1
|
Schotten U, Goette A, Verheule S. Translation of pathophysiological mechanisms of atrial fibrosis into new diagnostic and therapeutic approaches. Nat Rev Cardiol 2025; 22:225-240. [PMID: 39443702 DOI: 10.1038/s41569-024-01088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Atrial fibrosis is one of the main manifestations of atrial cardiomyopathy, an array of electrical, mechanical and structural alterations associated with atrial fibrillation (AF), stroke and heart failure. Atrial fibrosis can be both a cause and a consequence of AF and, once present, it accelerates the progression of AF. The pathophysiological mechanisms leading to atrial fibrosis are diverse and include stretch-induced activation of fibroblasts, systemic inflammatory processes, activation of coagulation factors and fibrofatty infiltrations. Importantly, atrial fibrosis can occur in different forms, such as reactive and replacement fibrosis. The diversity of atrial fibrosis mechanisms and patterns depends on sex, age and comorbidity profile, hampering the development of therapeutic strategies. In addition, the presence and severity of comorbidities often change over time, potentially causing temporal changes in the mechanisms underlying atrial fibrosis development. This Review summarizes the latest knowledge on the molecular and cellular mechanisms of atrial fibrosis, its association with comorbidities and the sex-related differences. We describe how the various patterns of atrial fibrosis translate into electrophysiological mechanisms that promote AF, and critically appraise the clinical applicability and limitations of diagnostic tools to quantify atrial fibrosis. Finally, we provide an overview of the newest therapeutic interventions under development and discuss relevant knowledge gaps related to the association between clinical manifestations and pathological mechanisms of atrial fibrosis and to the translation of this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Paderborn, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Karakasis P, Theofilis P, Vlachakis PK, Korantzopoulos P, Patoulias D, Antoniadis AP, Fragakis N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int J Mol Sci 2024; 26:209. [PMID: 39796066 PMCID: PMC11720255 DOI: 10.3390/ijms26010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types-reactive and replacement fibrosis-are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches. The heterogeneity of fibrosis leads to distinct electrophysiological abnormalities that promote AF via reentrant activity and enhanced automaticity mechanisms. Despite advancements in imaging, such as late gadolinium enhancement CMR and electroanatomical mapping, challenges in accurately quantifying fibrosis persist. Emerging therapeutic strategies include antifibrotic agents targeting the renin-angiotensin-aldosterone system, novel pathways like TGF-β signaling, and cardio-metabolic drugs like SGLT2 inhibitors and GLP-1 receptor agonists. Innovative interventions, including microRNA modulation and lipid nanoparticle-based therapies, show promise but require validation. Knowledge gaps remain in correlating clinical outcomes with fibrosis patterns and optimizing diagnostic tools. Future research should focus on precise phenotyping, integrating advanced imaging with molecular biomarkers, and conducting robust trials to evaluate antifibrotic therapies' efficacy in reducing AF burden and related complications.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.)
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.)
| | - Panagiotis Korantzopoulos
- First Department of Cardiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
3
|
Chaudhary KW, Clancy CE, Yang P, Pierson JB, Goldin AL, Koerner JE, Wisialowski TA, Valentin J, Imredy JP, Lagrutta A, Authier S, Kleiman R, Sager PT, Hoffmann P, Pugsley MK. An overview of drug-induced sodium channel blockade and changes in cardiac conduction: Implications for drug safety. Clin Transl Sci 2024; 17:e70098. [PMID: 39660576 PMCID: PMC11632537 DOI: 10.1111/cts.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
The human voltage-gated sodium channel Nav1.5 (hNav1.5/SCN5A) plays a critical role in the initiation and propagation of action potentials in cardiac myocytes, and its modulation by various drugs has significant implications for cardiac safety. Drug-dependent block of Nav1.5 current (INa) can lead to significant alterations in cardiac electrophysiology, potentially resulting in conduction slowing and an increased risk of proarrhythmic events. This review aims to provide a comprehensive overview of the mechanisms by which various pharmacological agents interact with Nav1.5, focusing on the molecular determinants of drug binding and the resultant electrophysiological effects. We discuss the structural features of Nav1.5 that influence drug affinity and specificity. Special attention is given to the concept of state-dependent block, where drug binding is influenced by the conformational state of the channel, and its relevance to therapeutic efficacy and safety. The review also examines the clinical implications of INa block, highlighting case studies of drugs that have been associated with adverse cardiac events, and how the Vaughan-Williams Classification system has been employed to qualify "unsafe" sodium channel block. Furthermore, we explore the methodologies currently used to assess INa block in nonclinical and clinical settings, with the hope of providing a weight of evidence approach including in silico modeling, in vitro electrophysiological assays and in vivo cardiac safety studies for mitigating proarrhythmic risk early in drug discovery. This review underscores the importance of understanding Nav1.5 pharmacology in the context of drug development and cardiac risk assessment.
Collapse
Affiliation(s)
| | - Colleen E. Clancy
- Department of Physiology and Membrane BiologyUniversity of California DavisDavisCaliforniaUSA
| | - Pei‐Chi Yang
- Department of Physiology and Membrane BiologyUniversity of California DavisDavisCaliforniaUSA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sakata K, Bradley RP, Prakosa A, Yamamoto CAP, Ali SY, Loeffler S, Tice BM, Boyle PM, Kholmovski EG, Yadav R, Sinha SK, Marine JE, Calkins H, Spragg DD, Trayanova NA. Assessing the arrhythmogenic propensity of fibrotic substrate using digital twins to inform a mechanisms-based atrial fibrillation ablation strategy. NATURE CARDIOVASCULAR RESEARCH 2024; 3:857-868. [PMID: 39157719 PMCID: PMC11329066 DOI: 10.1038/s44161-024-00489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/15/2024] [Indexed: 08/20/2024]
Abstract
Atrial fibrillation (AF), the most common heart rhythm disorder, may cause stroke and heart failure. For patients with persistent AF with fibrosis proliferation, the standard AF treatment-pulmonary vein isolation-has poor outcomes, necessitating redo procedures, owing to insufficient understanding of what constitutes good targets in fibrotic substrates. Here we present a prospective clinical and personalized digital twin study that characterizes the arrhythmogenic properties of persistent AF substrates and uncovers locations possessing rotor-attracting capabilities. Among these, a portion needs to be ablated to render the substrate not inducible for rotors, but the rest (37%) lose rotor-attracting capabilities when another location is ablated. Leveraging digital twin mechanistic insights, we suggest ablation targets that eliminate arrhythmia propensity with minimum lesions while also minimizing the risk of iatrogenic tachycardia and AF recurrence. Our findings provide further evidence regarding the appropriate substrate ablation targets in persistent AF, opening the door for effective strategies to mitigate patients' AF burden.
