1
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Markova O, Clanet C, Husson J. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness. Biophys J 2024; 123:210-220. [PMID: 38087780 PMCID: PMC10808041 DOI: 10.1016/j.bpj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Quantifying the mechanical properties of cells is important to better understand how mechanics constrain cellular processes. Furthermore, because pathologies are usually paralleled by altered cell mechanical properties, mechanical parameters can be used as a novel way to characterize the pathological state of cells. Key features used in models are cell tension, cell viscoelasticity (representing the average of the cell bulk), or a combination of both. It is unclear which of these features is the most relevant or whether both should be included. To clarify this, we performed microindentation experiments on cells with microindenters of various tip radii, including micrometer-sized microneedles. We obtained different cell-indenter contact radii and measured the corresponding contact stiffness. We derived a model predicting that this contact stiffness should be an affine function of the contact radius and that, at vanishing contact radius, the cell stiffness should be equal to the cell tension multiplied by a constant. When microindenting leukocytes and both adherent and trypsinized adherent cells, the contact stiffness was indeed an affine function of the contact radius. For leukocytes, the deduced surface tension was consistent with that measured using micropipette aspiration. For detached endothelial cells, agreement between microindentation and micropipette aspiration was better when considering these as only viscoelastic when analyzing micropipette aspiration experiments. This work suggests that indenting cells with sharp tips but neglecting the presence of surface tension leads to an effective elastic modulus whose origin is in fact surface tension. Accordingly, using sharp tips when microindenting a cell is a good way to directly measure its surface tension without the need to let the viscoelastic modulus relax.
Collapse
Affiliation(s)
- Olga Markova
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Clanet
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
3
|
Li G, Ji Y, Wu Y, Liu Y, Li H, Wang Y, Chi M, Sun H, Zhu H. Multistage microfluidic cell sorting method and chip based on size and stiffness. Biosens Bioelectron 2023; 237:115451. [PMID: 37327603 DOI: 10.1016/j.bios.2023.115451] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
High performance sorting of circulating tumor cells (CTCs) from peripheral blood is key to liquid biopsies. Size-based deterministic lateral displacement (DLD) technique is widely used in cell sorting. But conventional microcolumns have poor fluid regulation ability, which limits the sorting performance of DLD. When the size difference between CTCs and leukocytes is small (e.g., less than 3 μm), not only DLD, many size-based separation techniques fail due to low specificity. CTCs have been confirmed to be softer than leukocytes, which could serve as a basis for sorting. In this study, we presented a multistage microfluidic CTCs sorting method, first sorting CTCs using a size-based two-array DLD chip, then purifying CTCs mixed by leukocytes using a stiffness-based cone channel chip, and finally identifying cell types using Raman techniques. The entire CTCs sorting and analysis process was label free, highly pure, high-throughput and efficient. The two-array DLD chip employed a droplet-shaped microcolumn (DMC) developed by optimization design rather than empirical design. Attributed to the excellent fluid regulation capability of DMC, the CTCs sorter system developed by parallelizing four DMC two-array DLD chips was able to process a sample of 2.5 mL per minute with a recovery efficiency of 96.30 ± 2.10% and a purity of 98.25 ± 2.48%. To isolate CTCs mixed dimensionally by leukocytes, a cone channel sorting method and chip were developed based on solid and hydrodynamic coupled analysis. The cone channel chip allowed CTCs to pass through the channel and entrap leukocytes, improving the purity of CTCs mixed by leukocytes by 1.8-fold.
Collapse
Affiliation(s)
- Gaolin Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Ji
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Yihui Wu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yongshun Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Huan Li
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yimeng Wang
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingbo Chi
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China
| | - Hongyan Sun
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Hongquan Zhu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
5
|
Eroles M, Lopez-Alonso J, Ortega A, Boudier T, Gharzeddine K, Lafont F, Franz CM, Millet A, Valotteau C, Rico F. Coupled mechanical mapping and interference contrast microscopy reveal viscoelastic and adhesion hallmarks of monocyte differentiation into macrophages. NANOSCALE 2023. [PMID: 37378568 DOI: 10.1039/d3nr00757j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Monocytes activated by pro-inflammatory signals adhere to the vascular endothelium and migrate from the bloodstream to the tissue ultimately differentiating into macrophages. Cell mechanics and adhesion play a crucial role in macrophage functions during this inflammatory process. However, how monocytes change their adhesion and mechanical properties upon differentiation into macrophages is still not well understood. In this work, we used various tools to quantify the morphology, adhesion, and viscoelasticity of monocytes and differentiatted macrophages. Combination of atomic force microscopy (AFM) high resolution viscoelastic mapping with interference contrast microscopy (ICM) at the single-cell level revealed viscoelasticity and adhesion hallmarks during monocyte differentiation into macrophages. Quantitative holographic tomography imaging revealed a dramatic increase in cell volume and surface area during monocyte differentiation and the emergence of round and spread macrophage subpopulations. AFM viscoelastic mapping showed important stiffening (increase of the apparent Young's modulus, E0) and solidification (decrease of cell fluidity, β) on differentiated cells that correlated with increased adhesion area. These changes were enhanced in macrophages with a spread phenotype. Remarkably, when adhesion was perturbed, differentiated macrophages remained stiffer and more solid-like than monocytes, suggesting a permanent reorganization of the cytoskeleton. We speculate that the stiffer and more solid-like microvilli and lamellipodia might help macrophages to minimize energy dissipation during mechanosensitive activities. Thus, our results revealed viscoelastic and adhesion hallmarks of monocyte differentiation that may be important for biological function.
