1
|
Buyl K, Merimi M, Rodrigues RM, Rahmani S, Fayyad-Kazan M, Bouhtit F, Boukhatem N, Vanhaecke T, Fahmi H, De Kock J, Najar M. The Immunological Profile of Adipose Mesenchymal Stromal/Stem Cells after Cell Expansion and Inflammatory Priming. Biomolecules 2024; 14:852. [PMID: 39062566 PMCID: PMC11275169 DOI: 10.3390/biom14070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AT-MSCs display great immunoregulatory features, making them potential candidates for cell-based therapy. This study aimed to evaluate the "RBC lysis buffer" isolation protocol and immunological profiling of the so-obtained AT-MSCs. METHODS We established an immune-comparative screening of AT-MSCs throughout in vitro cell expansion (PM, P1, P2, P3, P4) and inflammatory priming regarding the expression of 28 cell-surface markers, 6 cytokines/chemokines, and 10 TLR patterns. FINDINGS AT-MSCs were highly expandable and sensitive to microenvironment challenges, hereby showing plasticity in distinct expression profiles. Both cell expansion and inflammation differentially modulated the expression profile of CD34, HLA-DR, CD40, CD62L, CD200 and CD155, CD252, CD54, CD58, CD106, CD274 and CD112. Inflammation resulted in a significant increase in the expression of the cytokines IL-6, IL-8, IL-1β, IL-1Ra, CCL5, and TNFα. Depending on the culture conditions, the expression of the TLR pattern was distinctively altered with TLR1-4, TLR7, and TLR10 being increased, whereas TLR6 was downregulated. Protein network and functional enrichment analysis showed that several trophic and immune responses are likely linked to these immunological changes. CONCLUSIONS AT-MSCs may sense and actively respond to tissue challenges by modulating distinct and specific pathways to create an appropriate immuno-reparative environment. These mechanisms need to be further characterized to identify and assess a molecular target that can enhance or impede the therapeutic ability of AT-MSCs, which therefore will help improve the quality, safety, and efficacy of the therapeutic strategy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad 10001, Iraq
| | - Fatima Bouhtit
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
- Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Laboratoire d’Hématologie, CHU Mohammed VI, Faculté de Médecine et de Pharmacie d’Oujda, University Mohammed Premier, Oujda 60000, Morocco
| | - Noureddine Boukhatem
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
2
|
Puistola P, Kethiri A, Nurminen A, Turkki J, Hopia K, Miettinen S, Mörö A, Skottman H. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15761-15772. [PMID: 38513048 PMCID: PMC10995904 DOI: 10.1021/acsami.3c17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/23/2024]
Abstract
Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.
Collapse
Affiliation(s)
- Paula Puistola
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Abhinav Kethiri
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Antti Nurminen
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Johannes Turkki
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Karoliina Hopia
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult
Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Tays
Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, 33520 Tampere, Finland
| | - Anni Mörö
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Heli Skottman
- Eye
Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
3
|
Mazziotta C, Badiale G, Cervellera CF, Tognon M, Martini F, Rotondo JC. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics 2024; 14:143-158. [PMID: 38164139 PMCID: PMC10750202 DOI: 10.7150/thno.89066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/01/2023] [Indexed: 01/03/2024] Open
Abstract
Human osteogenic differentiation is a complex and well-orchestrated process which involves a plethora of molecular players and cellular processes. A growing number of studies have underlined that circular RNAs (circRNAs) play an important regulatory role during human osteogenic differentiation. CircRNAs are single-stranded, covalently closed non-coding RNA molecules that are acquiring increased attention as epigenetic regulators of gene expression. Given their intrinsic high conformational stability, abundance, and specificity, circRNAs can undertake various biological activities in order to regulate multiple cellular processes, including osteogenic differentiation. The most recent evidence indicates that circRNAs control human osteogenesis by preventing the inhibitory activity of miRNAs on their downstream target genes, using a competitive endogenous RNA mechanism. The aim of this review is to draw attention to the currently known regulatory mechanisms of circRNAs during human osteogenic differentiation. Specifically, we provide an understanding of recent advances in research conducted on various human mesenchymal stem cell types that underlined the importance of circRNAs in regulating osteogenesis. A comprehensive understanding of the underlying regulatory mechanisms of circRNA in osteogenesis will improve knowledge on the molecular processes of bone growth, resulting in the potential development of novel preclinical and clinical studies and the discovery of novel diagnostic and therapeutic tools for bone disorders.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| |
Collapse
|
4
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
5
|
Thamm OC, Eschborn J, Zimmermann L, Dekker C, Martin H, Brockmann M, Zinser MJ, Fuchs PC. Sublesional fat grafting leads to a temporary improvement of wound healing in chronic leg ulcers: A prospective, randomised clinical trial. Wound Repair Regen 2023; 31:663-670. [PMID: 37534628 DOI: 10.1111/wrr.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Chronic wounds remain a therapeutic and financial challenge for physicians and the health care systems. Innovative, inexpensive and effective treatment methods would be of immense value. The sublesional fat grafting could be such treatment, although effectiveness and safety have only been assessed in a few randomised clinical trials. The fat graft was obtained by liposuction, washed with the Coleman method and then injected sublesional and into the wound margins after surgical debridement. For the control group, saline solution was used instead of fat. The primary endpoint was to determine the wound size reduction in both groups. The wounds were measured preoperatively, intraoperatively and 3, 7, 21 and 60 days after the intervention. A p-value of <0.05 was considered significant. Furthermore, histology and microbiology of the wounds and pain were assessed. A temporary effect of the treatment was observed after 14 and 21 days. The wound size reduction was significantly larger in the intervention group, whereas after 60 days, no significant difference was detected between both groups. No adverse events could be reported and the pain level was almost equal in the control and intervention group. Sublesional fat grafting temporarily enhanced healing of chronic wounds. The procedure was safe and the pain level was low. Repeated interventions could lead to complete wound closure, which should be determined in future studies.
Collapse
Affiliation(s)
- Oliver C Thamm
- Clinic for Plastic and Reconstructive Surgery, Helios Hospital Berlin-Buch, Berlin, Germany
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Johannes Eschborn
- Clinic for Plastic and Reconstructive Surgery, Helios Hospital Berlin-Buch, Berlin, Germany
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Lucas Zimmermann
- Clinic for Orthopedic and Spinal Surgery, Berit Clinic, Speicher, Switzerland
| | - Clara Dekker
- Clinic for Cardiology, Electrophysiology and Rhytmology, Hospital Porz am Rhein, Cologne, Germany
| | - Hubert Martin
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brockmann
- Institute for Pathology, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Max J Zinser
- Department for Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, University Hospital of Cologne, Cologne, Germany
| | - Paul C Fuchs
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| |
Collapse
|
6
|
Soler-Vázquez MC, Romero MDM, Todorcevic M, Delgado K, Calatayud C, Benitez-Amaro A, La Chica Lhoëst MT, Mera P, Zagmutt S, Bastías-Pérez M, Ibeas K, Casals N, Escolà-Gil JC, Llorente-Cortés V, Consiglio A, Serra D, Herrero L. Implantation of CPT1AM-expressing adipocytes reduces obesity and glucose intolerance in mice. Metab Eng 2023; 77:256-272. [PMID: 37088334 DOI: 10.1016/j.ymben.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/14/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.
