine promotes heart allograft acceptance by enhancing regulatory T cells induction in a mouse model. Chin Med J (Engl) 2024; 137:1453-1464. [PMID: 37962205 PMCID: PMC11188914 DOI: 10.1097/cm9.0000000000002813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model. METHODS Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan-Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. RESULTS HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo . Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days ( P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4 + and CD8 + T cells in the spleen ( P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes ( CD4 , H2-Eb1 , TRAT1 , and CD74 ) and upregulated the expression of IL-10 and transforming growth factor (TGF)-β pathway-related genes and Treg signature genes ( CTLA4 , Foxp3 , CD74 , and ICOS ). HHT increased CD4 + Foxp3 + cells and Foxp3 expression ex vivo , and it enhanced the inhibitory function of inducible Tregs. CONCLUSIONS HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.
Collapse
Affiliation(s)
- Xia Qiu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuxi Fan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Pengcheng Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuexing Zhu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Liming Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Helong Dai
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| |
Collapse
|
4
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
6
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Audouze-Chaud J, Mathews JA, Crome SQ. Efficient and stable CRISPR/Cas9-mediated genome-editing of human type 2 innate lymphoid cells. Front Immunol 2023; 14:1275413. [PMID: 37868976 PMCID: PMC10585162 DOI: 10.3389/fimmu.2023.1275413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of innate lymphocytes with important roles in immune response coordination and maintenance of tissue homeostasis. The ILC family includes group 1 (ILC1s), group 2 (ILC2s) and group 3 (ILC3s) 'helper' ILCs, as well as cytotoxic Natural Killer (NK) cells. Study of helper ILCs in humans presents several challenges, including their low proportions in peripheral blood or needing access to rare samples to study tissue resident ILC populations. In addition, the lack of established protocols harnessing genetic manipulation platforms has limited the ability to explore molecular mechanism regulating human helper ILC biology. CRISPR/Cas9 is an efficient genome editing tool that enables the knockout of genes of interest, and is commonly used to study molecular regulation of many immune cell types. Here, we developed methods to efficiently knockout genes of interest in human ILC2s. We discuss challenges and lessons learned from our CRISPR/Cas9 gene editing optimizations using a nucleofection transfection approach and test a range of conditions and nucleofection settings to obtain a protocol that achieves effective and stable gene knockout while maintaining optimal cell viability. Using IL-4 as a representative target, we compare different ribonucleoprotein configurations, as well as assess effects of length of time in culture and other parameters that impact CRISPR/Cas9 transfection efficiency. Collectively, we detail a CRISPR/Cas9 protocol for efficient genetic knockout to aid in studying molecular mechanism regulating human ILC2s.
Collapse
Affiliation(s)
- Johanne Audouze-Chaud
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A. Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
8
|
Cao Q, Wang R, Niu Z, Chen T, Azmi F, Read SA, Chen J, Lee VW, Zhou C, Julovi S, Huang Q, Wang YM, Starkey MR, Zheng G, Alexander SI, George J, Wang Y, Harris DC. Type 2 innate lymphoid cells are protective against hepatic ischaemia/reperfusion injury. JHEP Rep 2023; 5:100837. [PMID: 37691688 PMCID: PMC10482753 DOI: 10.1016/j.jhepr.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Aims Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes, the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI). Methods ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human ILC2s was assessed in an immunocompromised mouse model of hepatic IRI. Results Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflammatory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosinophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI. Conclusions This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as therapeutic targets to treat acute liver injury. Impact and Implications We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Farhana Azmi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W.S. Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chunze Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C.H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation. Clin Exp Immunol 2023; 213:23-39. [PMID: 37119279 PMCID: PMC10324558 DOI: 10.1093/cei/uxad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Collapse
Affiliation(s)
- Martin L Mak
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
10
|
Nash A, Lokhorst N, Veiseh O. Localized immunomodulation technologies to enable cellular and organoid transplantation. Trends Mol Med 2023:S1471-4914(23)00097-7. [PMID: 37301656 DOI: 10.1016/j.molmed.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Localized immunomodulation technologies are rapidly emerging as a new modality with the potential to revolutionize transplantation of cells and organs. In the past decade, cell-based immunomodulation therapies saw clinical success in the treatment of cancer and autoimmune diseases. In this review, we describe recent advances in engineering solutions for the development of localized immunomodulation techniques focusing on cellular and organoid transplantation. We begin by describing cell transplantation and highlighting notable clinical successes, particularly in the areas of stem cell therapy, chimeric antigen receptor (CAR)-T cell therapy, and islet transplantation. Next, we detail recent preclinical studies centered on genome editing and biomaterials to enhance localized immunomodulation. We close by discussing future opportunities to improve clinical and commercial success using these approaches to facilitate long-term immunomodulation technologies.