Collapse
Affiliation(s)
- Mar Eroles
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Javier Lopez-Alonso
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Ortega
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | | | - Khaldoun Gharzeddine
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Arnaud Millet
- Univ.Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Team Mechanobiology, Immunity and Cancer, La Tronche, France
- Department of Hepatogastroenterology, Centre Hospitalier Universitaire de Grenoble Alpes, La Tronche, France
| | - Claire Valotteau
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| | - Felix Rico
- Aix-Marseille University, INSERM, CNRS, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
6
|
He F, Yang C, Liu H, Wang J. Changes in the mechanical properties of human mesenchymal stem cells during differentiation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220607. [PMID: 36636310 PMCID: PMC9810430 DOI: 10.1098/rsos.220607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A thorough understanding of the changes in mechanical property behind intracellular biophysical and biochemical processes during differentiation of human mesenchymal stem cells (hMSCs) is helpful to direct and enhance the commitment of cells to a particular lineage. In this study, displacement creep of the mesenchymal cell lineages (osteogenic, chondrogenic and adipogenic hMSCs) were determined by using atomic force microscopy, which was then used to determine their mechanical properties. We found that at any stages of differentiation, the mesenchymal cell lineages are linear viscoelastic materials and well matched with a simple power-law creep compliance. In addition, the viscoelasticity of mesenchymal cell lineages showed different trends during differentiation. The adipogenic hMSCs showed continuous softening at all stages. The osteogenic and chondrogenic hMSCs only continuously soften and become more fluid-like in the early stage of differentiation, and get stiffened and less fluid-like in the later stage. These findings will help more accurately imitate cellular biomechanics in the microenvironment, and provided an important reference in the biophysics biomimetic design of stem cell differentiation.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Chendong Yang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Haoye Liu
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
7
|
Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. Sci Rep 2022; 12:19164. [PMID: 36357517 PMCID: PMC9649698 DOI: 10.1038/s41598-022-23281-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E. coli (Xen14 and clinical UPEC strains) isolates both in vitro and in vivo, as well to explore CSA-13 biodistribution and ability to modulate nanomechanical alterations of infected tissues using animal model of UTI. CSA-44, CSA-131 and particularly CSA-13 displayed potent bactericidal effect against tested E. coli strains, and this effect was mediated by induction of oxidative stress. Biodistribution studies indicated that CSA-13 accumulates in kidneys and liver and is eliminated with urine and bile acid. We also observed that ceragenin CSA-13 reverses infection-induced alterations in mechanical properties of mouse bladders tissue, which confirms the preventive role of CSA-13 against bacteria-induced tissue damage and potentially promote the restoration of microenvironment with biophysical features unfavorable for bacterial growth and spreading. These data justify the further work on employment of CSA-13 in the treatment of urinary tract infections.
Collapse
|
8
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
9
|
Baseline neutrophil-lymphocyte ratio can be associated with hematoma expansion in patients with intracerebral hemorrhage: a retrospective observational study. BMC Neurosci 2022; 23:18. [PMID: 35337267 PMCID: PMC8957183 DOI: 10.1186/s12868-022-00705-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 01/14/2023] Open
Abstract
Background Hematoma expansion can be related to increased mortality and poor clinical outcomes in patients with intracerebral hemorrhage (ICH). So, early identification and prevention of hematoma expansion can be considered as an important therapeutic aim. This study aimed to evaluate the hypothesis that the neutrophil to lymphocyte ratio (NLR) is associated with hematoma expansion in ICH patients. Methods We retrospectively evaluated the clinical data of a total of 221 patients with ICH who were treated in our department between April 2018 and April 2021. The demographic, clinical, radiological, and laboratory test data including the NLR upon admission were investigated. A binary logistic regression analysis was used to assess the independent associations between different variables and hematoma expansion. Results A total of 221 patients with ICH were included. There were 122 (55.2%) males and 99 (44.8%) females. The mean age (years) at admission was 66.43 ± 8.28. The hematoma expansion occurred in 57 (25.8%) cases. The results of the multivariate analysis showed that hematoma volume at baseline (OR, 3.12; 95% CI 1.78–5.02; P < 0.001), admission systolic blood pressure (OR, 2.87; 95% CI 1.79–4.34; P = 0.013), Glasgow Coma Scale (GCS) (OR, 1.94; 95% CI 1.45–2.93; P = 0.020), and NLR (OR, 1.74; 95% CI 1.16–2.60; P = 0.032) were correlated with hematoma expansion in these patients. Conclusions Our findings suggest that NLR can be a predictor of hematoma expansion in patients with ICH. This cost-effective and easily available biomarker could be used to early prediction of hematoma expansion in these patients.
Collapse
|
10
|
Alimohammadi E, Foroushani AZ, Moradi F, Ebrahimzadeh K, Nadersepahi MJ, Asadzadeh S, Amiri A, Hosseini S, Eden SV, Bagheri SR. Dynamics of neutrophil-to-lymphocyte ratio can be associated with clinical outcomes of children with moderate to severe traumatic brain injury: A retrospective observational study. Injury 2022; 53:999-1004. [PMID: 34625239 DOI: 10.1016/j.injury.2021.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The neutrophil to lymphocyte ratio (NLR) has been reported to be associated with clinical outcomes of patients with severe traumatic brain injury (TBI). This study aimed to evaluate the correlation between the dynamics of NLR and clinical outcomes of pediatric patients with moderate to severe TBI. METHODS We retrospectively evaluated the clinical data of a total of 374 pediatric patients with moder-ate to severe TBI who were treated in our department between May 2016 and May 2020. Clinical and laboratory data including the NLR upon admission and the NLR on hospital day four were collected. Poor clinical outcome was defined as Glasgow Outcome Scale (GOS) of 1-3. Multivariable logistic regression analyses were performed to investigate the correlation between the dynamics of NLR and clinical outcome. RESULTS Three hundred seventy-four pediatric patients (mean age 7.37 ± 3.11, 52.7% male) were evaluated. Based on the ROC curves, a value of 5 was determined as the NLR cut-off value. The corresponding cutoff value for delta NLR was 1. The Glasgow Coma Scale (GCS) (OR, 3.42; 95% CI: 1.88-5.28; P <0.001), the light reflex (OR, 1.79; 95% CI: 1.34- 2.84; P = 0.027), the Rotterdam CT score (OR, 2.71; 95% CI: 1.72-4.13; P = 0.021), and delta NLR (OR, 1.71; 95% CI: 1.13- 2.52; P = 0.034) were identified as independent predictors for unfavorable outcomes in multivariable logistic regression analysis. CONCLUSIONS The result of the present study suggest that delta NLR could be a predictor of poor clinical outcome of pediatrics with moderate to severe TBI. This cost-effective and easily available biomarker could be used to predict clinical outcomes in these patients.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Department of neurosurgery Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran.