Collapse
Affiliation(s)
- Kensuke Sakata
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan P. Bradley
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
- Research Computing, Lehigh University, Bethlehem, PA, USA
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | | | - Syed Yusuf Ali
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shane Loeffler
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Brock M. Tice
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M. Boyle
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eugene G. Kholmovski
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ritu Yadav
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunil Kumar Sinha
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph E. Marine
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D. Spragg
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Sridhar S, Clayton RH. Fibroblast mediated dynamics in diffusively uncoupled myocytes: a simulation study using 2-cell motifs. Sci Rep 2024; 14:4493. [PMID: 38396245 PMCID: PMC10891142 DOI: 10.1038/s41598-024-54564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
In healthy hearts myocytes are typically coupled to nearest neighbours through gap junctions. Under pathological conditions such as fibrosis, or in scar tissue, or across ablation lines myocytes can uncouple from their neighbours. Electrical conduction may still occur via fibroblasts that not only couple proximal myocytes but can also couple otherwise unconnected regions. We hypothesise that such coupling can alter conduction between myocytes via introduction of delays or by initiation of premature stimuli that can potentially result in reentry or conduction blocks. To test this hypothesis we have developed several 2-cell motifs and investigated the effect of fibroblast mediated electrical coupling between uncoupled myocytes. We have identified various regimes of myocyte behaviour that depend on the strength of gap-junctional conductance, connection topology, and parameters of the myocyte and fibroblast models. These motifs are useful in developing a mechanistic understanding of long-distance coupling on myocyte dynamics and enable the characterisation of interaction between different features such as myocyte and fibroblast properties, coupling strengths and pacing period. They are computationally inexpensive and allow for incorporation of spatial effects such as conduction velocity. They provide a framework for constructing scar tissue boundaries and enable linking of cellular level interactions with scar induced arrhythmia.
Collapse
Affiliation(s)
- S Sridhar
- Department of Computer Science, University of Sheffield, Sheffield, UK.
| | - Richard H Clayton
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Tsuji Y, Ogata T, Mochizuki K, Tamura S, Morishita Y, Takamatsu T, Matoba S, Tanaka H. Myofibroblasts impair myocardial impulse propagation by heterocellular connexin43 gap-junctional coupling through micropores. Front Physiol 2024; 15:1352911. [PMID: 38465264 PMCID: PMC10920281 DOI: 10.3389/fphys.2024.1352911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Aim: Composite population of myofibroblasts (MFs) within myocardial tissue is known to alter impulse propagation, leading to arrhythmias. However, it remains unclear whether and how MFs alter their propagation patterns when contacting cardiomyocytes (CMs) without complex structural insertions in the myocardium. We attempted to unveil the effects of the one-sided, heterocellular CM-MF connection on the impulse propagation of CM monolayers without the spatial insertion of MFs as an electrical or mechanical obstacle. Methods and results: We evaluated fluo8-based spatiotemporal patterns in impulse propagation of neonatal rat CM monolayers cultured on the microporous membrane having 8-μm diameter pores with co-culture of MFs or CMs on the reverse membrane side (CM-MF model or CM-CM model, respectively). During consecutive pacing at 1 or 2 Hz, the CM monolayers exhibited forward impulse propagation from the pacing site with a slower conduction velocity (θ) and a larger coefficient of directional θ variation in the CM-MF model than that in the CM-CM model in a frequency-dependent manner (2 Hz >1 Hz). The localized placement of an MF cluster on the reverse side resulted in an abrupt segmental depression of the impulse propagation of the upper CM layer, causing a spatiotemporally non-uniform pattern. Dye transfer of the calcein loaded in the upper CM layer to the lower MF layer was attenuated by the gap-junction inhibitor heptanol. Immunocytochemistry identified definitive connexin 43 (Cx43) between the CMs and MFs in the membrane pores. MF-selective Cx43 knockdown in the MF layer improved both the velocity and uniformity of propagation in the CM monolayer. Conclusion: Heterocellular Cx43 gap junction coupling of CMs with MFs alters the spatiotemporal patterns of myocardial impulse propagation, even in the absence of spatially interjacent and mechanosensitive modulations by MFs. Moreover, MFs can promote pro-arrhythmogenic impulse propagation when in face-to-face contact with the myocardium that arises in the healing infarct border zone.
Collapse
Affiliation(s)
- Yumika Tsuji
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoko Tamura
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuma Morishita
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation and, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
8
|
Billur D, Olgar Y, Durak A, Yozgat AH, Unay S, Tuncay E, Turan B. An increase in intercellular crosstalk and electrotonic coupling between cardiomyocytes and nonmyocytes reshapes the electrical conduction in the metabolic heart characterized by short QT intervals in ECGs. Cell Biochem Funct 2023; 41:1526-1542. [PMID: 38014767 DOI: 10.1002/cbf.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Cardiac conduction abnormalities are disorders in metabolic syndrome (MetS), however, their mechanisms are unknown. Although ventricular arrhythmia reflects the changes in QT-interval of electrocardiograms associated with the changes in cardiomyocyte action potential durations (APDs), recent studies emphasize role of intercellular crosstalk between cardiomyocytes and nonmyocytes via passive (electrotonic)-conduction. Therefore, considering the possible increase in intercellular interactions of nonmyocytes with cardiomyocytes, we hypothesized an early-cardiac-remodeling characterized by short QT-interval via contributions and modulations of changes by nonmyocytes to the ventricular APs in an early-stage MetS hearts. Following the feeding of 8-week-old rats with a high-sucrose diet (32%; MetS rats) and validation of insulin resistance, there was a significant increase in heart rate and changes in the electrical characteristics of the hearts, especially a shortening in action potential (AP) duration of the papillary muscles. The patch-clamp analysis of ventricular cardiomyocytes showed an increase in the Na+ -channel currents while there were decreases in l-type Ca2+ -channel (LTCC) currents with unchanged K+ -channel currents. There was an increase in the phosphorylated form of connexin 43 (pCx43), mostly with lateral localization on sarcolemma, while its unphosphorylated form (Cx43) exhibited a high degree of localization within intercalated discs. A high-level positively-stained α-SMA and CD68 cells were prominently localized and distributed in interfibrillar spaces of the heart, implying the possible contributions of myofibroblasts and macrophages to both shortened APDs and abnormal electrical conduction in MetS hearts. Our data propose a previously unrecognized pathway for SQT induction in the heart. This pathway includes not only the contribution of short ventricular-APDs via ionic mechanisms but also increasing contributions of the electrotonic-cardiomyocyte depolarization, spontaneous electrical activity-associated fast heterogeneous impulse conduction in the heart via increased interactions and relocations between cardiomyocytes and nonmyocytes, which may be an explanation for the development of an SQT in early-cardiac-remodeling.