Collapse
Affiliation(s)
- Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Nienke Lokhorst
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Ott LC, Cuenca AG. Innate immune cellular therapeutics in transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1067512. [PMID: 37994308 PMCID: PMC10664839 DOI: 10.3389/frtra.2023.1067512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Successful organ transplantation provides an opportunity to extend the lives of patients with end-stage organ failure. Selectively suppressing the donor-specific alloimmune response, however, remains challenging without the continuous use of non-specific immunosuppressive medications, which have multiple adverse effects including elevated risks of infection, chronic kidney injury, cardiovascular disease, and cancer. Efforts to promote allograft tolerance have focused on manipulating the adaptive immune response, but long-term allograft survival rates remain disappointing. In recent years, the innate immune system has become an attractive therapeutic target for the prevention and treatment of transplant organ rejection. Indeed, contemporary studies demonstrate that innate immune cells participate in both the initial alloimmune response and chronic allograft rejection and undergo non-permanent functional reprogramming in a phenomenon termed "trained immunity." Several types of innate immune cells are currently under investigation as potential therapeutics in transplantation, including myeloid-derived suppressor cells, dendritic cells, regulatory macrophages, natural killer cells, and innate lymphoid cells. In this review, we discuss the features and functions of these cell types, with a focus on their role in the alloimmune response. We examine their potential application as therapeutics to prevent or treat allograft rejection, as well as challenges in their clinical translation and future directions for investigation.
Collapse
Affiliation(s)
- Leah C Ott
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| | - Alex G Cuenca
- Department of General Surgery, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Low-dose nano-gel incorporated with bile acids enhanced pharmacology of surgical implants. Ther Deliv 2023; 14:17-29. [PMID: 36919692 DOI: 10.4155/tde-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.
Collapse
|
13
|
Thomas CM, Peebles RS. Development and function of regulatory innate lymphoid cells. Front Immunol 2022; 13:1014774. [PMID: 36275689 PMCID: PMC9581395 DOI: 10.3389/fimmu.2022.1014774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a critical element of the innate immune system and are potent producers of pro-inflammatory cytokines. Recently, however, the production of the anti-inflammatory cytokine IL-10 has been observed in all ILC subtypes (ILC1s, ILC2s, and ILC3s) suggesting their ability to adopt a regulatory phenotype that serves to maintain lung and gut homeostasis. Other studies advocate a potential therapeutic role of these IL-10-expressing ILCs in allergic diseases such as asthma, colitis, and pancreatic islet allograft rejection. Herein, we review IL-10 producing ILCs, discussing their development, function, regulation, and immunotherapeutic potential through suppressing harmful inflammatory responses. Furthermore, we address inconsistencies in the literature regarding these regulatory IL-10 producing ILCs, as well as directions for future research.
Collapse
Affiliation(s)
- Christopher M. Thomas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States,Research Service, Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, United States,*Correspondence: R. Stokes Peebles Jr,
| |
Collapse
|
14
|
Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5188584. [PMID: 35993024 PMCID: PMC9391131 DOI: 10.1155/2022/5188584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previous studies have been limited and have not included a systematic analysis of proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2 were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation, and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1, Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation, NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment and prevention of this condition.
Collapse
|
15
|
Stem Cell Therapy and Innate Lymphoid Cells. Stem Cells Int 2022; 2022:3530520. [PMID: 35958032 PMCID: PMC9363162 DOI: 10.1155/2022/3530520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells have the capability to communicate with other immune cell types to coordinate the immune system functioning during homeostasis and inflammation. However, these cells behave differently at the functional level, unlike T cells, these cells do not need antigen receptors for activation because they are activated by the interaction of their receptor ligation. In hematopoietic stem cell transplantation (HSCT), T cells and NK cells have been extensively studied but very few studies are available on ILCs. In this review, an attempt has been made to provide current information related to NK and ILCs cell-based stem cell therapies and role of the stem cells in the regulation of ILCs as well. Also, the latest information on the differentiation of NK cells and ILCs from CD34+ hematopoietic stem cells is covered in the article.