Collapse
Affiliation(s)
- M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Marijana Todorcevic
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Katia Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), E-08195, Sant Cugat del Vallés, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER of Cardiovascular (CIBERCV), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato, 15, 25121, Brescia, BS, Italy
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| |
Collapse
|
7
|
Autologous Minimally Manipulated Homologous Adipose Tissue (AMHAT) for Treatment of Nonhealing Diabetic Foot Ulcers. Plast Reconstr Surg Glob Open 2022; 10:e4588. [PMID: 36320618 PMCID: PMC9616634 DOI: 10.1097/gox.0000000000004588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
UNLABELLED Diabetic foot complications are increasingly burdensome for patients, clinicians, and society. Development of innovative therapies to support good quality basic care is a priority among those with an interest in this area. One of these involves scanning and printing tissues to match and conform to a defect (so-called 3D printing). METHODS A single-arm pilot study of ten consecutive patients with a history of a chronic diabetic foot ulcer (DFU), treated with autologous minimally manipulated homologous adipose tissue (AMHAT), dispensed by a specialized 3D bioprinter, Dr. INVIVO, was performed. Patients with nonhealing DFUs present for more than 4 weeks and refractory to standard-of-care therapies were included. Wounds were treated with a single application of AMHAT, and then followed up weekly for up to 12 weeks, or until the wounds healed. The primary outcome measure was complete epithelialization of the wound up to 12 weeks after the treatment. Secondary outcome measures included wound size and/or volume reduction, assessment of ulcer grade, and time to closure. RESULTS Five wounds were healed by 5 weeks and one at 8 weeks. The mean percent area reduction at 12 weeks was 78.3% (SD: 33.23). Complete closure was achieved in 60% of wounds. The mean time to closure in these wounds was 49.1 days (95% CI, 29.9-68.3). No adverse events were reported. CONCLUSIONS Single treatment of bioprinted AMHAT appears to be a safe and potentially effective treatment modality for patients with chronic DFUs. Further studies are warranted to explore the full potential of 3D bioprinting for tissue repair in this high-risk population.
Collapse
|
8
|
Warren JR, Khalil LS, Pietroski AD, Muh SJ. Injection of adipose stem cells in the treatment of rotator cuff disease - a narrative review of current evidence. Regen Med 2022; 17:477-489. [PMID: 35586993 DOI: 10.2217/rme-2021-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to summarize evidence for the use of adipose stem cell (ASC) injections in the treatment of rotator cuff tears (RCT) and identify future areas of study. A thorough literature search was performed to identify studies investigating the use of ASC injections in the treatment of RCTs. Among animal trials, it is unclear whether ASCs are of benefit for rotator cuff repair. In clinical trials, ASC injection may reduce retear rate with otherwise equivocal clinical outcomes. Although ASC injection may be safe, the literature does not provide a clear consensus as to the efficacy of ASC injections, nor does it delineate which patients would benefit most from this treatment.
Collapse
Affiliation(s)
- Jonathan R Warren
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Lafi S Khalil
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Stephanie J Muh
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
9
|
Șerban MV, Nazarie (Ignat) SR, Dinescu S, Radu IC, Zaharia C, Istrătoiu EA, Tănasă E, Herman H, Gharbia S, Baltă C, Hermenean A, Costache M. Silk ProteinsEnriched Nanocomposite Hydrogels Based on Modified MMT Clay and Poly(2-hydroxyethyl methacrylate-co-2-acrylamido-2-methylpropane Sulfonic Acid) Display Favorable Properties for Soft Tissue Engineering. NANOMATERIALS 2022; 12:nano12030503. [PMID: 35159848 PMCID: PMC8839072 DOI: 10.3390/nano12030503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
Due to their remarkable structures and properties, three-dimensional hydrogels and nanostructured clay particles have been extensively studied and have shown a high potential for tissue engineering as solutions for tissue defects. In this study, four types of 2-hydroxyethyl methacrylate/2-acrylamido-2-methylpropane sulfonic acid/montmorillonite (HEMA/AMPSA/MMT) hydrogels enriched with sericin, and fibroin were prepared and studied in the context of regenerative medicine for soft tissue regenerative medicine. Our aim was to obtain crosslinked hydrogel structures using modified montmorillonite clay as a crosslinking agent. In order to improve the in vitro and in vivo biocompatibility, silk proteins were further incorporated within the hydrogel matrix. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) were performed to prove the chemical structures of the modified MMT and nanocomposite hydrogels. Swelling and rheological measurements showed the good elastic behavior of the hydrogels due to this unique network structure in which modified MMT acts as a crosslinking agent. Hydrogel biocompatibility was assessed by MTT, LDH and LIVE/DEAD assays. The hydrogels were evaluated for their potential to support adipogenesis in vitro and human stem cells isolated from adipose tissue were seeded in them and induced to differentiate. The progress was assessed by evaluation of expression of adipogenic markers (ppar-γ2, perilipin) evaluated by qPCR. The potential of the materials to support tissue regeneration was further evaluated on animal models in vivo. All materials proved to be biocompatible, with better results on the 95% HEMA 5% AMPSA enriched with sericin and fibroin material. This composition promoted a better development of adipogenesis compared to the other compositions studied, due the addition of sericin and fibroin. The results were confirmed in vivo as well, with a better progress of soft tissue regeneration after implantation in mice. Therefore, hydrogel 95% HEMA 5% AMPSA enriched with sericin as well as fibroin showed the best results that recommend it for future soft tissue engineering application.
Collapse
Affiliation(s)
- Mirela Violeta Șerban
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Simona-Rebeca Nazarie (Ignat)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
- Correspondence: (S.D.); (A.H.)
| | - Ionuț-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Elena-Alexandra Istrătoiu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Eugenia Tănasă
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
- Correspondence: (S.D.); (A.H.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
10
|
Ganjibakhsh M, Mehraein F, Koruji M, Bashiri Z. The therapeutic potential of adipose tissue-derived mesenchymal stromal cells in the treatment of busulfan-induced azoospermic mice. J Assist Reprod Genet 2022; 39:153-163. [PMID: 34519944 PMCID: PMC8866597 DOI: 10.1007/s10815-021-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The generation of germ cells from mesenchymal stromal cells (MSCs) provides a valuable in vitro platform for infertility modeling. The establishment of these cells is a new approach for assisted reproductive technology (ART) to help infertile patients who lack functional gametes. METHODS Human adipose-derived MSCs were isolated and then characterized for multipotency by flow cytometry, differentiation capacity, and cytogenetic assays. These cells were used in a male germ cell differentiation study. The expression of male germ cell markers was evaluated at day 21 of differentiation using an immunofluorescence assay, flow cytometry, and RT-qPCR. Undifferentiated MSCs were used for transplantation in busulfan-induced azoospermic mice. RESULTS In this study, MSCs were successfully isolated from human adipose tissues which were positive for cell markers such as CD90, CD105, CD73, and CD29 but negative for CD34 and CD45. The results of flow cytometry, immunocytochemistry, and RT-qPCR analysis at day 21 of differentiation showed that the undifferentiated adipose-derived MSCs are able to differentiate into male germ cells. Additionally, transplantation of undifferentiated MSCs in busulfan-induced azoospermic mice caused spermatogenesis recovery in the majority of seminiferous tubules. CONCLUSION In this study, we showed that differentiation of human adipose-derived MSCs into male germ cells is a useful tool for in vitro study of human germ cell development. Our results demonstrated that cell therapy with adipose-derived MSCs could help the repair of pathological changes in testicular seminiferous tubules. Therefore, it may have a clinical application for the treatment of azoospermia in infertile patients.