Collapse
Affiliation(s)
- Deniz Billur
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Yusuf Olgar
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aysegul Durak
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ayse Hande Yozgat
- Departments of Histology-Embryology, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Simge Unay
- Departments of Biophysics, Lokman Hekim University Faculty of Medicine, Ankara, Türkiye
| | - Erkan Tuncay
- Departments of Biophysics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Belma Turan
- Departments of Biophysics, Lokman Hekim University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
9
|
Song E. Impact of noise on the instability of spiral waves in stochastic 2D mathematical models of human atrial fibrillation. J Biol Phys 2023; 49:521-533. [PMID: 37792115 PMCID: PMC10651617 DOI: 10.1007/s10867-023-09644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023] Open
Abstract
Sustained spiral waves, also known as rotors, are pivotal mechanisms in persistent atrial fibrillation (AF). Stochasticity is inevitable in nonlinear biological systems such as the heart; however, it is unclear how noise affects the instability of spiral waves in human AF. This study presents a stochastic two-dimensional mathematical model of human AF and explores how Gaussian white noise affects the instability of spiral waves. In homogeneous tissue models, Gaussian white noise may lead to spiral-wave meandering and wavefront break-up. As the noise intensity increases, the spatial dispersion of phase singularity (PS) points increases. This finding indicates the potential AF-protective effects of cardiac system stochasticity by destabilizing the rotors. By contrast, Gaussian white noise is unlikely to affect the spiral-wave instability in the presence of localized scar or fibrosis regions. The PS points are located at the boundary or inside the scar/fibrosis regions. Localized scar or fibrosis may play a pivotal role in stabilizing spiral waves regardless of the presence of noise. This study suggests that fibrosis and scars are essential for stabilizing the rotors in stochastic mathematical models of AF. Further patient-derived realistic modeling studies are required to confirm the role of scar/fibrosis in AF pathophysiology.
Collapse
Affiliation(s)
- Euijun Song
- Yonsei University College of Medicine, Seoul, Republic of Korea.
- , Gyeonggi, Republic of Korea.
| |
Collapse
|
10
|
Winters J, Isaacs A, Zeemering S, Kawczynski M, Maesen B, Maessen J, Bidar E, Boukens B, Hermans B, van Hunnik A, Casadei B, Fabritz L, Chua W, Sommerfeld L, Guasch E, Mont L, Batlle M, Hatem S, Kirchhof P, Wakili R, Sinner M, Stoll M, Goette A, Verheule S, Schotten U. Heart Failure, Female Sex, and Atrial Fibrillation Are the Main Drivers of Human Atrial Cardiomyopathy: Results From the CATCH ME Consortium. J Am Heart Assoc 2023; 12:e031220. [PMID: 37982389 PMCID: PMC10727294 DOI: 10.1161/jaha.123.031220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Atrial cardiomyopathy (atCM) is an emerging prognostic factor in cardiovascular disease. Fibrotic remodeling, cardiomyocyte hypertrophy, and capillary density are hallmarks of atCM. The contribution of etiological factors and atrial fibrillation (AF) to the development of differential atCM phenotypes has not been quantified. This study aimed to evaluate the association between histological features of atCM and the clinical phenotype. METHODS AND RESULTS We examined left atrial (LA, n=95) and right atrial (RA, n=76) appendages from a European cohort of patients undergoing cardiac surgery. Quantification of histological atCM features was performed following wheat germ agglutinin/CD31/vimentin staining. The contributions of AF, heart failure, sex, and age to histological characteristics were determined with multiple linear regression models. Persistent AF was associated with increased endomysial fibrosis (LA: +1.13±0.47 μm, P=0.038; RA: +0.94±0.38 μm, P=0.041), whereas total extracellular matrix content was not. Men had larger cardiomyocytes (LA: +1.92±0.72 μm, P<0.001), while women had more endomysial fibrosis (LA: +0.99±0.56 μm, P=0.003). Patients with heart failure showed more endomysial fibrosis (LA: +1.85±0.48 μm, P<0.001) and extracellular matrix content (LA: +3.07±1.29%, P=0.016), and a higher capillary density (LA: +0.13±0.06, P=0.007) and size (LA: +0.46±0.22 μm, P=0.044). Fuzzy k-means clustering of histological features identified 2 subtypes of atCM: 1 characterized by enhanced endomysial fibrosis (LA: +3.17 μm, P<0.001; RA: +2.86 μm, P<0.001), extracellular matrix content (LA: +3.53%, P<0.001; RA: +6.40%, P<0.001) and fibroblast density (LA: +4.38%, P<0.001), and 1 characterized by cardiomyocyte hypertrophy (LA: +1.16 μm, P=0.008; RA: +2.58 μm, P<0.001). Patients with fibrotic atCM were more frequently female (LA: odds ratio [OR], 1.33, P=0.002; RA: OR, 1.54, P=0.004), with persistent AF (LA: OR, 1.22, P=0.036) or heart failure (LA: OR, 1.62, P<0.001). Hypertrophic features were more common in men (LA: OR=1.33, P=0.002; RA: OR, 1.54, P=0.004). CONCLUSIONS Fibrotic atCM is associated with female sex, persistent AF, and heart failure, while hypertrophic features are more common in men.