Collapse
|
16
|
Guo Y, Mei Z, Li D, Banerjee A, Khalil MA, Burke A, Ritter J, Lau C, Kreisel D, Gelman AE, Jacobsen E, Luzina IG, Atamas SP, Krupnick AS. Ischemia reperfusion injury facilitates lung allograft acceptance through IL-33-mediated activation of donor-derived IL-5 producing group 2 innate lymphoid cells. Am J Transplant 2022; 22:1963-1975. [PMID: 35510760 PMCID: PMC9357103 DOI: 10.1111/ajt.17084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 01/25/2023]
Abstract
Pathways regulating lung alloimmune responses differ from most other solid organs and remain poorly explored. Based on our recent work identifying the unique role of eosinophils in downregulating lung alloimmunity, we sought to define pathways contributing to eosinophil migration and homeostasis. Using a murine lung transplant model, we have uncovered that immunosuppression increases eosinophil infiltration into the allograft in an IL-5-dependent manner. IL-5 production depends on immunosuppression-mediated preservation of donor-derived group 2 innate lymphoid cells (ILC2). We further describe that ischemia reperfusion injury upregulates the expression of IL-33, which functions as the dominant and nonredundant mediator of IL-5 production by graft-resident ILC2. Our work thus identifies unique cellular mechanisms that contribute to lung allograft acceptance. Notably, ischemia reperfusion injury, widely considered to be solely deleterious to allograft survival, can also downregulate alloimmune responses by initiating unique pathways that promote IL-33/IL-5/eosinophil-mediated tolerance.
Collapse
Affiliation(s)
- Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Zhongcheng Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Dongge Li
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Anirban Banerjee
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - May A. Khalil
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Allen Burke
- Department of Pathology, University of Maryland, Baltimore Maryland
| | - Jon Ritter
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
| | - Christine Lau
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Daniel Kreisel
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Andrew E. Gelman
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis Missouri
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Irina G. Luzina
- Department of Medicine, University of Maryland, Baltimore Maryland
| | - Sergei P. Atamas
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | |
Collapse
|
17
|
Sun J, Zhou GP, Li SP, Chen XJ, Zhang JM, Jiang YZ, Cui B, Zhang HM, Sun LY, Zhu ZJ. Potential correlation of allograft infiltrating group 2 innate lymphoid cells with acute rejection after liver transplantation. Front Immunol 2022; 13:953240. [PMID: 35967423 PMCID: PMC9367675 DOI: 10.3389/fimmu.2022.953240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates the critical roles of group 2 innate lymphoid cells (ILC2s) in immunoregulation. However, the role of ILC2s in acute rejection after liver transplantation (LT) remains elusive. In this study, we analyzed the frequency, counts, and signature cytokines of ILC2s in liver transplant recipients by flow cytometric analysis and multiplex immunofluorescence assay. We also assessed the spatial distribution and correlation between hepatic ILC2s and Treg cells. The changes of ILC2s were dynamically monitored in the mouse LT model. We found that the frequencies of circulating ILC2s were comparable in liver transplant recipients with either rejection or non-rejection compared with the control group. The hepatic ILC2s counts were significantly increased in the rejection group than in the non-rejection and control groups, and a similar trend was observed for Treg cells. In the mouse LT model, allograft infiltrating ILC2s dramatically increased within 14 days post-transplant. The frequency of ILC2s in bone marrow significantly increased at 7 days post-transplant and rapidly decreased at 14 days after LT. Similarly, there was a significant increase in the frequency of splenic ILC2s within two weeks post-transplant. Multiplex immunofluorescence assay showed a close correlation between hepatic ILC2s and Treg cells by analyzing their spatial distribution and distance. In conclusion, the number of allograft infiltrating ILC2s was closely related to rejection after LT. Allograft infiltrating ILC2s may play inhibitory roles in posttransplant immune homeostasis, favoring resolution of liver allograft rejection by interacting with Treg cells or promoting the migration of Tregs cells into the liver allograft.
Collapse
Affiliation(s)
- Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Jin-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cui
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Hai-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| |
Collapse
|
18
|
Wang R, Zhang J, Li D, Liu G, Fu Y, Li Q, Zhang L, Qian L, Hao L, Wang Y, Harris DCH, Wang D, Cao Q. Imbalance of circulating innate lymphoid cell subpopulations in patients with chronic kidney disease. Clin Immunol 2022; 239:109029. [PMID: 35525476 DOI: 10.1016/j.clim.2022.109029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Innate lymphoid cells (ILCs) are a newly identified heterogeneous family of innate immune cells. We conducted this study to investigate the frequency of circulating ILC subsets in various chronic kidney diseases (CKD). In DN, the proportion of total ILCs and certain ILC subgroups increased significantly. Positive correlations between proportion of total ILCs, ILC1s and body mass index, glycated hemoglobin were observed in DN. In LN, a significantly increased proportion of ILC1s was found in parallel with a reduced proportion of ILC2s. The proportions of total ILCs and ILC1s were correlated with WBC count and the level of C3. In all enrolled patients, the proportion of total ILCs and ILC1s was significantly correlated with the levels of ACR and GFR. In the present study, the proportion of circulating ILC subsets increased significantly in various types of CKD and correlated with clinico-pathological features, which suggests a possible role for ILCs in CKD.