| | | | - Farid Moradi
- Department of neurosurgery Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Kaveh Ebrahimzadeh
- Department of neurosurgery, Shahid Beheshti University of Medical Sciences, Loghman Hakim hospital
| | - Mohammad Javad Nadersepahi
- Department of anesthesiology, Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah,Iran
| | - Sahel Asadzadeh
- Clinical Research Development Center, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Amiri
- Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Sahar Hosseini
- Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| | - Sonia V Eden
- Wayne State University School of Medicine, Detroit, MI, USA.
| | - Seyed Reza Bagheri
- Department of neurosurgery, Kermanshah University of Medical Sciences, Imam Reza hospital, Kermanshah, Iran
| |
Collapse
|
11
|
Kayal C, Tamayo-Elizalde M, Adam C, Ye H, Jerusalem A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022; 4:31-38. [PMID: 39372227 PMCID: PMC11450331 DOI: 10.1089/bioe.2021.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background The consideration of neurons as coupled mechanical-electrophysiological systems is supported by a growing body of experimental evidence, including observations that cell membranes mechanically deform during the propagation of an action potential. However, the short-term (seconds to minutes) influence of membrane voltage on the mechanical properties of a neuron at the single-cell level remains unknown. Materials and Methods Here, we use microscale dynamic mechanical analysis to demonstrate that changes in membrane potential induce changes in the mechanical properties of individual neurons. We simultaneously measured the membrane potential and mechanical properties of individual neurons through a multiphysics single-cell setup. Membrane voltage of a single neuron was measured through whole-cell patch clamp. The mechanical properties of the same neuron were measured through a nanoindenter, which applied a dynamic indentation to the neuron at different frequencies. Results Neuronal storage and loss moduli were lower for positive voltages than negative voltages. Conclusion The observed effects of membrane voltage on neuron mechanics could be due to piezoelectric or flexoelectric effects and altered ion distributions under the applied voltage. Such effects could change cell mechanics by changing the intermolecular interactions between ions and the various biomolecules within the membrane and cytoskeleton.
Collapse
Affiliation(s)
- Celine Kayal
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Casey Adam
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Andreu I, Falcones B, Hurst S, Chahare N, Quiroga X, Le Roux AL, Kechagia Z, Beedle AEM, Elosegui-Artola A, Trepat X, Farré R, Betz T, Almendros I, Roca-Cusachs P. The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening. Nat Commun 2021; 12:4229. [PMID: 34244477 PMCID: PMC8270983 DOI: 10.1038/s41467-021-24383-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Sebastian Hurst
- Institute of Cell Biology, Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Nimesh Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat Politècnica de Catalunya (UPC), Campus Nord, Barcelona, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, Strand, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ramon Farré
- Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Timo Betz
- Institute of Cell Biology, Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Isaac Almendros
- Universitat de Barcelona, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Madrid, Spain.
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain.
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
14
|
Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He HT, Barakat AI, Carrasco YR, Hamon Y, Puech PH, Hivroz C, Nüsse O, Husson J. Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 2021; 120:1692-1704. [PMID: 33730552 PMCID: PMC8204340 DOI: 10.1016/j.bpj.2021.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | | | - Anaïs Sadoun
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Farah Mustapha
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France; Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphanie Dogniaux
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Hai-Tao He
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yolanda R Carrasco
- B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yannick Hamon
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Claire Hivroz
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
15
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
16
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
17
|
Otero J, Navajas D, Alcaraz J. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy. Methods Cell Biol 2019; 156:59-83. [PMID: 32222227 DOI: 10.1016/bs.mcb.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tissue elasticity is a critical regulator of cell behavior in normal and diseased conditions like fibrosis and cancer. Since the extracellular matrix (ECM) is a major regulator of tissue elasticity and function, several ECM-based models have emerged in the last decades, including in vitro endogenous ECM, decellularized tissue ECM and ECM hydrogels. The development of such models has urged the need to quantify their elastic properties particularly at the nanometer scale, which is the relevant length scale for cell-ECM interactions. For this purpose, the versatility of atomic force microscopy (AFM) to quantify the nanomechanical properties of soft biomaterials like ECM models has emerged as a very suitable technique. In this chapter we provide a detailed protocol on how to assess the Young's elastic modulus of ECM models by AFM, discuss some of the critical issues, and provide troubleshooting guidelines as well as illustrative examples of AFM measurements, particularly in the context of cancer.