Collapse
Affiliation(s)
- Meysam Ganjibakhsh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Costela Ruiz VJ, Melguizo Rodríguez L, Illescas Montes R, García Recio E, Arias Santiago S, Ruiz C, De Luna Bertos E. Human adipose tissue-derived mesenchymal stromal cells and their phagocytic capacity. J Cell Mol Med 2021; 26:178-185. [PMID: 34854223 PMCID: PMC8742185 DOI: 10.1111/jcmm.17070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have evidenced considerable therapeutic potential in numerous clinical fields, especially in tissue regeneration. The immunological characteristics of this cell population include the expression of Toll‐like receptors and mannose receptors, among others. The study objective was to determine whether MSCs have phagocytic capacity against different target particles. We isolated and characterized three human adipose tissue MSC (HAT‐MSC) lines from three patients and analysed their phagocytic capacity by flow cytometry, using fluorescent latex beads, and by transmission electron microscopy, using Escherichia coli, Staphylococcus aureus and Candida albicans as biological materials and latex beads as non‐biological material. The results demonstrate that HAT‐MSCs can phagocyte particles of different nature and size. The percentage of phagocytic cells ranged between 33.8% and 56.2% (mean of 44.37% ± 11.253) according to the cell line, and a high phagocytic index was observed. The high phagocytic capacity observed in MSCs, which have known regenerative potential, may offer an advance in the approach to certain local and systemic infections.
Collapse
Affiliation(s)
- Víctor J Costela Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Lucía Melguizo Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Rebeca Illescas Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Enrique García Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| | - Salvador Arias Santiago
- Biosanitary Research Institute, ibs Granada, Granada, Spain.,Surgical Medical Dermatology and Venereology Service, Department of Medicine, Virgen de las Nieves Hospital, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain.,Institute of Neuroscience, Centre for Medical Research (CIBM), Health Technology Park (PTS), University of Granada, Granada, Spain
| | - Elvira De Luna Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Biosanitary Research Institute, ibs Granada, Granada, Spain
| |
Collapse
|
13
|
Keshi E, Tang P, Weinhart M, Everwien H, Moosburner S, Seiffert N, Lommel M, Kertzscher U, Globke B, Reutzel-Selke A, Strücker B, Pratschke J, Sauer IM, Haep N, Hillebrandt KH. Surface modification of decellularized bovine carotid arteries with human vascular cells significantly reduces their thrombogenicity. J Biol Eng 2021; 15:26. [PMID: 34819102 PMCID: PMC8611970 DOI: 10.1186/s13036-021-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. METHODS After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. RESULTS While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. CONCLUSION In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Hannah Everwien
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nicolai Seiffert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Lommel
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
14
|
Wu R, Soland M, Liu G, Shi Y, Zhang C, Tang Y, Almeida-Porada G, Zhang Y. Functional characterization of the immunomodulatory properties of human urine-derived stem cells. Transl Androl Urol 2021; 10:3566-3578. [PMID: 34733653 PMCID: PMC8511544 DOI: 10.21037/tau-21-506] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Urine-derived stem cells (USCs) have been widely researched as a novel cell source for stem cell therapy, but their immunomodulatory characteristics remain to be investigated. This study aimed to characterize the immunomodulatory properties of human USCs. Methods Human USCs were isolated from fresh voiding urine samples from healthy male donors and expanded. Their cell surface markers were characterized by flow cytometry analysis and the telomerase activities for several USCs clones were determined. The immunosuppressive potential of USCs was evaluated by the performing the mixed lymphocyte reaction (MLR) [co-culture with peripheral blood mononuclear cells (PBMNCs)] and natural killer cells (NK) cytotoxicity assay. USCs cytokines release profile was determined by using human cytokine proteome array. Results USCs exhibited high cell surface expression of embryonic/mesenchymal stem cells (MSCs) markers CD29, CD44, CD54, CD73, CD90, CD146, and CD166, while lacked expression of hematopoietic stem cell markers CD11, CD14, CD19, CD31, CD34, CD45, B cell marker CD79, and co-stimulatory factors CD80 and CD86, thus, exhibiting the phenotype of MSCs. MLR indicated that USCs significantly inhibited the proliferation of PBMNCs, as compared to that of the human smooth muscle cells (SMCs). In cell cytotoxicity assays, NK cells displayed less cytotoxicity against USCs than against bone marrow mesenchymal stem cells (BMSCs) and SMCs. Furthermore, upon PBMNCs stimulation, USCs secreted higher levels of immunomodulatory cytokines, including IL-6, IL-8, MCP-1, RANTES, GROα, and GM-CSF, compared to those of BMSCs, especially when directly contact mix-culture with PBMNCs. Conclusions USCs secreted immunoregulatory cytokines and possessed immunomodulatory properties, comparable to those of BMSCs.
Collapse
Affiliation(s)
- Rongpei Wu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melisa Soland
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Liu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,Reproductive Medical Center, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingai Shi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chi Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Tang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
15
|
Paprocka M, Kraskiewicz H, Bielawska-Pohl A, Krawczenko A, Masłowski L, Czyżewska-Buczyńska A, Witkiewicz W, Dus D, Czarnecka A. From Primary MSC Culture of Adipose Tissue to Immortalized Cell Line Producing Cytokines for Potential Use in Regenerative Medicine Therapy or Immunotherapy. Int J Mol Sci 2021; 22:ijms222111439. [PMID: 34768869 PMCID: PMC8584013 DOI: 10.3390/ijms222111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022] Open
Abstract
For twenty-five years, attempts have been made to use MSCs in the treatment of various diseases due to their regenerative and immunomodulatory properties. However, the results are not satisfactory. Assuming that MSCs can be replaced in some therapies by the active factors they produce, the immortalized MSCs line was established from human adipose tissue (HATMSC1) to produce conditioned media and test its regenerative potential in vitro in terms of possible clinical application. The production of biologically active factors by primary MSCs was lower compared to the HATMSC1 cell line and several factors were produced only by the cell line. It has been shown that an HATMSC1-conditioned medium increases the proliferation of various cell types, augments the adhesion of cells and improves endothelial cell function. It was found that hypoxia during culture resulted in an augmentation in the pro-angiogenic factors production, such as VEGF, IL-8, Angiogenin and MCP-1. The immunomodulatory factors caused an increase in the production of GM-CSF, IL-5, IL-6, MCP-1, RANTES and IL-8. These data suggest that these factors, produced under different culture conditions, could be used for different medical conditions, such as in regenerative medicine, when an increased concentration of pro-angiogenic factors may be beneficial, or in inflammatory diseases with conditioned media with a high concentration of immunomodulatory factors.
Collapse
Affiliation(s)
- Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Honorata Kraskiewicz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Leszek Masłowski
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | | | - Wojciech Witkiewicz
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
| | - Danuta Dus
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (H.K.); (A.B.-P.); (A.K.); (D.D.)
| | - Anna Czarnecka
- Regional Specialist Hospital, Research and Development Centre, 51-154 Wroclaw, Poland; (L.M.); (A.C.-B.); (W.W.)
- Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
16
|
Putri KT, Prasetyono TOH. A critical review on the potential role of adipose-derived stem cells for future treatment of hypertrophic scars. J Cosmet Dermatol 2021; 21:1913-1919. [PMID: 34619011 DOI: 10.1111/jocd.14385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adipose-derived stem cells (ASCs) have recently gained researchers' interest as a solution to various diseases and conditions, including hypertrophic scar. This literature review aims to elucidate ASCs as a potential solution to alleviate hypertrophic scar in human subjects. METHODS Literature search was done in databases which includes PubMed, MEDLINE, and ProQuest using terms 'adipose derived stem cells', 'adipose cells', 'fat graft', 'fat grafting', 'autologous fat graft', 'fat injection', 'lipofilling', 'scar management', 'scar treatment', 'burn scar', and 'wound management'. The included articles which were published during year 2000-November 2020 must describe the use of ASCs or fat grafting or lipofilling as an attempt to alleviate hypertrophic scar. REMARKS Clinically, ASCs improve hypertrophic scars in terms of scar color, elasticity, texture, thickness, and size. Histologically, ASCs promotes healthy tissue regeneration, reduction in fibroblasts, and reorganisation of collagen, resembling those of normal skin. In terms of molecular aspects, ASCs alleviates hypertrophic scars through direct differentiation and paracrine mechanisms. CONCLUSION Adipose-derived stem cells, emerge to be a potential solution for alleviating hypertrophic scar, as demonstrated in various studies. However, there has been no studies conducted in human subjects to investigate the effect of ASCs on hypertrophic scar.
Collapse
Affiliation(s)
- Karina Teja Putri
- Undergraduate Study Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Theddeus Octavianus Hari Prasetyono
- Division of Plastic Surgery, Department of Surgery, Cipto Mangunkusumo Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
17
|
Chang C, Liu JW, Chen BC, Jiang ZS, Tu CT, Su CH, Yang HH, Liu ZQ, Deng YC, Chen CY, Tsai ST, Lin SZ, Chiou TW. Transplantation of Adipose-Derived Stem Cells Alleviates Striatal Degeneration in a Transgenic Mouse Model for Multiple System Atrophy. Cell Transplant 2021; 29:963689720960185. [PMID: 33028107 PMCID: PMC7784590 DOI: 10.1177/0963689720960185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with multiple system atrophy (MSA), a progressive neurodegenerative disorder of adult onset, were found less than 9 years of life expectancy after onset. The disorders include bradykinesia and rigidity commonly seen in Parkinsonism disease and additional signs such as autonomic dysfunction, ataxia, or dementia. In clinical treatments, MSA poorly responds to levodopa, the drug used to remedy Parkinsonism disease. The exact cause of MSA is still unknown, and exploring a therapeutic solution to MSA remains critical. A transgenic mouse model was established to study the feasibility of human adipose-derived stem cell (ADSC) therapy in vivo. The human ADSCs were transplanted into the striatum of transgenic mice via intracerebral injection. As compared with sham control, we reported significantly enhanced rotarod performance of transgenic mice treated with ADSC at an effective dose, 2 × 105 ADSCs/mouse. Our ex vivo feasibility study supported that intracerebral transplantation of ADSC might alleviate striatal degeneration in MSA transgenic mouse model by improving the nigrostriatal pathway for dopamine, activating autophagy for α-synuclein clearance, decreasing inflammatory signal, and further cell apoptosis, improving myelination and cell survival at caudate-putamen.
Collapse
Affiliation(s)
- Christine Chang
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Jen-Wei Liu
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Bo Cheng Chen
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Zhe Sheng Jiang
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Chi Tang Tu
- Taiwan Mitochondrion Applied Technology Co., Ltd., Hsinchu, Taiwan, R.O.C
| | - Che Hung Su
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Hsin Han Yang
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Zong Qi Liu
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Yu Chen Deng
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Chih Yu Chen
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, R.O.C.,Institute of Medical Science, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Shinn Zong Lin
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, R.O.C
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, 63373National Dong Hwa University, Hualien, Taiwan, R.O.C
| |
Collapse
|
18
|
Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, Xie H. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater 2021; 6:2467-2478. [PMID: 33553828 PMCID: PMC7850942 DOI: 10.1016/j.bioactmat.2021.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
The management of oral and maxillofacial tissue defects caused by tumors, trauma, and congenital or acquired deformities has been a major challenge for surgeons over the last few decades. Autologous tissue transplantation, the gold standard of tissue reconstruction, is a valid method for repairing the oral and maxillofacial functions and aesthetics. However, several limitations hinder its clinical applications including complications of donor sites, limited tissue volume, and uncertain long-term outcomes. Adipose-derived mesenchymal stem cells (ADMSCs) widely exist in adipose tissue and can be easily obtained through liposuction. Like the bone marrow-derived mesenchymal stem cells (BMSCs), ADMSCs also have the multi-pluripotent potencies to differentiate into osteoblasts, chondrocytes, neurons, and myocytes. Therefore, the multilineage capacity of ADMSCs makes them valuable for cell-based medical therapies. In recent years, researchers have developed many candidates of ADMSCs-based biomaterial scaffolds to cater for the needs of oral and maxillofacial tissue engineering due to their superior performance. This review presents the advances and applications of ADMSCs-based biomaterial scaffolds, and explores their tissue engineering prospects in oral and maxillofacial reconstructions.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia Xu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, School of Stomatology, Nanchang University, Nanchang, 330006, China
| | - Xun Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Xie
- General Surgery Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241000, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Transcriptional Profile of Cytokines, Regulatory Mediators and TLR in Mesenchymal Stromal Cells after Inflammatory Signaling and Cell-Passaging. Int J Mol Sci 2021; 22:ijms22147309. [PMID: 34298927 PMCID: PMC8306573 DOI: 10.3390/ijms22147309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Adult human subcutaneous adipose tissue (AT) harbors a rich population of mesenchymal stromal cells (MSCs) that are of interest for tissue repair. For this purpose, it is of utmost importance to determine the response of AT-MSCs to proliferative and inflammatory signals within the damaged tissue. We have characterized the transcriptional profile of cytokines, regulatory mediators and Toll-like receptors (TLR) relevant to the response of MSCs. AT-MSCs constitutively present a distinct profile for each gene and differentially responded to inflammation and cell-passaging. Inflammation leads to an upregulation of IL-6, IL-8, IL-1β, TNFα and CCL5 cytokine expression. Inflammation and cell-passaging increased the expression of HGF, IDO1, PTGS1, PTGS2 and TGFβ. The expression of the TLR pattern was differentially modulated with TLR 1, 2, 3, 4, 9 and 10 being increased, whereas TLR 5 and 6 downregulated. Functional enrichment analysis demonstrated a complex interplay between cytokines, TLR and regulatory mediators central for tissue repair. This profiling highlights that following a combination of inflammatory and proliferative signals, the sensitivity and responsive capacity of AT-MSCs may be significantly modified. Understanding these transcriptional changes may help the development of novel therapeutic approaches.
Collapse
|
20
|
Bryk M, Karnas E, Mlost J, Zuba-Surma E, Starowicz K. Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. Br J Pharmacol 2021; 179:4281-4299. [PMID: 34028798 DOI: 10.1111/bph.15569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury.