Collapse
Affiliation(s)
- Ruifeng Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia; Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guiling Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqin Fu
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Qian
- Department of Rheumatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Hao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Ye L, Jin K, Liao Z, Xiao Z, Xu H, Lin X, Li H, Li T, Zhang W, Han X, Wang W, Gao H, Liu L, Wu W, Yu X. Hypoxia-reprogrammed regulatory group 2 innate lymphoid cells promote immunosuppression in pancreatic cancer. EBioMedicine 2022; 79:104016. [PMID: 35483273 PMCID: PMC9117270 DOI: 10.1016/j.ebiom.2022.104016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previously, we uncovered a patient subgroup with highly malignant pancreatic cancer with serum markers CEA+/CA125+/CA19-9 ≥ 1000 U/mL (triple-positive, TP). However, the underlying immunosuppressive mechanism in the tumor immune microenvironment (TIME) of this subgroup is still unknown. METHODS Human tissues were analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Mouse pancreatic ILC2s were expanded in vivo and used for RNA sequencing, chromatin immunoprecipitation (ChIP), and chemotaxis assays. FINDINGS Through microarray data, we identified the accumulation of the hypoxia-induced factor-1α (HIF-1α) pathway in these TP patients. Via flow and mass cytometry, we discovered that a special subset of ILC2s were highly infiltrated in TP patients. Under the hypoxia microenvironment, ILC2s were found undergo a transition to a IL10+ regulatory phenotype, we named ILCregs which was correlated with pancreatic ductal adenocarcinoma (PDAC) progression. Further, neoadjuvant chemotherapy could ameliorate hypoxic tumor microenvironments so that significantly reverse the regulatory phenotype of ILCregs. Moreover, most tumor ILC2 were CD103-, which indicated its circulatory origin. The expression of Ccr2 was significantly upregulated on mouse ILCregs, and these cells selectively migrated to CCL2. INTERPRETATION Our results indicate that the hypoxia microenvironment creates an immunosuppressive TIME by inducing ILCregs from a population of circulating group 2 ILCs in TP PDAC patients. FUNDING This study was jointly supported by the National Natural Science Foundation of China (U21A20374, 82173091, and 81701630).
Collapse
Affiliation(s)
- Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhenyu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Fathi I, Nishimura R, Imura T, Inagaki A, Kanai N, Ushiyama A, Kikuchi M, Maekawa M, Yamaguchi H, Goto M. KRP-203 Is a Desirable Immunomodulator for Islet Allotransplantation. Transplantation 2022; 106:963-972. [PMID: 34241985 PMCID: PMC9038237 DOI: 10.1097/tp.0000000000003870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The current standard immunosuppressive regimens, calcineurin inhibitors, have diabetogenic and anti-vascularization effects on islet grafts. KRP-203, a sphingosine-1-phosphate functional antagonist, exerts its immunomodulatory function through lymphocyte sequestration. However, the effect of this antagonist on islets is unclear. We examined the effect of KRP-203 on the islet function and vascularization and sought a calcineurin-free regimen for islet allotransplantation. METHODS KRP-203 was administered for 14 d to mice, then diabetogenic effect was evaluated by blood glucose levels and a glucose tolerance test. Static glucose stimulation, the breathing index, and insulin/DNA were examined using isolated islets. Islet neovascularization was evaluated using a multiphoton laser scanning microscope. After islet allotransplantation with either KRP-203 alone, sirolimus alone, or both in combination, the graft survival was evaluated by blood glucose levels and immunohistochemical analyses. A mixed lymphocyte reaction was also performed to investigate the immunologic characteristics of KRP-203 and sirolimus. RESULTS No significant differences in the blood glucose levels or glucose tolerance were observed between the control and KRP-203 groups. Functional assays after islet isolation were also comparable. The multiphoton laser scanning microscope showed no inhibitory effect of KRP-203 on islet neovascularization. Although allogeneic rejection was effectively inhibited by KRP-203 monotherapy (44%), combination therapy prevented rejection in most transplanted mice (83%). CONCLUSIONS KRP-203 is a desirable immunomodulator for islet transplantation because of the preservation of the endocrine function and lack of interference with islet neovascularization. The combination of KRP-203 with low-dose sirolimus may be promising as a calcineurin-free regimen for islet allotransplantation.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Ryuichi Nishimura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Masafumi Kikuchi
- Department of Pharmaceutical Science, Tohoku University Hospital, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Science, Tohoku University Hospital, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Graduate School of Medical Science, Yamagata University Hospital, Yamagata, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers (Basel) 2022; 14:2071. [PMID: 35565201 PMCID: PMC9102917 DOI: 10.3390/cancers14092071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| |
Collapse
|
22
|
Ricardo-Gonzalez RR, Molofsky AB, Locksley RM. ILC2s - development, divergence, dispersal. Curr Opin Immunol 2022; 75:102168. [PMID: 35176675 PMCID: PMC9131705 DOI: 10.1016/j.coi.2022.102168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Over the last decade, we have come to appreciate group 2 innate lymphoid cells (ILC2s) as important players in host and tissue immunity. New studies of ILC2s and their precursors using novel reporter mice, advanced microscopy, and multi-omics approaches have expanded our knowledge on how these cells contribute to tissue physiology and function. This review highlights recent literature on this enigmatic cell, and we organize our discussion across three important paradigms in ILC2 biology: development, divergence, and dispersal. In addition, we frame our discussion in the context of other innate and adaptive immune cells to emphasize the relevance of expanding knowledge of ILC2s and tissue immunity.