Collapse
Affiliation(s)
- Joris Winters
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Maastricht Centre for Systems BiologyUniversity MaastrichtMaastrichtThe Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Michal Kawczynski
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Bart Maesen
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Jos Maessen
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Elham Bidar
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Bas Boukens
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Ben Hermans
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Barbara Casadei
- Division of Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUnited Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Center of Cardiovascular ScienceUKE HamburgHamburgGermany
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Winnie Chua
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
| | - Laura Sommerfeld
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Center of Cardiovascular ScienceUKE HamburgHamburgGermany
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Eduard Guasch
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS)BarcelonaSpain
| | - Luis Mont
- Clinic Barcelona, Universitat de BarcelonaBarcelonaSpain
| | - Montserrat Batlle
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Cardiovascular (CIBERCV)MadridSpain
| | | | - Paulus Kirchhof
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Reza Wakili
- Department of Medicine and CardiologyGoethe UniversityFrankfurtGermany
| | - Mortiz Sinner
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
- Department of CardiologyUniversity Hospital of MunichMunichGermany
| | - Monica Stoll
- Maastricht Centre for Systems BiologyUniversity MaastrichtMaastrichtThe Netherlands
- Department of Biochemistry, Genetic Epidemiology and Statistical GeneticsUniversity MaastrichtMaastrichtThe Netherlands
- Department of Genetic Epidemiology, Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Andreas Goette
- Department of Cardiology and Intensive Care MedicineSt. Vincenz Hospital PaderbornPaderbornGermany
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Department of CardiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
11
|
Anagnostopoulos I, Kousta M, Kossyvakis C, Paraskevaidis NT, Schizas N, Vrachatis D, Deftereos S, Giannopoulos G. Atrial strain and occult atrial fibrillation in cryptogenic stroke patients: a systematic review and meta-analysis. Clin Res Cardiol 2023; 112:1600-1609. [PMID: 37154833 DOI: 10.1007/s00392-023-02218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cryptogenic stroke (CS) remains a significant cause of morbidity. Failure to identify the underlying pathology increases the rate of recurrence. Atrial fibrillation (AF) seems to be responsible for a substantial proportion of CS. Thus, there is an unmet need to identify and properly treat those with silent AF. PURPOSE To investigate the association between left atrial strain and newly diagnosed AF in CS patients. OBJECTIVES We searched major electronic databases for articles assessing the relationship between either peak left atrial longitudinal (PALS) or peak contractile (PACS) strain-quantified using speckle tracking echocardiography-and the incidence of occult AF during the diagnostic work-up of CS patients. RESULTS Eleven studies (two thousand and eighty-one patients) were analyzed. Incidence of occult AF was 19%. Both PALS and PACS were significantly lower in patients with newly diagnosed AF (MD - 8.6%, 95%CI - 10.7 to - 6.4, I2 86.4% and MD - 5.5, 95%CI - 6.8 to - 4.2, I2 80.8%). According to the diagnostic accuracy meta-analysis, PALS < 20% present 71% (95%CI 47-87%) sensitivity and 71% (95%CI 60-81%) specificity for the diagnosis of occult AF, assuming a prevalence of 20%. The corresponding values for PACS < 11% are 83% (95%CI 57-94%) and 78% (95%CI 56-91%). CONCLUSION Both PALS and PACS are significantly lower in patients with CS and silent AF. It seems that the cut-off values mentioned above could help physicians in identifying patients who may benefit more from prolonged rhythm monitoring. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Ioannis Anagnostopoulos
- Cardiology Department, Athens General Hospital "G. Gennimatas", 154 Mesogion Avenue, 11527, Athens, Greece.
| | - Maria Kousta
- Cardiology Department, Athens General Hospital "G. Gennimatas", 154 Mesogion Avenue, 11527, Athens, Greece
| | - Charalampos Kossyvakis
- Cardiology Department, Athens General Hospital "G. Gennimatas", 154 Mesogion Avenue, 11527, Athens, Greece
| | | | - Nikolaos Schizas
- Department of Cardiothoracic Surgery, Hygeia Hospital, Athens, Greece
| | - Dimitrios Vrachatis
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Deftereos
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Giannopoulos
- 3rd Department of Cardiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Dye C, Dela Cruz M, Larsen T, Nair G, Marinescu K, Suboc T, Engelstein E, Marsidi J, Patel P, Sharma P, Volgman AS. A review of the impact, pathophysiology, and management of atrial fibrillation in patients with heart failure with preserved ejection fraction. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 33:100309. [PMID: 38510554 PMCID: PMC10946048 DOI: 10.1016/j.ahjo.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 03/22/2024]
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) have increased mortality and increased risk of stroke. Due to the heterogeneous nature of both disease processes, it is difficult to ascertain whether the diagnosis and progression of AF is the cause of deterioration or if it is a symptom of worsening heart failure. This presents physicians with a clinical conundrum of whether optimizing their heart failure will decrease the overall AF burden or if restoration of sinus rhythm is necessary to optimize patients with HFpEF. In this paper, we will review the impact of AF in patients with HFpEF, the pathophysiology and heterogeneity of HFpEF and AF, and the management of these patients. As HFpEF and AF become more prevalent, managing these disease processes needs standardization to improve outcomes. Further research is needed to understand the complex interplay between AF and HFpEF to help determine the best management strategy.
Collapse
Affiliation(s)
- Cicely Dye
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Advocate Heart Institute, Advocate Christ Medical Center, Chicago, IL 60453, USA
| | - Timothy Larsen
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gatha Nair
- Division of Cardiology, University of Washington, Seattle, WA 98105, USA
| | - Karolina Marinescu
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Tisha Suboc
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Erica Engelstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jennifer Marsidi
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Priya Patel
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Parikshit Sharma
- Division of Cardiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
13
|
Molnár AÁ, Sánta A, Pásztor DT, Merkely B. Atrial Cardiomyopathy in Valvular Heart Disease: From Molecular Biology to Clinical Perspectives. Cells 2023; 12:1796. [PMID: 37443830 PMCID: PMC10340254 DOI: 10.3390/cells12131796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
This review discusses the evolving topic of atrial cardiomyopathy concerning valvular heart disease. The pathogenesis of atrial cardiomyopathy involves multiple factors, such as valvular disease leading to atrial structural and functional remodeling due to pressure and volume overload. Atrial enlargement and dysfunction can trigger atrial tachyarrhythmia. The complex interaction between valvular disease and atrial cardiomyopathy creates a vicious cycle of aggravating atrial enlargement, dysfunction, and valvular disease severity. Furthermore, atrial remodeling and arrhythmia can predispose to atrial thrombus formation and stroke. The underlying pathomechanism of atrial myopathy involves molecular, cellular, and subcellular alterations resulting in chronic inflammation, atrial fibrosis, and electrophysiological changes. Atrial dysfunction has emerged as an essential determinant of outcomes in valvular disease and heart failure. Despite its predictive value, the detection of atrial fibrosis and dysfunction is challenging and is not included in the clinical routine. Transthoracic echocardiography and cardiac magnetic resonance imaging are the main diagnostic tools for atrial cardiomyopathy. Recently published data have revealed that both left atrial volumes and functional parameters are independent predictors of cardiovascular events in valvular disease. The integration of atrial function assessment in clinical practice might help in early cardiovascular risk estimation, promoting early therapeutic intervention in valvular disease.