Collapse
Affiliation(s)
- Marta Bryk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jakub Mlost
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
21
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Valipour F, Valipour F, Rahbarghazi R, Navali AM, Rashidi MR, Davaran S. Novel hybrid polyester-polyacrylate hydrogels enriched with platelet-derived growth factor for chondrogenic differentiation of adipose-derived mesenchymal stem cells in vitro. J Biol Eng 2021; 15:6. [PMID: 33588910 PMCID: PMC7885552 DOI: 10.1186/s13036-021-00257-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background The goal of the present study was to create a new biodegradable hybrid PCL-P (HEMA-NIPAAm) thermosensitive hydrogel scaffold by grafting PNIPAAm-based copolymers with biodegradable polyesters to promote the chondrogenic differentiation of human progenitor cells (adipose-derived stem cells-hASCs) in the presence of the platelet-derived growth factor (PDGF-BB). Different mixture ratios including 50 mmol ε-caprolactone and 10 mmol HEMA (S-1), 30 mmol ε-caprolactone and 10 mmol HEMA (S-2), 10 mmol ε-caprolactone and 30 mmol HEMA (S-3) were copolymerized followed by the addition of NIPAAm. Results A mild to moderate swelling and wettability rates were found in S-2 group copmpared to the S-1 ans S-3 samples. After 7 weeks, S-2 degradation rate reached ~ 43.78%. According to the LCST values, S-2, reaching 37 °C, was selected for different in vitro assays. SEM imaging showed nanoparticulate structure of the scaffold with particle size dimensions of about 62–85 nm. Compressive strength, Young’s modulus, and compressive strain (%) of S-2 were 44.8 MPa, 0.7 MPa, and 75.5%. An evaluation of total proteins showed that the scaffold had the potential to gradually release PDGF-BB. When hASCs were cultured on PCL-P (HEMA-NIPAAm) in the presence of PDGF-BB, the cells effectively attached and flattened on the scaffold surface for a period of at least 14 days, the longest time point evaluated, with increased cell viability rates as measured by performing an MTT assay (p < 0.05). Finally, a real-time RT-PCR analysis demonstrated that the combination of PCL-P (HEMA-NIPAAm) and PDGF-BB promoted the chondrogenesis of hASCs over a period of 14 days by up-regulating the expression of aggrecan, type-II collagen, SOX9, and integrin β1 compared with the non-treated control group (p < 0.05). Conclusion These results demonstrate that the PCL-P(HEMA-NIPAAm) hydrogel scaffold carrying PDGF-BB as a matrix for hASC cell seeding is a valuable system that may be used in the future as a three-dimensional construct for implantation in cartilage injuries.
Collapse
Affiliation(s)
- Fereshteh Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Valipour
- Department of Molecular Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Cellular Technologies in Traumatology: from Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Mashayekhi M, Mirzadeh E, Chekini Z, Ahmadi F, Eftekhari-Yazdi P, Vesali S, Madani T, Aghdami N. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 2021; 14:5. [PMID: 33407794 PMCID: PMC7786909 DOI: 10.1186/s13048-020-00743-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Premature ovarian failure (POF) is characterized by the loss of ovarian activity before the age of 40 years. Stem cell therapy has the capability to create a regenerative microenvironment and is a proposed treatment for POF-related infertility due to the presence of renewal folliculogenesis and germ cells in the adult ovaries. In this study, we assessed the safety, feasibility, efficacy and dose adjustment of autologous adipose-derived stromal cells (ADSCs) and their ability to improve ovarian function in POF patients. Methods This study was a non-randomized clinical trial, phase I. Nine women with a definitive diagnosis of POF were divided into three groups (n = 3 per group) that received either 5 × 106, 10 × 106, or 15 × 106 autologous ADSCs suspension transplanted in the one ovary. Participants were followed-up at 24 h after the transplantation, and at 1 and 2 weeks, and 1, 2, 3, 6, and 12 months after the transplantation. The primary objective was to evaluate the safety of ADSCs transplantation. Secondary objectives included the effects of ADSCs transplantation on the resumption of menstruation, hormones level (Follicle-stimulating hormone (FSH) and anti-Müllerian hormone), ovarian function (Antral follicle count and ovary volume by ultrasonography evaluation) as well as dose escalation. Results Participants had not shown any early-onset possible side effects and secondary complications during follow-up. The menstruation resumption was observed in four patients which established for several months. In the 15 × 106 group, two POF patients had a return of menstruation second months after the intervention. Two other POF patients in 5 × 106 and 10 × 106 cell groups reported menstruation resumption at 1 month after the intervention. We observed decreased serum FSH levels of less than 25 IU/l in four patients. In two patients in 5 × 106 and 10 × 106 cell groups, serum FSH showed an inconsistent decline during a 1 year follow up after ADSCs transplantation. The ovarian volume, AMH, and AFC were variable during the follow-up and no significant differences between cell groups (p > 0.05). Conclusions We showed the intra-ovarian embedding of ADSCs is safe and feasible and is associated with an inconsistent decline in serum FSH. This should be further investigated with a large RCT. Trial registration NCT02603744, Registered 13 November 2015 - Retrospectively registered, http://www.Clinicaltrials.gov
Collapse
Affiliation(s)
- M Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - E Mirzadeh
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - Z Chekini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran
| | - F Ahmadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - P Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - S Vesali
- Department of Diabetes, Obesity and Metabolism, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - T Madani
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P. O Box: 16635-148, Royan Allay, Eastern Hafez St, Banihashem Sq., Resalat Highway, Tehran, Iran.
| | - N Aghdami
- Department of Regenerative Medicine, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P. O Box: 16635-148, Shaghayegh Alley, Banihashem Sq., Resalat Highway, Tehran, Iran.