Collapse
Affiliation(s)
- J Otero
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - D Navajas
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - J Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
18
|
Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu J, Kaplan MJ, Summers C, Guck J, Chilvers ER, Toepfner N. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 2019; 105:1143-1153. [PMID: 30835869 PMCID: PMC7587463 DOI: 10.1002/jlb.ma0718-295rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly apparent that the biomechanical properties of neutrophils impact on their trafficking through the circulation and in particularly through the pulmonary capillary bed. The retention of polarized or shape-changed neutrophils in the lungs was recently proposed to contribute to acute respiratory distress syndrome pathogenesis. Accordingly, this study tested the hypothesis that neutrophil priming is coupled to morpho-rheological (MORE) changes capable of altering cell function. We employ real-time deformability cytometry (RT-DC), a recently developed, rapid, and sensitive way to assess the distribution of size, shape, and deformability of thousands of cells within seconds. During RT-DC analysis, neutrophils can be easily identified within anticoagulated "whole blood" due to their unique granularity and size, thus avoiding the need for further isolation techniques, which affect biomechanical cell properties. Hence, RT-DC is uniquely suited to describe the kinetics of MORE cell changes. We reveal that, following activation or priming, neutrophils undergo a short period of cell shrinking and stiffening, followed by a phase of cell expansion and softening. In some contexts, neutrophils ultimately recover their un-primed mechanical phenotype. The mechanism(s) underlying changes in human neutrophil size are shown to be Na+ /H+ antiport-dependent and are predicted to have profound implications for neutrophil movement through the vascular system in health and disease.
Collapse
Affiliation(s)
- Kathleen R Bashant
- Department of Medicine, University of Cambridge, Cambridge, UK
- National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Reinhard Berner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonhard Menschner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Comparison of cell mechanical measurements provided by Atomic Force Microscopy (AFM) and Micropipette Aspiration (MPA). J Mech Behav Biomed Mater 2019; 95:103-115. [PMID: 30986755 DOI: 10.1016/j.jmbbm.2019.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
A comparative analysis of T-lymphocyte mechanical data obtained from Micropipette Aspiration (MPA) and Atomic Force Microscopy (AFM) is presented. Results obtained by fitting the experimental data to simple Hertz and Theret models led to non-Gaussian distributions and significantly different values of the elastic moduli obtained by both techniques. The use of more refined models, taking into account the finite size of cells (simplified double contact and Zhou models) reduces the differences in the values calculated for the elastic moduli. Several possible sources for the discrepancy between the techniques are considered. The analysis suggests that the local nature of AFM measurements compared with the more general character of MPA measurements probably contributed to the differences observed.
Collapse
|
20
|
Piktel E, Wnorowska U, Cieśluk M, Deptula P, Pogoda K, Misztalewska-Turkowicz I, Paprocka P, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Bucki R. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J Nanobiotechnology 2019; 17:22. [PMID: 30711007 PMCID: PMC6359803 DOI: 10.1186/s12951-019-0455-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. Results Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. Conclusions Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Mateusz Cieśluk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Piotr Deptula
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Katarzyna Pogoda
- IInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | | | - Paulina Paprocka
- Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | | | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
21
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
22
|
Li J, Li Y, Gao B, Qin C, He Y, Xu F, Yang H, Lin M. Engineering mechanical microenvironment of macrophage and its biomedical applications. Nanomedicine (Lond) 2018; 13:555-576. [PMID: 29334336 DOI: 10.2217/nnm-2017-0324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.
Collapse
Affiliation(s)
- Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yuhui Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bin Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Chuanguang Qin
- Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yining He
- College of Food Science and Engineering, Northwest A & F University Yangling Shaanxi 712100 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
23
|
Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73:71-81. [DOI: 10.1016/j.semcdb.2017.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
24
|
Marsal M, Jorba I, Rebollo E, Luque T, Navajas D, Martín-Blanco E. AFM and Microrheology in the Zebrafish Embryo Yolk Cell. J Vis Exp 2017. [PMID: 29286426 DOI: 10.3791/56224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Elucidating the factors that direct the spatio-temporal organization of evolving tissues is one of the primary purposes in the study of development. Various propositions claim to have been important contributions to the understanding of the mechanical properties of cells and tissues in their spatiotemporal organization in different developmental and morphogenetic processes. However, due to the lack of reliable and accessible tools to measure material properties and tensional parameters in vivo, validating these hypotheses has been difficult. Here we present methods employing atomic force microscopy (AFM) and particle tracking with the aim of quantifying the mechanical properties of the intact zebrafish embryo yolk cell during epiboly. Epiboly is an early conserved developmental process whose study is facilitated by the transparency of the embryo. These methods are simple to implement, reliable, and widely applicable since they overcome intrusive interventions that could affect tissue mechanics. A simple strategy was applied for the mounting of specimens, AFM recording, and nanoparticle injections and tracking. This approach makes these methods easily adaptable to other developmental times or organisms.
Collapse
Affiliation(s)
- Maria Marsal
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas
| | - Ignasi Jorba
- Institute for Bioengineering of Catalonia, Universitat de Barcelona and CIBER Enfermedades Respiratorias
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas
| | - Tomas Luque
- Institute for Bioengineering of Catalonia, Universitat de Barcelona and CIBER Enfermedades Respiratorias
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia, Universitat de Barcelona and CIBER Enfermedades Respiratorias
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas;
| |
Collapse
|
25
|
Ekpenyong AE, Toepfner N, Fiddler C, Herbig M, Li W, Cojoc G, Summers C, Guck J, Chilvers ER. Mechanical deformation induces depolarization of neutrophils. SCIENCE ADVANCES 2017; 3:e1602536. [PMID: 28630905 PMCID: PMC5470826 DOI: 10.1126/sciadv.1602536] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.