Collapse
Affiliation(s)
- Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA; Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Abstract
More than a decade ago, type 2 innate lymphoid cells (ILC2s) were discovered to be members of a family of innate immune cells consisting of five subsets that form a first line of defence against infections before the recruitment of adaptive immune cells. Initially, ILC2s were implicated in the early immune response to parasitic infections, but it is now clear that ILC2s are highly diverse and have crucial roles in the regulation of tissue homeostasis and repair. ILC2s can also regulate the functions of other type 2 immune cells, including T helper 2 cells, type 2 macrophages and eosinophils. Dysregulation of ILC2s contributes to type 2-mediated pathology in a wide variety of diseases, potentially making ILC2s attractive targets for therapeutic interventions. In this Review, we focus on the spectrum of ILC2 phenotypes that have been described across different tissues and disease states with an emphasis on human ILC2s. We discuss recent insights in ILC2 biology and suggest how this knowledge might be used for novel disease treatments and improved human health. Type 2 innate lymphoid cells (ILC2s) have diverse phenotypes across different tissues and disease states. Recent insights into ILC2 biology raise new possibilities for the improved treatment of cancer and of metabolic, infectious and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
24
|
Shi S, Ye L, Jin K, Xiao Z, Yu X, Wu W. Innate Lymphoid Cells: Emerging Players in Pancreatic Disease. Int J Mol Sci 2022; 23:ijms23073748. [PMID: 35409105 PMCID: PMC8998564 DOI: 10.3390/ijms23073748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Common pancreatic diseases have caused significant economic and social burdens worldwide. The interstitial microenvironment is involved in and plays a crucial part in the occurrence and progression of pancreatic diseases. Innate lymphoid cells (ILCs), an innate population of immune cells which have only gradually entered our visual field in the last 10 years, play an important role in maintaining tissue homeostasis, regulating metabolism, and participating in regeneration and repair. Recent evidence indicates that ILCs in the pancreas, as well as in other tissues, are also key players in pancreatic disease and health. Herein, we examined the possible functions of different ILC subsets in common pancreatic diseases, including diabetes mellitus, pancreatitis and pancreatic cancer, and discussed the potential practical implications of the relevant findings for future further treatment of these pancreatic diseases.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (W.W.); Tel.: +86-21-6403-1446 (X.Y. & W.W.)
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (S.S.); (L.Y.); (K.J.); (Z.X.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (W.W.); Tel.: +86-21-6403-1446 (X.Y. & W.W.)
| |
Collapse
|
25
|
Walton K, Walker K, Riddle M, Koehn BH, Reff J, Sagatys EM, Linden MA, Pidala J, Kim J, Lee MC, Kiluk JV, Hui JYC, Yun SY, Xing Y, Stefanski H, Lawrence HR, Lawrence NJ, Tolar J, Anasetti C, Blazar BR, Sebti SM, Betts BC. Dual JAK2/Aurora kinase A inhibition prevents human skin graft rejection by allo-inactivation and ILC2-mediated tissue repair. Am J Transplant 2022; 22:717-730. [PMID: 34668635 PMCID: PMC8897228 DOI: 10.1111/ajt.16870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023]
Abstract
Prevention of allograft rejection often requires lifelong immune suppression, risking broad impairment of host immunity. Nonselective inhibition of host T cell function increases recipient risk of opportunistic infections and secondary malignancies. Here we demonstrate that AJI-100, a dual inhibitor of JAK2 and Aurora kinase A, ameliorates skin graft rejection by human T cells and provides durable allo-inactivation. AJI-100 significantly reduces the frequency of skin-homing CLA+ donor T cells, limiting allograft invasion and tissue destruction by T effectors. AJI-100 also suppresses pathogenic Th1 and Th17 cells in the spleen yet spares beneficial regulatory T cells. We show dual JAK2/Aurora kinase A blockade enhances human type 2 innate lymphoid cell (ILC2) responses, which are capable of tissue repair. ILC2 differentiation mediated by GATA3 requires STAT5 phosphorylation (pSTAT5) but is opposed by STAT3. Further, we demonstrate that Aurora kinase A activation correlates with low pSTAT5 in ILC2s. Importantly, AJI-100 maintains pSTAT5 levels in ILC2s by blocking Aurora kinase A and reduces interference by STAT3. Therefore, combined JAK2/Aurora kinase A inhibition is an innovative strategy to merge immune suppression with tissue repair after transplantation.