| |
Collapse
|
25
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
26
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
27
|
Buyl K, Merimi M, Rodrigues RM, Moussa Agha D, Melki R, Vanhaecke T, Bron D, Lewalle P, Meuleman N, Fahmi H, Rogiers V, Lagneaux L, De Kock J, Najar M. The Impact of Cell-Expansion and Inflammation on The Immune-Biology of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. J Clin Med 2020; 9:jcm9030696. [PMID: 32143473 PMCID: PMC7141238 DOI: 10.3390/jcm9030696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: As a cell-based therapeutic, AT-MSCs need to create an immuno-reparative environment appropriate for tissue repair. In the presence of injury, MSCs may have to proliferate and face inflammation. Clinical application requires repeated administrations of a high number of cells with a well-established immune profile. Methods: We have established an immuno-comparative screening by determining the expression of 28 molecules implicated in immune regulation. This screening was performed during cell-expansion and inflammatory priming of AT-MSCs. Results: Our study confirms that AT-MSCs are highly expandable and sensitive to inflammation. Both conditions have substantially modulated the expression of a panel of immunological marker. Specifically, CD34 expression was substantially decreased upon cell-passaging. HLA-ABC, CD40 CD54, CD106, CD274 and CD112 were significantly increased by inflammation. In vitro cell-expansion also significantly altered the expression profile of HLA-DR, CD40, CD62L, CD106, CD166, HLA-G, CD200, HO-1, CD155 and ULBP-3. Conclusion: This study points out the response and characteristics of MSCs following expansion and inflammatory priming. It will strength our knowledge about the molecular mechanisms that may improve or hamper the therapeutic potential of MSCs. These immunological changes need to be further characterized to guarantee a safe cellular product with consistent quality and high therapeutic efficacy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Correspondence:
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
28
|
Chirumbolo S. Oxidative Stress, Nutrition and Cancer: Friends or Foes? World J Mens Health 2020; 39:19-30. [PMID: 32202081 PMCID: PMC7752511 DOI: 10.5534/wjmh.190167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and nutrition, as well as nutrition and oxidative stress, shares puzzling aspects that current research is investigating as the possible components of an intriguing regulating mechanism involving the complex interplay between adipose tissue and other compartments. Along the very recent biological evolution, humans underwent a rapid change in their lifestyles and henceforth the role of the adipocytes earned a much more complex task in the fine tuning of the tissue microenvironment. A lipidic signaling language probably evolved in association with the signaling role of reactive oxygen species, which gained a fundamental part in the regulation of cell stem and plasticity. The possible relationship with cancer onset might have some causative mechanism in the impairment of this complex task, usually deregulated by drastic changes in one's own lifestyle and dietary habit. This review tries to address this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
29
|
Ignat SR, Lazăr AD, Şelaru A, Samoilă I, Vlăsceanu GM, Ioniţă M, Radu E, Dinescu S, Costache M. Versatile Biomaterial Platform Enriched with Graphene Oxide and Carbon Nanotubes for Multiple Tissue Engineering Applications. Int J Mol Sci 2019; 20:ijms20163868. [PMID: 31398874 PMCID: PMC6720708 DOI: 10.3390/ijms20163868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Abstract
Carbon-based nanomaterials, such as graphene oxide (GO) or carbon nanotubes (CNTs) are currently used in various medical applications due to their positive influence on biocompatibility, adhesion, proliferation, and differentiation, as well as their contribution to modulating cell behavior in response to nanomaterial substrates. In this context, in this study, novel flexible membranes based on cellulose acetate (CA) enriched with CNT and GO in different percentages were tested for their versatility to be used as substrates for soft or hard tissue engineering (TE), namely, for their ability to support human adipose-derived stem cells (hASCs) adhesion during adipogenic or osteogenic differentiation. For this purpose, differentiation markers were assessed both at gene and protein levels, while histological staining was performed to show the evolution of the processes in response to CA-CNT-GO substrates. Micro-CT analysis indicated porous morphologies with open and interconnected voids. A slightly lower total porosity was obtained for the samples filled with the highest amount of GO and CNTs, but thicker walls, larger and more uniform pores were obtained, providing beneficial effects on cell behavior and increased mechanical stability. The addition of 1 wt% GO and CNT to the biocomposites enhanced hASCs adhesion and cytoskeleton formation. The evolution of both adipogenic and osteogenic differentiation processes was found to be augmented proportionally to the GO-CNT concentration. In conclusion, CA-CNT-GO biomaterials displayed good properties and versatility as platforms for cell differentiation with potential as future implantable materials in TE applications.
Collapse
Affiliation(s)
- Simona-Rebeca Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Andreea Daniela Lazăr
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Aida Şelaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Iuliana Samoilă
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mariana Ioniţă
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Eugen Radu
- Molecular Biology and Pathology Research Lab "MolImagex", University Hospital Bucharest, 050098 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
30
|
Dias-Netipanyj MF, Cowden K, Sopchenski L, Cogo SC, Elifio-Esposito S, Popat KC, Soares P. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109850. [PMID: 31349471 DOI: 10.1016/j.msec.2019.109850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 11/28/2018] [Accepted: 05/31/2019] [Indexed: 01/24/2023]
Abstract
The aim of this work was to evaluate the cellular response to titanium nanotube arrays with variable crystalline structure. Cytotoxicity, viability and the ability of the titania nanotube arrays to stimulate adhesion and proliferation of adipose derived stem cells (ADSCs) was evaluated. Titania nanotube arrays were fabricated by electrochemical anodization of titanium in diethyleneglycol/hydrofluoric acid electrolyte at 60 V for 6 h, then annealed at 300, 530 and 630 °C for 5 h. The nanotube arrays were characterized using scanning electron microscopy (SEM), contact angle goniometry, x-ray diffraction (XRD) and protein adsorption. ADSCs were cultured on titania nanotube arrays at a density of 1 × 104 cells/ml. The cells were allowed to adhere and to proliferate for 1, 4 and 7 days. Cell viability was characterized by the CellTiter-Blue® Cell Viability Assay; and cell morphology was characterized by SEM. Cell adhesion, proliferation and morphology were characterized using fluorescence microscopy by staining the cells with DAPI and rhodamine/phalloidin. The results from this study showed that the annealing at 300 and 530 °C formed anatase phase, and annealing at 630 °C formed anatase/rutile phase. The results indicated that the modification of the crystalline structure (i.e. anatase/rutile phase) of titania nanotube arrays influenced the ADSC adhesion and proliferation. Future studies are now directed towards evaluating differentiation of this cellular model in osteoblasts.
Collapse
Affiliation(s)
- Marcela Ferreira Dias-Netipanyj
- Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Kari Cowden
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Luciane Sopchenski
- Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Sheron Campos Cogo
- Department of Biological Sciences, School of Health and Biosciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Selene Elifio-Esposito
- Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| | - Paulo Soares
- Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
31
|
Dubey NK, Wei HJ, Yu SH, Williams DF, Wang JR, Deng YH, Tsai FC, Wang PD, Deng WP. Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade. Aging Dis 2019; 10:483-496. [PMID: 31164994 PMCID: PMC6538220 DOI: 10.14336/ad.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- 1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Jian Wei
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,3School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsun Yu
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - David F Williams
- 5Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Joseph R Wang
- 6Department of Periodontics, College of Dental Medicine, Columbia University, New York, USA
| | - Yue-Hua Deng
- 7Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Feng-Chou Tsai
- 8Stem Cell Research Center, Cosmetic Clinic Group, Taipei, Taiwan
| | - Peter D Wang
- 4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,9Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Win-Ping Deng
- 2Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,4School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,10Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
32
|
Abdal Dayem A, Lee SB, Kim K, Lim KM, Jeon TI, Seok J, Cho ASG. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Int J Mol Sci 2019; 20:ijms20081922. [PMID: 31003536 PMCID: PMC6514654 DOI: 10.3390/ijms20081922] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | | | | | | | | | | | | |
Collapse
|
33
|
Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1036-1051. [PMID: 30678895 DOI: 10.1016/j.msec.2019.01.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tissue engineered products (TEPs), which mean biomaterials containing either cells or growth factors or both cells and growth factors, may be used as an alternative to the autografts taken directly from the bone of the patients. Nevertheless, the use of TEPs needs much more understanding of biointeractions between biomaterials and eukaryotic cells. Despite the possibility of the use of in vitro cellular models for initial evaluation of the host response to the implanted biomaterial, it is observed that most researchers use cell cultures only for the evaluation of cytotoxicity and cell proliferation on the biomaterial surface, and then they proceed to animal models and in vivo testing of bone implants without fully utilizing the scientific potential of in vitro models. In this review, the most important biointeractions between eukaryotic cells and biomaterials were discussed, indicating molecular mechanisms of cell adhesion, proliferation, and biomaterial-induced activation of immune cells. The article also describes types of cellular models which are commonly used for biomaterial testing and highlights the possibilities and drawbacks of in vitro tests for biocompatibility evaluation of novel scaffolds. Finally, the review summarizes recent findings concerning the use of adult mesenchymal stem cells for TEP generation and compares the potential of bone marrow- and adipose tissue-derived stem cells in regenerative medicine applications.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