Collapse
Affiliation(s)
- Andrew E. Ekpenyong
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Physics, Creighton University, Omaha, NE 68178, USA
| | - Nicole Toepfner
- Klinik und Poliklinik für Kinder-und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christine Fiddler
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maik Herbig
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wenhong Li
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Charlotte Summers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Biotechnology Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Corresponding author.
| | - Edwin R. Chilvers
- Department of Medicine, Addenbrooke’s and Papworth Hospitals, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
Lange JR, Metzner C, Richter S, Schneider W, Spermann M, Kolb T, Whyte G, Fabry B. Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions. Biophys J 2017; 112:1472-1480. [PMID: 28402889 PMCID: PMC5389962 DOI: 10.1016/j.bpj.2017.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
We describe a quantitative, high-precision, high-throughput method for measuring the mechanical properties of cells in suspension with a microfluidic device, and for relating cell mechanical responses to protein expression levels. Using a high-speed (750 fps) charge-coupled device camera, we measure the driving pressure Δp, maximum cell deformation εmax, and entry time tentry of cells in an array of microconstrictions. From these measurements, we estimate population averages of elastic modulus E and fluidity β (the power-law exponent of the cell deformation in response to a step change in pressure). We find that cell elasticity increases with increasing strain εmax according to E ∼ εmax, and with increasing pressure according to E ∼ Δp. Variable cell stress due to driving pressure fluctuations and variable cell strain due to cell size fluctuations therefore cause significant variability between measurements. To reduce measurement variability, we use a histogram matching method that selects and analyzes only those cells from different measurements that have experienced the same pressure and strain. With this method, we investigate the influence of measurement parameters on the resulting cell elastic modulus and fluidity. We find a small but significant softening of cells with increasing time after cell harvesting. Cells harvested from confluent cultures are softer compared to cells harvested from subconfluent cultures. Moreover, cell elastic modulus increases with decreasing concentration of the adhesion-reducing surfactant pluronic. Lastly, we simultaneously measure cell mechanics and fluorescence signals of cells that overexpress the GFP-tagged nuclear envelope protein lamin A. We find a dose-dependent increase in cell elastic modulus and decrease in cell fluidity with increasing lamin A levels. Together, our findings demonstrate that histogram matching of pressure, strain, and protein expression levels greatly reduces the variability between measurements and enables us to reproducibly detect small differences in cell mechanics.
Collapse
Affiliation(s)
- Janina R Lange
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claus Metzner
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Richter
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Schneider
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Monika Spermann
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Kolb
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graeme Whyte
- IB3: Institute of Biological Chemistry, Biophysics and Bioengineering, Department of Physics, Heriot-Watt University, Edinburgh, United Kingdom
| | - Ben Fabry
- Biophysics Group, Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
27
|
Roth KB, Neeves KB, Squier J, Marr DWM. High-throughput linear optical stretcher for mechanical characterization of blood cells. Cytometry A 2016; 89:391-7. [PMID: 26565892 PMCID: PMC10625799 DOI: 10.1002/cyto.a.22794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/29/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022]
Abstract
This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kevin B. Roth
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| | - Keith B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
- Department of Pediatrics, University of Colorado, Denver, Colorado 80045
| | - Jeff Squier
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401
| | - David W. M. Marr
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
28
|
Bufi N, Saitakis M, Dogniaux S, Buschinger O, Bohineust A, Richert A, Maurin M, Hivroz C, Asnacios A. Human Primary Immune Cells Exhibit Distinct Mechanical Properties that Are Modified by Inflammation. Biophys J 2016; 108:2181-90. [PMID: 25954876 DOI: 10.1016/j.bpj.2015.03.047] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 01/07/2023] Open
Abstract
T lymphocytes are key modulators of the immune response. Their activation requires cell-cell interaction with different myeloid cell populations of the immune system called antigen-presenting cells (APCs). Although T lymphocytes have recently been shown to respond to mechanical cues, in particular to the stiffness of their environment, little is known about the rigidity of APCs. In this study, single-cell microplate assays were performed to measure the viscoelastic moduli of different human myeloid primary APCs, i.e., monocytes (Ms, storage modulus of 520 +90/-80 Pa), dendritic cells (DCs, 440 +110/-90 Pa), and macrophages (MPHs, 900 +110/-100 Pa). Inflammatory conditions modulated these properties, with storage moduli ranging from 190 Pa to 1450 Pa. The effect of inflammation on the mechanical properties was independent of the induction of expression of commonly used APC maturation markers, making myeloid APC rigidity an additional feature of inflammation. In addition, the rigidity of human T lymphocytes was lower than that of all myeloid cells tested and among the lowest reported (Young's modulus of 85 ± 5 Pa). Finally, the viscoelastic properties of myeloid cells were dependent on both their filamentous actin content and myosin IIA activity, although the relative contribution of these parameters varied within cell types. These results indicate that T lymphocytes face different cell rigidities when interacting with myeloid APCs in vivo and that this mechanical landscape changes under inflammation.
Collapse
Affiliation(s)
- Nathalie Bufi
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Michael Saitakis
- Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France
| | - Stéphanie Dogniaux
- Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France
| | - Oscar Buschinger
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Armelle Bohineust
- Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France
| | - Alain Richert
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Mathieu Maurin
- Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France
| | - Claire Hivroz
- Institut Curie, Centre de Recherche, Pavillon Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité 932, Immunité et Cancer, Paris, France.
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
29
|
Guillou L, Babataheri A, Puech PH, Barakat AI, Husson J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 2016; 6:21529. [PMID: 26857265 PMCID: PMC4746699 DOI: 10.1038/srep21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells' actin is depolymerized using cytochalasin-D.
Collapse
Affiliation(s)
- L Guillou
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - A Babataheri
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - P-H Puech
- Aix Marseille University, LAI UM 61, Marseille, F-13288, France.,Inserm, UMR_S 1067, Marseille, F-13288, France.,CNRS, UMR 7333, Marseille, F-13288, France
| | - A I Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - J Husson
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
30
|
Abstract
Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed.
Collapse
Affiliation(s)
- Qianxi Wang
- School of Mathematics , University of Birmingham , Birmingham B15 2TY , UK
| | - Kawa Manmi
- School of Mathematics , University of Birmingham , Birmingham B15 2TY , UK ; Department of Mathematics, College of Science , Salahaddin University-Erbil , Kurdistan Region , Iraq
| | - Kuo-Kang Liu
- School of Engineering , University of Warwick , Coventry CV4 7AL , UK
| |
Collapse
|
31
|
Ekpenyong AE, Toepfner N, Chilvers ER, Guck J. Mechanotransduction in neutrophil activation and deactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26211453 DOI: 10.1016/j.bbamcr.2015.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Andrew E Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
32
|
A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms. Biophys J 2015; 107:2237-44. [PMID: 25418292 DOI: 10.1016/j.bpj.2014.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
Abstract
Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.