Collapse
|
14
|
Hu D, Barajas-Martinez H, Zhang ZH, Duan HY, Zhao QY, Bao MW, Du YM, Burashnikov A, Monasky MM, Pappone C, Huang CX, Antzelevitch C, Jiang H. Advances in basic and translational research in atrial fibrillation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220174. [PMID: 37122214 PMCID: PMC10150218 DOI: 10.1098/rstb.2022.0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hong-Yi Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Ming-Wei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Alexander Burashnikov
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan 20097, Italy
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| |
Collapse
|
15
|
Sakata K, Tanaka T, Yamashita S, Kobayashi M, Ito M, Yamashiro K. The spatiotemporal electrogram dispersion ablation targeting rotors is more effective for elderly patients than non-elderly population. J Arrhythm 2023; 39:315-326. [PMID: 37324760 PMCID: PMC10264740 DOI: 10.1002/joa3.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background Modulating atrial fibrillation (AF) drivers has been proposed as one of the effective ablation strategies for non-paroxysmal AF (non-PAF). However, the optimal non-PAF ablation strategy is still under debate because the exact mechanisms of AF persistence including focal activity and/or rotational activity, are not well-understood. Recently, spatiotemporal electrogram dispersion (STED) assumed to indicate rotors in the form of rotational activity is proposed as an effective target for non-PAF ablation. We aimed to clarify the effectiveness of STED ablation for modulating AF drivers. Methods STED ablation plus pulmonary vein isolation was applied in 161 consecutive non-PAF patients not undergoing previous ablation. STED areas within the entire left and right atria were identified and ablated during AF. After the procedures, the STED ablation's acute and long-term outcomes were investigated. Results (1) Despite a more effective acute outcome of the STED ablation for both AF termination and non-inducibility of atrial tachyarrhythmias (ATAs), Kaplan-Meier curves showed that the 24-month freedom ratio from ATAs was 49%, which resulted from the higher recurrence ratio of atrial tachycardia (AT) rather than AF. (2) A multivariate analysis showed that the determinant of ATA recurrences was only a non-elderly age, not long-standing persistent AF, and an enlarged left atrium, which were conventionally considered as key factors. Conclusions STED ablation targeting rotors was effective in elderly non-PAF patients. Therefore, the main mechanism of AF persistency and the component of the fibrillatory conduction might vary between elders and non-elders. However, we should be careful about post-ablation ATs following substrate modification.
Collapse
Affiliation(s)
- Kensuke Sakata
- Alliance for Cardiovascular Diagnostic and Treatment InnovationJohns Hopkin UniversityBaltimoreMarylandUSA
| | - Tomomi Tanaka
- Heart Rhythm CenterTakatsuki General HospitalTakatsukiJapan
| | - Soichiro Yamashita
- Department of CardiologyHyogo Prefectural Awaji Medical CenterSumotoJapan
| | - Masanori Kobayashi
- Department of Cardiovascular MedicineMatsumoto Kyoritsu HospitalMatsumotoJapan
| | - Mitsuaki Ito
- Department of Cardiovascular MedicineHyogo Brain and Heart CenterHimejiJapan
| | | |
Collapse
|
16
|
Kanuri SH, Jayesh Sirrkay P, Ulucay AS. COVID-19 HEART unveiling as atrial fibrillation: pathophysiology, management and future directions for research. Egypt Heart J 2023; 75:36. [PMID: 37120772 PMCID: PMC10149046 DOI: 10.1186/s43044-023-00359-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND COVID-19 infections are known to cause numerous systemic complications including cardiovascular disorders. In this regard, clinicians recently noticed that patients recovering from COVID-19 infections presented with diverse set of cardiovascular disorders in addition to those admitted to ICU (intensive care unit). COVID-19 heart has multifaceted presentation ranging from dysrhythmias, myocarditis, stroke, coronary artery disease, thromboembolism to heart failure. Atrial fibrillation is the most common cardiac arrhythmia among COVID-19 patients. In the background section, we briefly discussed epidemiology and spectrum of cardiac arrhythmias in COVID-19 patients. MAIN BODY In this state-of-the-art review we present here, we present the information regarding COVID-19-induced A-fib in sections, namely mechanism of action, clinical presentation, diagnosis and treatment. Unfortunately, its occurrence significantly increases the mortality and morbidity with a potential risk of complications such as cardiac arrest and sudden death. We included separate sections on complications including thromboembolism and ventricular arrhythmias. Since its mechanism is currently a gray area, we included a separate section on basic science research studies that are warranted in the future to comprehend its underlying pathogenic mechanisms. CONCLUSIONS Taken together, this review builds upon the current literature of COVID-19-induced A-fib, including pathophysiology, clinical presentation, treatment and complications. Furthermore, it provides recommendations for future research moving forward that can open avenues for developing novel remedies that can prevent as well as hasten clinical recovery of atrial fibrillation in COVID-19 patients.
Collapse
|
17
|
Sánchez de la Nava AM, Gómez-Cid L, Domínguez-Sobrino A, Fernández-Avilés F, Berenfeld O, Atienza F. Artificial intelligence analysis of the impact of fibrosis in arrhythmogenesis and drug response. Front Physiol 2022; 13:1025430. [PMID: 36311248 PMCID: PMC9596790 DOI: 10.3389/fphys.2022.1025430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023] Open
Abstract
Background: Cardiac fibrosis has been identified as a major factor in conduction alterations leading to atrial arrhythmias and modification of drug treatment response. Objective: To perform an in silico proof-of-concept study of Artificial Intelligence (AI) ability to identify susceptibility for conduction blocks in simulations on a population of models with diffused fibrotic atrial tissue and anti-arrhythmic drugs. Methods: Activity in 2D cardiac tissue planes were simulated on a population of variable electrophysiological and anatomical profiles using the Koivumaki model for the atrial cardiomyocytes and the Maleckar model for the diffused fibroblasts (0%, 5% and 10% fibrosis area). Tissue sheets were of 2 cm side and the effect of amiodarone, dofetilide and sotalol was simulated to assess the conduction of the electrical impulse across the planes. Four different AI algorithms (Quadratic Support Vector Machine, QSVM, Cubic Support Vector Machine, CSVM, decision trees, DT, and K-Nearest Neighbors, KNN) were evaluated in predicting conduction of a stimulated electrical impulse. Results: Overall, fibrosis implementation lowered conduction velocity (CV) for the conducting profiles (0% fibrosis: 67.52 ± 7.3 cm/s; 5%: 58.81 ± 14.04 cm/s; 10%: 57.56 ± 14.78 cm/s; p < 0.001) in combination with a reduced 90% action potential duration (0% fibrosis: 187.77 ± 37.62 ms; 5%: 93.29 ± 82.69 ms; 10%: 106.37 ± 85.15 ms; p < 0.001) and peak membrane potential (0% fibrosis: 89.16 ± 16.01 mV; 5%: 70.06 ± 17.08 mV; 10%: 82.21 ± 19.90 mV; p < 0.001). When the antiarrhythmic drugs were present, a total block was observed in most of the profiles. In those profiles in which electrical conduction was preserved, a decrease in CV was observed when simulations were performed in the 0% fibrosis tissue patch (Amiodarone ΔCV: -3.59 ± 1.52 cm/s; Dofetilide ΔCV: -13.43 ± 4.07 cm/s; Sotalol ΔCV: -0.023 ± 0.24 cm/s). This effect was preserved for amiodarone in the 5% fibrosis patch (Amiodarone ΔCV: -4.96 ± 2.15 cm/s; Dofetilide ΔCV: 0.14 ± 1.87 cm/s; Sotalol ΔCV: 0.30 ± 4.69 cm/s). 10% fibrosis simulations showed that part of the profiles increased CV while others showed a decrease in this variable (Amiodarone ΔCV: 0.62 ± 9.56 cm/s; Dofetilide ΔCV: 0.05 ± 1.16 cm/s; Sotalol ΔCV: 0.22 ± 1.39 cm/s). Finally, when the AI algorithms were tested for predicting conduction on input of variables from the population of modelled, Cubic SVM showed the best performance with AUC = 0.95. Conclusion: In silico proof-of-concept study demonstrates that fibrosis can alter the expected behavior of antiarrhythmic drugs in a minority of atrial population models and AI can assist in revealing the profiles that will respond differently.