34
|
Lucas-Ruiz F, Galindo-Romero C, García-Bernal D, Norte-Muñoz M, Rodríguez-Ramírez KT, Salinas-Navarro M, Millán-Rivero JE, Vidal-Sanz M, Agudo-Barriuso M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural Regen Res 2019; 14:1851-1857. [PMID: 31290434 PMCID: PMC6676874 DOI: 10.4103/1673-5374.259601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stromal cells are an excellent source of stem cells because they are isolated from adult tissues or perinatal derivatives, avoiding the ethical concerns that encumber embryonic stem cells. In preclinical models, it has been shown that mesenchymal stromal cells have neuroprotective and immunomodulatory properties, both of which are ideal for central nervous system treatment and repair. Here we will review the current literature on mesenchymal stromal cells, focusing on bone marrow mesenchymal stromal cells, adipose-derived mesenchymal stromal cells and mesenchymal stromal cells from the umbilical cord stroma, i.e., Wharton's jelly mesenchymal stromal cells. Finally, we will discuss the use of these cells to alleviate retinal ganglion cell degeneration following axonal trauma.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Kristy T Rodríguez-Ramírez
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Manuel Salinas-Navarro
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca); Department of Talmología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
35
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
36
|
He Q, Ye Z, Zhou Y, Tan WS. Comparative study of mesenchymal stem cells from rat bone marrow and adipose tissue. Turk J Biol 2018; 42:477-489. [PMID: 30983864 PMCID: PMC6451846 DOI: 10.3906/biy-1802-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several therapeutic products based on mesenchymal stem cells (MSCs) have been translated into clinical applications. MSCs should undergo in vitro culture before a sufficient quantity can be achieved. Hence, both expansion kinetics and the biological characteristics of derived cells from primary culture are pertinent to their applications. In the present study, MSCs were isolated from rat bone marrow and adipose tissue (designated as bMSCs and aMSCs, respectively) and cells were comparatively analyzed regarding cell morphology, proliferation, colony formation, differentiation potential, and immunophenotype following the long-term subculture. No apparent differences could be noticed concerning the morphology between bMSCs and aMSCs. The long-term subculture made both types of cells smaller, weakened their colony-forming ability, and stimulated the proliferation rate. However, bMSCs demonstrated better proliferation and colony-forming ability than aMSCs. No significant difference was observed about the expression of some immunophenotypes (i.e. CD29+/CD90+/CD34-/CD45-) regardless of cell types or population doublings. Notably, bMSCs, but not aMSCs, maintained the differentiation potential well after the long-term subculture. The present study demonstrates that MSCs derived from different tissues can be well expanded for the long term, although cells display gradually declined self-renewal and differentiation potentials to different extents depending on the tissue origins.
Collapse
Affiliation(s)
- Qing He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , P.R. China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , P.R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , P.R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , P.R. China
| |
Collapse
|
37
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
38
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
40
|
Śmieszek A, Szydlarska J, Mucha A, Chrapiec M, Marycz K. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. J Biomater Appl 2018; 32:570-586. [PMID: 29113566 DOI: 10.1177/0885328217738006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the pro-osteogenic properties of sol-gel-derived silica/zirconium dioxide coatings functionalized with 1 mM of metformin. The matrices were applied on 316L stainless steel using dip-coating technique. First of all, physicochemical properties of biomaterials were evaluated. Surface morphology and topography was determined using energy-dispersive X-ray spectroscopy and atomic force microscopy. The chemical composition was evaluated using Fourier transform infrared spectroscopy. Further, wettability and surface free energy were characterized. Cytocompatibility of biomaterials was tested in vitro using model of human multipotent mesenchymal stromal cells isolated from adipose tissue. The influence of biomaterials on cells morphology and proliferation was determined. Osteogenic effect of obtained biomaterials was evaluated in terms of their influence on secretory activity of human multipotent mesenchymal stromal cells isolated from adipose tissue and matrix mineralization. Analysis was performed in relation to the control cultures i.e. maintained on pure SS316L substrate and SS316L covered with silica/zirconium dioxide. Obtained results indicate that silica/zirconium dioxide_metformin coatings ameliorated metabolic and proliferative activity of human multipotent mesenchymal stromal cells isolated from adipose tissue, as well as promoted their proper growth and adhesion. The human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on biomaterials were characterized by typical fibroblast-like morphology. The addition of metformin to the silica/zirconium dioxide coatings improved functional differentiation of human multipotent mesenchymal stromal cells isolated from adipose tissue. Osteogenic cultures on silica/zirconium dioxide_metformin were characterized by formation of well-developed osteonodules rich in calcium and phosphorous. Moreover, human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on silica/zirconium dioxide_metformin synthesized increased amount of alkaline phosphatase, bone morphogenetic protein 2 and osteopontin, both on messenger RNA and protein level. Obtained biomaterials modulate cellular plasticity of human multipotent mesenchymal stromal cells isolated from adipose tissue promoting their osteogenic differentiation, thus may find application in broadly defined tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| | - Joanna Szydlarska
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Mucha
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Martyna Chrapiec
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Marycz
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| |
Collapse
|
41
|
Douglas TE, Vandrovcová M, Kročilová N, Keppler JK, Zárubová J, Skirtach AG, Bačáková L. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci 2018; 101:28-36. [DOI: 10.3168/jds.2017-13119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
|
42
|
Goodarzi P, Alavi-Moghadam S, Sarvari M, Tayanloo Beik A, Falahzadeh K, Aghayan H, Payab M, Larijani B, Gilany K, Rahim F, Adibi H, Arjmand B. Adipose Tissue-Derived Stromal Cells for Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:133-149. [PMID: 29858972 DOI: 10.1007/5584_2018_220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin as the outer layer covers the body. Wounds can affect this vital organ negatively and disrupt its functions. Wound healing as a biological process is initiated immediately after an injury. This process consists of three stages: inflammation, proliferation, remodeling. Generally, these three stages occur continuously and timely. However, some factors such as infection, obesity and diabetes mellitus can interfere with these stages and impede the normal healing process which results in chronic wounds. Financial burden on both patients and health care systems, negative biologic effect on the patient's general health status and reduction in quality of life are a number of issues which make chronic wounds as a considerable challenge. During recent years, along with advances in the biomedical sciences, various surgical and non-surgical therapeutic methods have been suggested. All of these suggested treatments have their own advantages and disadvantages. Recently, cell-based therapies and regenerative medicine represent promising approaches to wound healing. Accordingly, several types of mesenchymal stem cells have been used in both preclinical and clinical settings for the treatment of wounds. Adipose-derived stromal cells are a cost-effective source of mesenchymal stem cells in wound management which can be easily harvest from adipose tissues through the less invasive processes with high yield rates. In addition, their ability to secrete multiple cytokines and growth factors, and differentiation into skin cells make them an ideal cell type to use in wound treatment. This is a concise overview on the application of adipose-derived stromal cells in wound healing and their role in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Baaße A, Juerß D, Reape E, Manda K, Hildebrandt G. Promoting effects of adipose-derived stem cells on breast cancer cells are reversed by radiation therapy. Cytotechnology 2017; 70:701-711. [PMID: 29188405 DOI: 10.1007/s10616-017-0172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Partial breast irradiation of early breast cancer patients after lumpectomy and the use of endogenous adipose tissue (AT) for breast reconstruction are promising applications to reduce the side effects of breast cancer therapy. This study tries to investigate the possible risks associated with these therapeutic approaches. It also examines the influence of adipose derived stem cells (ADSCs) as part of the breast cancer microenvironment, and endogenous AT on breast cancer cells following radiation therapy. ADSCs, isolated from human reduction mammoplasties of healthy female donors, exhibited multilineage capacity and specific surface markers. The promoting effects of ADSCs on the growth and survival fraction of breast cancer cells were reversed by treatment with high (8 Gy) or medium (2 Gy) radiation doses. In addition, a suppressing influence on breast cancer growth could be detected by co-culturing with irradiated ADSCs (8 Gy). Furthermore the clonogenic survival of unirradiated tumor cells was reduced by medium of irradiated ADSCs. In conclusion, radiation therapy changed the interactions of ADSCs and breast cancer cells. On the basis of our work, the importance of further studies to exclude potential risks of ADSCs in regenerative applications and radiotherapy has been emphasized.