Collapse
|
33
|
Low WS, Wan Abas WAB. Benchtop technologies for circulating tumor cells separation based on biophysical properties. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239362. [PMID: 25977918 PMCID: PMC4419234 DOI: 10.1155/2015/239362] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.
Collapse
Affiliation(s)
- Wan Shi Low
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Maloney JM, Van Vliet KJ. Chemoenvironmental modulators of fluidity in the suspended biological cell. SOFT MATTER 2014; 10:8031-8042. [PMID: 25160132 DOI: 10.1039/c4sm00743c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biological cells can be characterized as "soft matter" with mechanical characteristics potentially modulated by external cues such as pharmaceutical dosage or fever temperature. Further, quantifying the effects of chemical and physical stimuli on a cell's mechanical response informs models of living cells as complex materials. Here, we investigate the mechanical behavior of single biological cells in terms of fluidity, or mechanical hysteresivity normalized to the extremes of an elastic solid or a viscous liquid. This parameter, which complements stiffness when describing whole-cell viscoelastic response, can be determined for a suspended cell within subsecond times. Questions remain, however, about the origin of fluidity as a conserved parameter across timescales, the physical interpretation of its magnitude, and its potential use for high-throughput sorting and separation of interesting cells by mechanical means. Therefore, we exposed suspended CH27 lymphoma cells to various chemoenvironmental conditions--temperature, pharmacological agents, pH, and osmolarity--and measured cell fluidity with a non-contact technique to extend familiarity with suspended-cell mechanics in the context of both soft-matter physics and mechanical flow cytometry development. The actin-cytoskeleton-disassembling drug latrunculin exacted a large effect on mechanical behavior, amenable to dose-dependence analysis of coupled changes in fluidity and stiffness. Fluidity was minimally affected by pH changes from 6.5 to 8.5, but strongly modulated by osmotic challenge to the cell, where the range spanned halfway from solid to liquid behavior. Together, these results support the interpretation of fluidity as a reciprocal friction within the actin cytoskeleton, with implications both for cytoskeletal models and for expectations when separating interesting cell subpopulations by mechanical means in the suspended state.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
35
|
Glaubitz M, Medvedev N, Pussak D, Hartmann L, Schmidt S, Helm CA, Delcea M. A novel contact model for AFM indentation experiments on soft spherical cell-like particles. SOFT MATTER 2014; 10:6732-6741. [PMID: 25068646 DOI: 10.1039/c4sm00788c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of the simple Hertz model for the analysis of Atomic Force Microscopy (AFM) force-distance curves measured on soft spherical cell-like particles leads to significant underestimations of the objects Young's modulus E. To correct this error, a mixed double contact model (based on the simple Hertz model and the Johnson-Kendall-Roberts (JKR) model) was derived. The model considers two independent particle deformation sites: (i) the upper part of the particle is deformed by the AFM indenter, (ii) the bottom part is deformed by the substrate, which is usually unnoticed. It becomes apparent that for soft particles even small forces between substrate and particle can influence the resulting force-distance curves. For instance we show, that a gravity-induced compression on the particle bottom side can have significant influence on the measurements. To highlight these observations, the deviation of the particle Young's modulus E between the simple Hertz model and our model is calculated. This error strongly depends on the ratio of the three involved radii: (i) the radius of the AFM indenter, (ii) the radius of the particle and (iii) the radius of the substrate as well as on the acting gravity force. Overall, the analysis suggests that for nanoscopic indenters the deviation is negligible, whereas the use of microscopic indenters results in significant errors that can be corrected via the presented model. This is important especially for very soft particles, since larger indenters can achieve higher signal to noise ratios. Furthermore, the applicability of the model was confirmed by indentation experiments on hydrogel microbeads. The mixed double contact model is applicable to a large range of indenter geometries and can be adapted for other contact models.
Collapse
Affiliation(s)
- Michael Glaubitz
- ZIK-HIKE - Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen", Fleischmannstr. 42 - 44, D-17489 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Andreu I, Luque T, Sancho A, Pelacho B, Iglesias-García O, Melo E, Farré R, Prósper F, Elizalde MR, Navajas D. Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts. Acta Biomater 2014; 10:3235-42. [PMID: 24717359 DOI: 10.1016/j.actbio.2014.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/07/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Infarcted hearts are macroscopically stiffer than healthy organs. Nevertheless, although cell behavior is mediated by the physical features of the cell niche, the intrinsic micromechanical properties of healthy and infarcted heart extracellular matrix (ECM) remain poorly characterized. Using atomic force microscopy, we studied ECM micromechanics of different histological regions of the left ventricle wall of healthy and infarcted mice. Hearts excised from healthy (n=8) and infarcted mice (n=8) were decellularized with sodium dodecyl sulfate and cut into 12 μm thick slices. Healthy ventricular ECM revealed marked mechanical heterogeneity across histological regions of the ventricular wall with the effective Young's modulus ranging from 30.2 ± 2.8 to 74.5 ± 8.7 kPa in collagen- and elastin-rich regions of the myocardium, respectively. Infarcted ECM showed a predominant collagen composition and was 3-fold stiffer than collagen-rich regions of the healthy myocardium. ECM of both healthy and infarcted hearts exhibited a solid-like viscoelastic behavior that conforms to two power-law rheology. Knowledge of intrinsic micromechanical properties of the ECM at the length scale at which cells sense their environment will provide further insight into the cell-scaffold interplay in healthy and infarcted hearts.