Collapse
Affiliation(s)
- Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kirsti Walker
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Megan Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brent H. Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jordan Reff
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth M. Sagatys
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA,Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Pidala
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA,Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA,Department of Blood and Marrow Transplantation – Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Marie C Lee
- Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA,Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - John V. Kiluk
- Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA,Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Sang Y. Yun
- Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA,Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Yan Xing
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Heather Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Harshani R. Lawrence
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA,Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Nicholas J. Lawrence
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA,Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Claudio Anasetti
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA,Department of Oncologic Sciences, Moffitt Cancer Center, Tampa, FL, USA,Department of Blood and Marrow Transplantation – Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Said M. Sebti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Cairo C, Webb TJ. Effective Barriers: The Role of NKT Cells and Innate Lymphoid Cells in the Gut. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:235-246. [PMID: 35017213 DOI: 10.4049/jimmunol.2100799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
The critical role of commensal microbiota in regulating the host immune response has been established. In addition, it is known that host-microbial interactions are bidirectional, and this interplay is tightly regulated to prevent chronic inflammatory disease. Although many studies have focused on the role of classic T cell subsets, unconventional lymphocytes such as NKT cells and innate lymphoid cells also contribute to the regulation of homeostasis at mucosal surfaces and influence the composition of the intestinal microbiota. In this review, we discuss the mechanisms involved in the cross-regulation between NKT cells, innate lymphoid cells, and the gut microbiota. Moreover, we highlight how disruptions in homeostasis can lead to immune-mediated disorders.
Collapse
Affiliation(s)
- Cristiana Cairo
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD;
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD; and
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Yamamoto Y, Uchiyama M, Iguchi K, Kawai K, Imazuru T, Kawamura M, Shimokawa T. Effects of Glycyrrhizic Acid in Licorice on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:476-481. [DOI: 10.1016/j.transproceed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
|
28
|
Budd MA, Monajemi M, Colpitts SJ, Crome SQ, Verchere CB, Levings MK. Interactions between islets and regulatory immune cells in health and type 1 diabetes. Diabetologia 2021; 64:2378-2388. [PMID: 34550422 DOI: 10.1007/s00125-021-05565-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes results from defects in immune self-tolerance that lead to inflammatory infiltrate in pancreatic islets, beta cell dysfunction and T cell-mediated killing of beta cells. Although therapies that broadly inhibit immunity show promise to mitigate autoinflammatory damage caused by effector T cells, these are unlikely to permanently reset tolerance or promote regeneration of the already diminished pool of beta cells. An emerging concept is that certain populations of immune cells may have the capacity to both promote tolerance and support the restoration of beta cells by supporting proliferation, differentiation and/or regeneration. Here we will highlight three immune cell types-macrophages, regulatory T cells and innate lymphoid cells-for which there is evidence of dual roles of immune regulation and tissue regeneration. We explore how findings in this area from other fields might be extrapolated to type 1 diabetes and highlight recent discoveries in the context of type 1 diabetes. We also discuss technological advances that are supporting this area of research and contextualise new therapeutic avenues to consider for type 1 diabetes.