Collapse
Affiliation(s)
- Annemarie Baaße
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany.
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Elaine Reape
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059, Rostock, Germany
| |
Collapse
|
44
|
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2017; 93:19-31. [PMID: 29072818 DOI: 10.1002/cyto.a.23242] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dolly Mushahary
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, 3500 Krems, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
45
|
A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Rev Rep 2017; 13:587-597. [DOI: 10.1007/s12015-017-9757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Bioactive glass ceramic nanoparticles-coated poly(l-lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine. Tissue Cell 2017; 49:565-572. [PMID: 28851519 DOI: 10.1016/j.tice.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023]
Abstract
Horses with big bone fractures have low chance to live mainly due to the lake of a proper treatment strategy. We believe that further attempts in equine bone tissue engineering will probably be required to meet all the needs for the lesion therapies. Therefore in this study we aimed to investigate the osteogenic differentiation capacity of equine adipose-derived stem cells (e-ASCs) on nano-bioactive glass (nBGs) coated poly(l-lactic acid) (PLLA) nanofibers scaffold (nBG-PLLA). Using electrospinning technique, PLLA scaffold was prepared successfully and coated with nBGs. Fabricated nanofibers were characterized by MTT, SEM, and FTIR analyses, and then osteogenic differentiation potential of isolated e-ASCs was investigated by the most key osteogenic markers, namely Alizarin red-S, ALP, calcium content and bone related (RUNX2, Collagen I, Osteonectin, and ALP) gene markers. Our results indicated that nBGs was successfully coated on PLLA scaffold and this scaffold had no negative (p>0.05) effect on cell growth rate as indicated by MTT assay. Moreover, e-ASCs that differentiated on nBGs-PLLA scaffold showed a higher (p<0.05) ALP activity, more (p<0.05) calcium content, and higher (p<0.05) expression of bone-related genes than that on uncoated PLLA scaffold and TCPS. According to the results, a combination of bioceramics and biopolymeric nanofibers hold valuable promising potentials to use for bone tissue engineering application and regenerative medicine.
Collapse
|
47
|
Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr Physiol 2017. [PMID: 28640452 DOI: 10.1002/cphy.c160034] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epicardial adipose tissue (EAT) is a small but very biologically active ectopic fat depot that surrounds the heart. Given its rapid metabolism, thermogenic capacity, unique transcriptome, secretory profile, and simply measurability, epicardial fat has drawn increasing attention among researchers attempting to elucidate its putative role in health and cardiovascular diseases. The cellular crosstalk between epicardial adipocytes and cells of the vascular wall or myocytes is high and suggests a local role for this tissue. The balance between protective and proinflammatory/profibrotic cytokines, chemokines, and adipokines released by EAT seem to be a key element in atherogenesis and could represent a future therapeutic target. EAT amount has been found to predict clinical coronary outcomes. EAT can also modulate cardiac structure and function. Its amount has been associated with atrial fibrillation, coronary artery disease, and sleep apnea syndrome. Conversely, a beiging fat profile of EAT has been identified. In this review, we describe the current state of knowledge regarding the anatomy, physiology and pathophysiological role of EAT, and the factors more globally leading to ectopic fat development. We will also highlight the most recent findings on the origin of this ectopic tissue, and its association with cardiac diseases. © 2017 American Physiological Society. Compr Physiol 7:1051-1082, 2017.
Collapse
Affiliation(s)
- Bénédicte Gaborit
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| | - Coralie Sengenes
- STROMALab, Université de Toulouse, EFS, ENVT, Inserm U1031, ERL CNRS 5311, CHU Rangueil, Toulouse, France
| | - Patricia Ancel
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Alexis Jacquier
- CNRS UMR 7339, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France.,Radiology department, CHU La Timone, Marseille, France
| | - Anne Dutour
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
48
|
Miguita L, Mantesso A, Pannuti CM, Deboni MCZ. Can stem cells enhance bone formation in the human edentulous alveolar ridge? A systematic review and meta-analysis. Cell Tissue Bank 2017; 18:217-228. [PMID: 28233169 DOI: 10.1007/s10561-017-9612-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
Several non-biological materials are currently being used to increase the alveolar bone volume to support dental implants. Recently, stem cell therapy has emerged as a promising biological substitute or adjuvant to enhance bone healing. In order to determine if stem cell therapy has enough clinical evidence to bone ridge augmentation in humans, a systematic review and meta-analysis were conducted. Two independent investigators searched the Entrez PubMed, SCOPUS and Web of Science databases for eligible randomized clinical trials that describe stem cell therapies for alveolar bone formation. The included studies were evaluated for risk of bias. A random-effects meta-analysis model was used to evaluate the percentage of bone formation in the selected studies. Heterogeneity was evaluated using the Cochrane Chi 2 and I 2. Nine eligible trials were included. These studies presented an overall unclear risk of bias. A comparison between the lower heterogeneity studies and the long term observational outcomes showed a slight tendency to enhance bone formation. High heterogeneity between the included studies was observed. The lack of outcome standardization made a wide-ranging comparison difficult. The application of stem cells in oral surgery and implantology appears to be promising although more standardized study designs, increased samples and long-term observations are needed to strength the clinical evidence that stem cell therapy is effective for alveolar bone formation.
Collapse
Affiliation(s)
- Lucyene Miguita
- Department of Oral Medicine, Discipline of Oral Pathology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Andrea Mantesso
- Department of Oral Medicine, Discipline of Oral Pathology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Claudio Mendes Pannuti
- Department of Oral Medicine, Discipline of Periodontology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Maria Cristina Zindel Deboni
- Department of Oral and Maxillofacial Surgery, Discipline of Oral Surgery, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
49
|
Skubis A, Sikora B, Zmarzły N, Wojdas E, Mazurek U. Adipose-derived stem cells: a review of osteogenesis differentiation. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.
Collapse
|
50
|
Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 2016; 6:33719. [PMID: 27650508 PMCID: PMC5030629 DOI: 10.1038/srep33719] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) have the potential to differentiate into several different cell types including osteoblasts. Photobiomodulation (PBM) or low level laser therapy (LLLT) using red or near-infrared wavelengths has been reported to have effects on both proliferation and osteogenic differentiation of stem cells. We examined the effects of delivering four different wavelengths (420 nm, 540 nm, 660 nm, 810 nm) at the same dose (3 J/cm2) five times (every two days) on hASCs cultured in osteogenic medium over three weeks. We measured expression of the following transcription factors by RT-PCR: RUNX2, osterix, and the osteoblast protein, osteocalcin. The 420 nm and 540 nm wavelengths were more effective in stimulating osteoblast differentiation compared to 660 nm and 810 nm. Intracellular calcium was higher after 420 nm and 540 nm, and could be inhibited by capsazepine and SKF96365, which also inhibited osteogenic differentiation. We hypothesize that activation of light-gated calcium ion channels by blue and green light could explain our results.
Collapse
Affiliation(s)
- Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Peijun Lyu
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|