Collapse
Affiliation(s)
- Ana María Sánchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alonso Domínguez-Sobrino
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain,Universidad Complutense de Madrid, Madrid, Spain,*Correspondence: Felipe Atienza,
| |
Collapse
|
18
|
Brocklehurst P, Zhang H, Ye J. Effects of fibroblast on electromechanical dynamics of human atrial tissue—insights from a 2D discrete element model. Front Physiol 2022; 13:938497. [PMID: 35957981 PMCID: PMC9360525 DOI: 10.3389/fphys.2022.938497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Roughly 75% of normal myocardial tissue volume is comprised of myocytes, however, fibroblasts by number are the most predominant cells in cardiac tissue. Previous studies have shown distinctive differences in cellular electrophysiology and excitability between myocytes and fibroblasts. However, it is still unclear how the electrical coupling between the two and the increased population of fibroblasts affects the electromechanical dynamics of cardiac tissue. This paper focuses on investigating effects of fibroblast-myocyte electrical coupling (FMEC) and fibroblast population on atrial electrical conduction and mechanical contractility by using a two-dimensional Discrete Element Method (DEM) model of cardiac tissue that is different to finite element method (FEM). In the model, the electro-mechanics of atrial cells are modelled by a biophysically detailed model for atrial electrical action potentials and myofilament kinetics, and the atrial fibroblasts are modelled by an active model that considers four active membrane ionic channel currents. Our simulation results show that the FMEC impairs myocytes’ electrical action potential and mechanical contractibility, manifested by reduced upstroke velocity, amplitude and duration of action potentials, as well as cell length shortening. At the tissue level, the FMEC slows down the conduction of excitation waves, and reduces strain of the tissue produced during a contraction course. These findings provide new insights into understandings of how FMEC impairs cardiac electrical and mechanical dynamics of the heart.
Collapse
Affiliation(s)
- Paul Brocklehurst
- Engineering Department, Lancaster University, Lancaster, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- *Correspondence: Henggui Zhang, ; Jianqiao Ye,
| | - Jianqiao Ye
- Engineering Department, Lancaster University, Lancaster, United Kingdom
- *Correspondence: Henggui Zhang, ; Jianqiao Ye,
| |
Collapse
|
19
|
Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:889706. [PMID: 35958428 PMCID: PMC9357935 DOI: 10.3389/fcvm.2022.889706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
With the aging population and the increasing incidence of basic illnesses such as hypertension and diabetes (DM), the incidence of atrial fibrillation (AF) has increased significantly. AF is the most common arrhythmia in clinical practice, which can cause heart failure (HF) and ischemic stroke (IS), increasing disability and mortality. Current studies point out that myocardial fibrosis (MF) is one of the most critical substrates for the occurrence and maintenance of AF. Although myocardial biopsy is the gold standard for evaluating MF, it is rarely used in clinical practice because it is an invasive procedure. In addition, serological indicators and imaging methods have also been used to evaluate MF. Nevertheless, the accuracy of serological markers in evaluating MF is controversial. This review focuses on the pathogenesis of MF, serological evaluation, imaging evaluation, and anti-fibrosis treatment to discuss the existing problems and provide new ideas for MF and AF evaluation and treatment.
Collapse
Affiliation(s)
- Guangling Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Demei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jingjing Han
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Xueya Guo,
| |
Collapse
|
20
|
Scarano Pereira JP, Owen E, Martinino A, Akmal K, Abouelazayem M, Graham Y, Weiner S, Sakran N, Dekker LR, Parmar C, Pouwels S. Epicardial adipose tissue, obesity and the occurrence of atrial fibrillation: an overview of pathophysiology and treatment methods. Expert Rev Cardiovasc Ther 2022; 20:307-322. [PMID: 35443854 DOI: 10.1080/14779072.2022.2067144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Obesity is a chronic disease, which has significant health consequences and is a staggering burden to health care systems. Obesity can have harmful effects on the cardiovascular system, including heart failure, hypertension, coronary heart disease, and atrial fibrillation (AF). One of the possible substrates might be epicardial adipose tissue (EAT), which can be the link between AF and obesity. EAT is a fat deposit located between the myocardium and the visceral pericardium. Numerous studies have demonstrated that EAT plays a pivotal role in this relationship regarding atrial fibrillation. AREAS COVERED This review will focus on the role of obesity and the occurrence of atrial fibrillation (AF) and examine the connection between these and epicardial adipose tissue (EAT). The first part of this review will explain the pathophysiology of EAT and its association with the occurrence of AF. Secondly, we will review bariatric and metabolic surgery and its effects on EAT and AF. EXPERT COMMENTARY In this review, the epidemiology, pathophysiology, and treatments methods of AF are explained. Secondly the effects on EAT were elucidated. Due to the complex pathophysiological link between EAT, AF, and obesity, it is still uncertain which treatment strategy is superior.