Collapse
|
37
|
Maloney JM, Lehnhardt E, Long AF, Van Vliet KJ. Mechanical fluidity of fully suspended biological cells. Biophys J 2014; 105:1767-77. [PMID: 24138852 DOI: 10.1016/j.bpj.2013.08.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
38
|
Schneider D, Baronsky T, Pietuch A, Rother J, Oelkers M, Fichtner D, Wedlich D, Janshoff A. Tension monitoring during epithelial-to-mesenchymal transition links the switch of phenotype to expression of moesin and cadherins in NMuMG cells. PLoS One 2013; 8:e80068. [PMID: 24339870 PMCID: PMC3855076 DOI: 10.1371/journal.pone.0080068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/09/2013] [Indexed: 01/06/2023] Open
Abstract
Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT.
Collapse
Affiliation(s)
- David Schneider
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Thilo Baronsky
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Anna Pietuch
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Rother
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Marieelen Oelkers
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Dagmar Fichtner
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Doris Wedlich
- Institute for Cell and Developmental Biology, Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 2, Karlsruhe, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Paschke S, Weidner AF, Paust T, Marti O, Beil M, Ben-Chetrit E. Technical Advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J Leukoc Biol 2013; 94:1091-6. [DOI: 10.1189/jlb.1012510] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
da Rosa ELS. Kinetic effects of TiO2 fine particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy. BMC BIOPHYSICS 2013; 6:11. [PMID: 23957965 PMCID: PMC3766645 DOI: 10.1186/2046-1682-6-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 08/09/2013] [Indexed: 12/02/2022]
Abstract
Background Increasing applications of titanium dioxide (TiO2) fine particles (FPs) and nanoparticles (NPs) require coupled knowledge improvement concerning their biokinetic effects. Neutrophils are quickly recruited to titanium implantation areas. Neutrophils mechanical properties display a crucial role on cell physiology and immune responsive functions. Then, micro and nanomechanical characterization assessed by force spectroscopy (FS) technique has been largely applied in this field. Results Scanning electron microscopy (SEM) images highlighted neutrophils morphological changes along TiO2 FPs and NPs aggregates exposure time (1, 5, and 30 min) compared to controls. FS approaches showed an increasing on attraction forces to TiO2 FPs and NPs treated neutrophils. This group depicted stronger stiffness features than controls just at 1 min of exposure. Treated neutrophils showed a tendency to increase adhesive properties after 1 and 5 min of exposure. These cells maintained comparatively higher elasticity behavior for a longer time possibly due to intense phagocytosis and cell stiffness opposing to the tip indentation. Neutrophils activation caused by FPs and NPs uptake could be related to increasing dissipated energy results. Conclusions Mechanical modifications resulted from TiO2 FPs and NPs aggregates interaction with neutrophils showed increasing stiffness and also cell morphology alteration. Cells treatment by this metal FPs and NPs caused an increase in attractive forces. This event was mainly observed on the initial exposure times probably regarding to the interaction of neutrophils membrane and phagocytosis. Similar results were found to adhesion forces and dissipated energy outcomes. Treated cells presented comparatively higher elasticity behavior for a longer time. SEM images clearly suggested cell morphology alteration along time course probably related to activation, cytoskeleton rearrangement and phagocytosis. This scenario with increase in stiffness strongly suggests a direct relationship over neutrophil rolling, arrest, and transmigration. Scrutinizing these interactions represents an essential step to clarify the mechanisms involved on treatments containing micro and nanomaterials and their fates on the organisms.
Collapse
Affiliation(s)
- Everton Luis Santos da Rosa
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, Brazil.
| |
Collapse
|
41
|
Luque T, Melo E, Garreta E, Cortiella J, Nichols J, Farré R, Navajas D. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater 2013; 9:6852-9. [PMID: 23470549 DOI: 10.1016/j.actbio.2013.02.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 01/13/2023]
Abstract
Bioartificial lungs re-engineered from decellularized organ scaffolds are a promising alternative to lung transplantation. Critical features for improving scaffold repopulation depend on the mechanical properties of the cell microenvironment. However, the mechanics of the lung extracellular matrix (ECM) is poorly defined. The local mechanical properties of the ECM were measured in different regions of decellularized rat lung scaffolds with atomic force microscopy. Lungs excised from rats (n=11) were decellularized with sodium dodecyl sulfate (SDS) and cut into ~7μm thick slices. The complex elastic modulus (G(∗)) of lung ECM was measured over a frequency band ranging from 0.1 to 11.45Hz. Measurements were taken in alveolar wall segments, alveolar wall junctions and pleural regions. The storage modulus (G', real part of G(∗)) of alveolar ECM was ~6kPa, showing small changes between wall segments and junctions. Pleural regions were threefold stiffer than alveolar walls. G' of alveolar walls and pleura increased with frequency as a weak power law with exponent 0.05. The loss modulus (G″, imaginary part of G(∗)) was 10-fold lower and showed a frequency dependence similar to that of G' at low frequencies (0.1-1Hz), but increased more markedly at higher frequencies. Local differences in mechanical properties and topology of the parenchymal site could be relevant mechanical cues for regulating the spatial distribution, differentiation and function of lung cells.