Collapse
Affiliation(s)
- Matthew A Budd
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mahdis Monajemi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Yi C, Chen L, Lin Z, Liu L, Shao W, Zhang R, Lin J, Zhang J, Zhu W, Jia H, Qin L, Lu L, Chen J. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC. Hepatology 2021; 74:2544-2560. [PMID: 34036623 DOI: 10.1002/hep.31921] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Recently, clinical trials of lenvatinib plus pembrolizumab in HCC have displayed an impressive objective response rate. This study aimed to clarify the mechanism for optimal patient selection. APPROACH AND RESULTS First, in patients with HCC, lenvatinib-treated recurrent tumors had lower programmed death ligand 1 (PD-L1) expression and regulatory T cell (Treg) infiltration compared with matched primary tumors. Consistently, in C57BL/6 wild-type mice receiving anti-programmed cell death 1 (PD-1) therapy, PD-L1 expression and Treg infiltration in s.c. tumors were reduced when adding lenvatinib to the scheme. Mechanistically, on the one hand, FGF receptor 4 (FGFR4) was the most pivotal target in PD-L1 down-regulation by lenvatinib in vitro. Furthermore, lenvatinib reinforced the proteasomal degradation of PD-L1 by blocking the FGFR4-glycogen synthase kinase 3β axis and rescued the sensitivity of interferon-γ-pretreated HCC cells to T-cell killing by targeting FGFR4. On the other hand, the level of IL-2 increased after anti-PD-1 treatment, but IL-2-mediated Treg differentiation was blocked by lenvatinib through targeting FGFR4 to restrain signal transducer and activator of transcription 5 (STAT5) phosphorylation. By regulating the variations in the number of Tregs and the tumor FGFR4 level in C57BL/6-forkhead box protein P3 (Foxp3DTR ) mice, we found that high levels of FGFR4 and Treg infiltration sensitized tumors to the combination treatment. Finally, high levels of FGFR4 and Foxp3 conferred immune tolerance but better response to the combined therapy in patient cohorts. CONCLUSIONS Lenvatinib reduced tumor PD-L1 level and Treg differentiation to improve anti-PD-1 efficacy by blocking FGFR4. Levels of FGFR4 expression and Treg infiltration in tumor could serve as biomarkers for screening patients with HCC using lenvatinib plus anti-PD-1 combination therapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/administration & dosage
- B7-H1 Antigen/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cohort Studies
- Disease Models, Animal
- Drug Synergism
- Female
- Humans
- Immunity
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/metabolism
- Phenylurea Compounds/administration & dosage
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Protein Kinase Inhibitors/administration & dosage
- Quinolines/administration & dosage
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhifei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lu Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
- Cancer Metastasis Institute, Fudan University, Shanghai, PR China
| |
Collapse
|
30
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater 2021; 126:31-44. [PMID: 33722787 DOI: 10.1016/j.actbio.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
The immune system plays an essential role in tissue repair and regeneration. Regardless of innate or adaptive immune responses, immunosuppressive strategies such as macrophage polarization and regulatory T (Treg) cell induction can be used to modulate the immune system to promote tissue repair and regeneration. Biomaterials can improve the production of anti-inflammatory macrophages and Treg cells by providing physiochemical cues or delivering therapeutics such as cytokines, small molecules, microRNA, growth factors, or stem cells in the damaged tissues. Herein, we present an overview of immunosuppressive modulation by biomaterials in tissue regeneration and highlight the mechanisms of macrophage polarization and Treg cell induction. Overall, we foresee that future biomaterials for regenerative strategies will entail more interactions between biomaterials and the immune cells, and more mechanisms of immunosuppression related to T cell subsets remain to be discovered and applied to develop novel biomaterials for tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: Immunosuppression plays a key role in tissue repair and regeneration, and biomaterials can interact with the immune system through their biological properties and by providing physiochemical cues. Here, we summarize the studies on biomaterials that have been used for immunosuppression to facilitate tissue regeneration. In the first part of this review, we demonstrate the crucial role of macrophage polarization and induction of T regulatory (Treg) cells in immunosuppression. In the second part, distinct approaches used by biomaterials to induce immunosuppression are introduced, which show excellent performance in terms of promoting tissue regeneration.
Collapse
Affiliation(s)
- Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanxin Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shuai Luo
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jiang Chang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
32
|
Shi Z, Ohno H, Satoh-Takayama N. Dietary Derived Micronutrients Modulate Immune Responses Through Innate Lymphoid Cells. Front Immunol 2021; 12:670632. [PMID: 33995407 PMCID: PMC8116705 DOI: 10.3389/fimmu.2021.670632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that possess overlapping features with T cells, although they lack antigen-specific receptors. ILCs consist of five subsets-ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK) cells. They have significant functions in mediating various immune responses, protecting mucosal barrier integrity and maintaining tissue homeostasis in the lung, skin, intestines, and liver. ILCs react immediately to signals from internal and external sources. Emerging evidence has revealed that dietary micronutrients, such as various vitamins and minerals can significantly modulate immune responses through ILCs and subsequently affect human health. It has been demonstrated that micronutrients control the development and proliferation of different types of ILCs. They are also potent immunoregulators in several autoimmune diseases and play vital roles in resolving local inflammation. Here, we summarize the interplay between several essential micronutrients and ILCs to maintain epithelial barrier functions in various mucosal tissues and discuss their limitations and potentials for promoting human health.