Collapse
Affiliation(s)
| | - Eloise Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Kiran Akmal
- Faculty of Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Mohamed Abouelazayem
- Department of Surgery, Royal Free London Hospitals NHS Foundation, London, United Kingdom
| | - Yitka Graham
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom.,Facultad de Psucologia, Universidad Anahuac Mexico, Mexico City, Mexico
| | - Sylvia Weiner
- Department of Bariatric and Metabolic Surgery, Krankenhaus Nordwest, Frankfurt am Main, Germany
| | - Nasser Sakran
- Department of Surgery, Holy Family Hospital, Nazareth, Israel.,Azrieli, Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lukas R Dekker
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Chetan Parmar
- Department of Surgery, Whittington Health NHS Trust, London, United Kingdom
| | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | | |
Collapse
|
21
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
22
|
Palyam V, Azam AT, Odeyinka O, Alhashimi R, Thoota S, Ashok T, Sange I. Hypertrophic Cardiomyopathy and Atrial Fibrillation: A Review. Cureus 2022; 14:e21101. [PMID: 35165560 PMCID: PMC8830388 DOI: 10.7759/cureus.21101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiological condition that exhibits various clinical symptoms. The leading cause of atrial fibrillation (AF) in patients with HCM is advanced diastolic dysfunction and left atrial dilatation and remodeling. In addition to the gradual symptomatic and functional decline caused by AF, there is an increased risk of thromboembolic disease and mortality, especially if there is a rapid ventricular rate or obstruction of the left ventricular outflow tract. The mainstay of management of AF in HCM is a combination of non-pharmacological lifestyle and risk factor modification, long-term anticoagulation, and rhythm control with anti-arrhythmic medications, septal ablation, and radiofrequency catheter ablation. This article has examined the development of AF in HCM, its clinical symptomatology, and its impact, highlighting its management and the mortality associated with AF in HCM.
Collapse
|
23
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
24
|
Verheule S, Schotten U. Electrophysiological Consequences of Cardiac Fibrosis. Cells 2021; 10:cells10113220. [PMID: 34831442 PMCID: PMC8625398 DOI: 10.3390/cells10113220] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.
Collapse
|
25
|
Hanna B, Akoum N. Assessment of Atrial Fibrosis and Its Implications in Atrial Fibrillation and Stroke. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Palacio LC, Ugarte JP, Saiz J, Tobón C. The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study. Cells 2021; 10:cells10102769. [PMID: 34685750 PMCID: PMC8534881 DOI: 10.3390/cells10102769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF.
Collapse
Affiliation(s)
- Laura C. Palacio
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
| | - Juan P. Ugarte
- Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (CIB), Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Catalina Tobón
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
- Correspondence:
| |
Collapse
|
27
|
Wang K, Li Z, Ma W, Sun Y, Liu X, Qian L, Hong J, Lu D, Zhang J, Xu D. Construction of miRNA-mRNA network reveals crucial miRNAs and genes in acute myocardial infarction. J Biomed Res 2021; 35:425-435. [PMID: 34857679 PMCID: PMC8637659 DOI: 10.7555/jbr.35.20210088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease. This study aimed to identify crucial microRNAs (miRNAs) and mRNAs in AMI by establishing a miRNA-mRNA network. The microarray datasets GSE31568, GSE148153, and GSE66360 were downloaded from the Gene Expression Omnibus (GEO) database. We identified differentially expressed miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) in AMI samples compared with normal control samples. The consistently changing miRNAs in both GSE31568 and GSE148153 datasets were selected as candidate DE-miRNAs. The interactions between the candidate DE-miRNAs and DE-mRNAs were analyzed, and a miRNA-mRNA network and a protein-protein interaction network were constructed, along with functional enrichment and pathway analyses. A total of 209 DE-miRNAs in the GSE31568 dataset, 857 DE-miRNAs in the GSE148153 dataset, and 351 DE-mRNAs in the GSE66360 dataset were identified. Eighteen candidate DE-miRNAs were selected from both the GSE31568 and GSE148153 datasets. Furthermore, miR-646, miR-127-5p, miR-509-5p, miR-509-3-5p, and miR-767-5p were shown to have a higher degree in the miRNA-mRNA network.THBS-1 as well as FOS was a hub gene in the miRNA-mRNA network and the protein-protein interaction (PPI) network, respectively. CDKN1A was important in both miRNA-mRNA network and PPI network. We established a miRNA-mRNA network in AMI and identified five miRNAs and three genes, which might be used as biomarkers and potential therapeutic targets for patients with AMI.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhongming Li
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjie Ma
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Sun
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xianling Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lijun Qian
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Hong
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dasheng Lu
- Department of Cardiology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, China
| | - Jing Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Di Xu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Pashakhanloo F, Panfilov AV. Minimal Functional Clusters Predict the Probability of Reentry in Cardiac Fibrotic Tissue. PHYSICAL REVIEW LETTERS 2021; 127:098101. [PMID: 34506203 DOI: 10.1103/physrevlett.127.098101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis is a well-known arrhythmogenic condition which can lead to sudden cardiac death. Physically, fibrosis can be viewed as a large number of small obstacles in an excitable medium, which may create nonlinear wave turbulence or reentry. The relation between the specific texture of fibrosis and the onset of reentry is of great theoretical and practical importance. Here, we present a conceptual framework which combines functional aspects of propagation manifested as conduction blocks, with reentry wavelength and geometrical clusters of fibrosis. We formulate them into the single concept of minimal functional cluster and through extensive simulations show that it characterizes the path of reexcitation accurately, and importantly its size distribution quantitatively predicts the reentry probability for different fibrosis densities and tissue excitabilities.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
- Ural Federal University, 620002 Ekaterinburg, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, 119146 Moscow, Russia
| |
Collapse
|
29
|
Lillo-Castellano JM, González-Ferrer JJ, Marina-Breysse M, Martínez-Ferrer JB, Pérez-Álvarez L, Alzueta J, Martínez JG, Rodríguez A, Rodríguez-Pérez JC, Anguera I, Viñolas X, García-Alberola A, Quintanilla JG, Alfonso-Almazán JM, García J, Borrego L, Cañadas-Godoy V, Pérez-Castellano N, Pérez-Villacastín J, Jiménez-Díaz J, Jalife J, Filgueiras-Rama D. Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices. Europace 2021; 22:704-715. [PMID: 31840163 PMCID: PMC7203636 DOI: 10.1093/europace/euz331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022] Open
Abstract
Aims Atrial electrical remodelling (AER) is a transitional period associated with the progression and long-term maintenance of atrial fibrillation (AF). We aimed to study the progression of AER in individual patients with implantable devices and AF episodes. Methods and results Observational multicentre study (51 centres) including 4618 patients with implantable cardioverter-defibrillator +/−resynchronization therapy (ICD/CRT-D) and 352 patients (2 centres) with pacemakers (median follow-up: 3.4 years). Atrial activation rate (AAR) was quantified as the frequency of the dominant peak in the signal spectrum of AF episodes with atrial bipolar electrograms. Patients with complete progression of AER, from paroxysmal AF episodes to electrically remodelled persistent AF, were used to depict patient-specific AER slopes. A total of 34 712 AF tracings from 830 patients (87 with pacemakers) were suitable for the study. Complete progression of AER was documented in 216 patients (16 with pacemakers). Patients with persistent AF after completion of AER showed ∼30% faster AAR than patients with paroxysmal AF. The slope of AAR changes during AF progression revealed patient-specific patterns that correlated with the time-to-completion of AER (R2 = 0.85). Pacemaker patients were older than patients with ICD/CRT-Ds (78.3 vs. 67.2 year olds, respectively, P < 0.001) and had a shorter median time-to-completion of AER (24.9 vs. 93.5 days, respectively, P = 0.016). Remote transmissions in patients with ICD/CRT-D devices enabled the estimation of the time-to-completion of AER using the predicted slope of AAR changes from initiation to completion of electrical remodelling (R2 = 0.45). Conclusion The AF progression shows patient-specific patterns of AER, which can be estimated using available remote-monitoring technology.