Collapse
|
42
|
Sweers KKM, van der Werf KO, Bennink ML, Subramaniam V. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation. NANOSCALE 2012; 4:2072-2077. [PMID: 22331128 DOI: 10.1039/c2nr12066f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM® have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different operating frequencies. However, complex materials are known to display viscoelastic behavior, a combination of solid and fluid-like responses, depending on the frequency at which the sample is probed. In this report, we show that the frequency-dependent mechanical behavior of complex materials, such as polymer blends that are frequently used as calibration samples, is clearly measurable with AFM. Although this frequency-dependent mechanical behavior is an established observation, we demonstrate that the new high frequency mapping techniques enable AFM-based rheology with nanoscale spatial resolution over a much broader frequency range compared to previous AFM-based studies. We further highlight that it is essential to account for the frequency-dependent variation in mechanical properties when using these thin polymer samples as calibration materials for elasticity measurements by high-frequency surface property mapping techniques. These results have significant implications for the accurate interpretation of the nanomechanical properties of polymers or complex biological samples. The calibration sample is composed of a blend of soft and hard polymers, consisting of low-density polyethylene (LDPE) islands in a polystyrene (PS) surrounding, with a stiffness of 0.2 GPa and 2 GPa respectively. The spring constant of the AFM cantilever was selected to match the stiffness of LDPE. From 260 Hz to 1100 Hz the sample was imaged with the PFM method. At low frequencies (0.5-35 Hz), single-point nanoindentation was performed. In addition to the material's stiffness, the relative heights of the LDPE islands (with respect to the PS) were determined as a function of the frequency. At the lower operation frequencies for PFM, the islands exhibited lower heights than when measured with tapping mode at 120 kHz. Both spring constants and heights at the different frequencies clearly show a frequency-dependent behavior.
Collapse
Affiliation(s)
- Kim K M Sweers
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
43
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
44
|
Luo RC, Chen CH. Structured Microgels through Microfluidic Assembly and Their Biomedical Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/soft.2012.11001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Féréol S, Fodil R, Barnat M, Georget V, Milbreta U, Nothias F. Micropatterned ECM substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth. Cytoskeleton (Hoboken) 2011; 68:373-88. [DOI: 10.1002/cm.20518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/28/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
|
46
|
Casuso I, Rico F, Scheuring S. Biological AFM: where we come from - where we are - where we may go. J Mol Recognit 2011; 24:406-13. [DOI: 10.1002/jmr.1081] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Maloney JM, Nikova D, Lautenschläger F, Clarke E, Langer R, Guck J, Van Vliet KJ. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J 2011; 99:2479-87. [PMID: 20959088 DOI: 10.1016/j.bpj.2010.08.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/01/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are therapeutically useful cells that are typically expanded in vitro on stiff substrata before reimplantation. Here we explore MSC mechanical and structural changes via atomic force microscopy and optical stretching during extended passaging, and we demonstrate that cytoskeletal organization and mechanical stiffness of attached MSC populations are strongly modulated over >15 population doublings in vitro. Cytoskeletal actin networks exhibit significant coarsening, attendant with decreasing average mechanical compliance and differentiation potential of these cells, although expression of molecular surface markers does not significantly decline. These mechanical changes are not observed in the suspended state, indicating that the changes manifest themselves as alterations in stress fiber arrangement rather than cortical cytoskeleton arrangement. Additionally, optical stretching is capable of investigating a previously unquantified structural transition: remodeling-induced stiffening over tens of minutes after adherent cells are suspended. Finally, we find that optically stretched hMSCs exhibit power-law rheology during both loading and recovery; this evidence appears to be the first to originate from a biophysical measurement technique not involving cell-probe or cell-substratum contact. Together, these quantitative assessments of attached and suspended MSCs define the extremes of the extracellular environment while probing intracellular mechanisms that contribute to cell mechanical response.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Lee YJ, Patel D, Park S. Local rheology of human neutrophils investigated using atomic force microscopy. Int J Biol Sci 2011; 7:102-11. [PMID: 21278920 PMCID: PMC3030146 DOI: 10.7150/ijbs.7.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/07/2011] [Indexed: 11/25/2022] Open
Abstract
During the immune response, neutrophils display localized mechanical events by interacting with their environment through the micro-vascular transit, trans-endothelial, and trans-epithelial migration. Nano-mechanical studies of human neutrophils on localized nano-domains could provide the essential information for understanding their immune responsive functions. Using the Atomic Force Microscopy (AFM)-based micro-rheology, we have investigated rheological properties of the adherent human neutrophils on local nano-domains. We have applied the modified Hertz model to obtain the viscoelastic moduli from the relatively thick body regions of the neutrophils. In addition, by using more advanced models to account for the substrate effects, we have successfully characterized the rheological properties of the thin leading and tail regions as well. We found a regional difference in the mechanical compliances of the adherent neutrophils. The central regions of neutrophils were significantly stiffer (1,548 ± 871 Pa) than the regions closer to the leading edge (686 ± 801 Pa), while the leading edge and the tail (494 ± 537 Pa) regions were mechanically indistinguishable. The frequency-dependent elastic and viscous moduli also display a similar regional difference. Over the studied frequency range (100 to 300 Hz), the complex viscoelastic moduli display the partial rubber plateau behavior where the elastic moduli are greater than the viscous moduli for a given frequency. The non-disparaging viscous modulus indicates that the neutrophils display a viscoelastic dynamic behavior rather than a perfect elastic behavior like polymer gels. In addition, we found no regional difference in the structural damping coefficient between the leading edge and the cell body. Thus, we conclude that despite the lower loss and storage moduli, the leading edges of the human neutrophils display partially elastic properties similar to the cell body. These results suggest that the lower elastic moduli in the leading edges are more favorable for the elastic fluctuation of actin filaments, which supports the polymerization of the actin filaments leading to the active protrusion during the immune response.
Collapse
Affiliation(s)
- Yong J. Lee
- 1. School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Dipika Patel
- 2. Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409
| | - Soyeun Park
- 2. Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409
| |
Collapse
|
49
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
50
|
Rico F, Chu C, Abdulreda MH, Qin Y, Moy VT. Temperature modulation of integrin-mediated cell adhesion. Biophys J 2010; 99:1387-96. [PMID: 20816050 PMCID: PMC2931747 DOI: 10.1016/j.bpj.2010.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/02/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022] Open
Abstract
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.
Collapse
Affiliation(s)
- Félix Rico
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | |
Collapse
|