Collapse
Affiliation(s)
- Zhengzheng Shi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
33
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
34
|
de Klerk E, Hebrok M. Stem Cell-Based Clinical Trials for Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:631463. [PMID: 33716982 PMCID: PMC7953062 DOI: 10.3389/fendo.2021.631463] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Since its introduction more than twenty years ago, intraportal allogeneic cadaveric islet transplantation has been shown to be a promising therapy for patients with Type I Diabetes (T1D). Despite its positive outcome, the impact of islet transplantation has been limited due to a number of confounding issues, including the limited availability of cadaveric islets, the typically lifelong dependence of immunosuppressive drugs, and the lack of coverage of transplant costs by health insurance companies in some countries. Despite improvements in the immunosuppressive regimen, the number of required islets remains high, with two or more donors per patient often needed. Insulin independence is typically achieved upon islet transplantation, but on average just 25% of patients do not require exogenous insulin injections five years after. For these reasons, implementation of islet transplantation has been restricted almost exclusively to patients with brittle T1D who cannot avoid hypoglycemic events despite optimized insulin therapy. To improve C-peptide levels in patients with both T1 and T2 Diabetes, numerous clinical trials have explored the efficacy of mesenchymal stem cells (MSCs), both as supporting cells to protect existing β cells, and as source for newly generated β cells. Transplantation of MSCs is found to be effective for T2D patients, but its efficacy in T1D is controversial, as the ability of MSCs to differentiate into functional β cells in vitro is poor, and transdifferentiation in vivo does not seem to occur. Instead, to address limitations related to supply, human embryonic stem cell (hESC)-derived β cells are being explored as surrogates for cadaveric islets. Transplantation of allogeneic hESC-derived insulin-producing organoids has recently entered Phase I and Phase II clinical trials. Stem cell replacement therapies overcome the barrier of finite availability, but they still face immune rejection. Immune protective strategies, including coupling hESC-derived insulin-producing organoids with macroencapsulation devices and microencapsulation technologies, are being tested to balance the necessity of immune protection with the need for vascularization. Here, we compare the diverse human stem cell approaches and outcomes of recently completed and ongoing clinical trials, and discuss innovative strategies developed to overcome the most significant challenges remaining for transplanting stem cell-derived β cells.
Collapse
|
35
|
Wang R, Wang Y, Harris DCH, Cao Q. Innate lymphoid cells in kidney diseases. Kidney Int 2020; 99:1077-1087. [PMID: 33387602 DOI: 10.1016/j.kint.2020.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
It is well known that innate immune cells, including dendritic cells, macrophages, and natural killer cells, contribute to pathogenesis and protection in various kidney diseases. The understanding of innate immunity has been advanced recently by the discovery of a new group of innate lymphoid cells (ILCs), including ILC1, ILC2, and ILC3. ILCs lack adaptive antigen receptors, yet can be triggered by various pathogens and rapidly provide an abundant source of immunomodulatory cytokines to exert immediate immune reactions and direct subsequent innate and adaptive immune responses. ILCs play critical roles in immunity, tissue homeostasis, and pathological inflammation. In this review, we highlight the biological function of ILC subpopulations in the normal kidney, and their important roles in acute and chronic kidney diseases, thus demonstrating the emerging importance of ILC-regulated immunity in this special organ and providing insights for future research directions and therapeutic interventions.
Collapse
Affiliation(s)
- Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Huang Q, Ma X, Wang Y, Niu Z, Wang R, Yang F, Wu M, Liang G, Rong P, Wang H, Harris DC, Wang W, Cao Q. IL-10 producing type 2 innate lymphoid cells prolong islet allograft survival. EMBO Mol Med 2020; 12:e12305. [PMID: 33034128 PMCID: PMC7645373 DOI: 10.15252/emmm.202012305] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are a subset of ILCs with critical roles in immunoregulation. However, the possible role of ILC2s as immunotherapy against allograft rejection remains unclear. Here, we show that IL‐33 significantly prolonged islet allograft survival. IL‐33‐treated mice had elevated numbers of ILC2s and regulatory T cells (Tregs). Depletion of Tregs partially abolished the protective effect of IL‐33 on allograft survival, and additional ILC2 depletion in Treg‐depleted DEREG mice completely abolished the protective effects of IL‐33, indicating that ILC2s play critical roles in IL‐33‐mediated islet graft protection. Two subsets of ILC2s were identified in islet allografts of IL‐33‐treated mice: IL‐10 producing ILC2s (ILC210) and non‐IL‐10 producing ILC2s (non‐ILC10). Intravenous transfer of ILC210 cells, but not non‐ILC10, prolonged islet allograft survival in an IL‐10‐dependent manner. Locally transferred ILC210 cells led to long‐term islet graft survival, suggesting that ILC210 cells are required within the allograft for maximal suppressive effect and graft protection. This study has uncovered a major protective role of ILC210 in islet transplantation which could be potentiated as a therapeutic strategy.
Collapse
Affiliation(s)
- Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaoqian Ma
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Fuyan Yang
- The Department of Nephrology, First People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Menglin Wu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guining Liang
- The Department of Physiology, Guangxi Medical University, Nanning, China
| | - Pengfei Rong
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - David Ch Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|