Collapse
Affiliation(s)
- José María Lillo-Castellano
- Advanced Development in Arrhythmia Mechanisms and Therapy Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - Juan José González-Ferrer
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Manuel Marina-Breysse
- Advanced Development in Arrhythmia Mechanisms and Therapy Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Agencia Española de Protección de la Salud en el Deporte (AEPSAD), Madrid. Spain
| | | | - Luisa Pérez-Álvarez
- Department of Cardiology, Hospital Hospital Universitario de A Coruña, La Coruña, Spain
| | - Javier Alzueta
- Department of Cardiology, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Juan Gabriel Martínez
- Department of Cardiology, Hospital General Universitario de Alicante, ISABIAL-FISABIO, Alicante, Spain
| | - Aníbal Rodríguez
- Department of Cardiology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Ignasi Anguera
- Department of Cardiology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Xavier Viñolas
- Department of Cardiology, Hospital Santa Creu i san Pau, Barcelona, Spain
| | | | - Jorge G Quintanilla
- Advanced Development in Arrhythmia Mechanisms and Therapy Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Manuel Alfonso-Almazán
- Advanced Development in Arrhythmia Mechanisms and Therapy Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier García
- Department of Cardiology, Hospital Universitario de Getafe, Madrid, Spain
| | - Luis Borrego
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain
| | - Victoria Cañadas-Godoy
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Julián Pérez-Villacastín
- Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Javier Jiménez-Díaz
- Department of Cardiology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - José Jalife
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiac Arrhythmia Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Filgueiras-Rama
- Advanced Development in Arrhythmia Mechanisms and Therapy Laboratory, Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC). Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
30
|
Xintarakou A, Tzeis S, Psarras S, Asvestas D, Vardas P. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps. Europace 2021; 22:342-351. [PMID: 31998939 DOI: 10.1093/europace/euaa009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF), the most commonly diagnosed arrhythmia, affects a notable percentage of the population and constitutes a major risk factor for thromboembolic events and other heart-related conditions. Fibrosis plays an important role in the onset and perpetuation of AF through structural and electrical remodelling processes. Multiple molecular pathways are involved in atrial substrate modification and the subsequent maintenance of AF. In this review, we aim to recapitulate underlying molecular pathways leading to atrial fibrosis and to indicate existing gaps in the complex interplay of atrial fibrosis and AF.
Collapse
Affiliation(s)
| | - Stylianos Tzeis
- Cardiology Department, Mitera General Hospital, Hygeia Group, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Dimitrios Asvestas
- Cardiology Department, Mitera General Hospital, Hygeia Group, Athens, Greece
| | - Panos Vardas
- Heart Sector, Hygeia Hospitals Group, 5, Erithrou Stavrou, Marousi, Athens 15123, Greece
| |
Collapse
|
31
|
Szilágyi J, Sághy L. Atrial Remodeling in Atrial Fibrillation. Comorbidities and Markers of Disease Progression Predict Catheter Ablation Outcome. Curr Cardiol Rev 2021; 17:217-229. [PMID: 32693769 PMCID: PMC8226201 DOI: 10.2174/1573403x16666200721153620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation is the most common supraventricular arrhythmia affecting an increasing proportion of the population in which mainstream therapy, i.e. catheter ablation, provides freedom from arrhythmia in only a limited number of patients. Understanding the mechanism is key in order to find more effective therapies and to improve patient selection. In this review, the structural and electrophysiological changes of the atrial musculature that constitute atrial remodeling in atrial fibrillaton and how risk factors and markers of disease progression can predict catheter ablation outcome will be discussed in detail.
Collapse
Affiliation(s)
- Judit Szilágyi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| | - László Sághy
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Boyle PM, Yu J, Klimas A, Williams JC, Trayanova NA, Entcheva E. OptoGap is an optogenetics-enabled assay for quantification of cell-cell coupling in multicellular cardiac tissue. Sci Rep 2021; 11:9310. [PMID: 33927252 PMCID: PMC8085001 DOI: 10.1038/s41598-021-88573-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Intercellular electrical coupling is an essential means of communication between cells. It is important to obtain quantitative knowledge of such coupling between cardiomyocytes and non-excitable cells when, for example, pathological electrical coupling between myofibroblasts and cardiomyocytes yields increased arrhythmia risk or during the integration of donor (e.g., cardiac progenitor) cells with native cardiomyocytes in cell-therapy approaches. Currently, there is no direct method for assessing heterocellular coupling within multicellular tissue. Here we demonstrate experimentally and computationally a new contactless assay for electrical coupling, OptoGap, based on selective illumination of inexcitable cells that express optogenetic actuators and optical sensing of the response of coupled excitable cells (e.g., cardiomyocytes) that are light-insensitive. Cell-cell coupling is quantified by the energy required to elicit an action potential via junctional current from the light-stimulated cell(s). The proposed technique is experimentally validated against the standard indirect approach, GapFRAP, using light-sensitive cardiac fibroblasts and non-transformed cardiomyocytes in a two-dimensional setting. Its potential applicability to the complex three-dimensional setting of the native heart is corroborated by computational modelling and proper calibration. Lastly, the sensitivity of OptoGap to intrinsic cell-scale excitability is robustly characterized via computational analysis.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Jinzhu Yu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Aleksandra Klimas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, George Washington University, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - John C Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, George Washington University, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
33
|
Handa BS, Li X, Baxan N, Roney CH, Shchendrygina A, Mansfield CA, Jabbour RJ, Pitcher DS, Chowdhury RA, Peters NS, Ng FS. Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc Res 2021; 117:1078-1090. [PMID: 32402067 PMCID: PMC7983010 DOI: 10.1093/cvr/cvaa141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. METHODS AND RESULTS Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. CONCLUSION The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.
Collapse
Affiliation(s)
- Balvinder S Handa
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Xinyang Li
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Nicoleta Baxan
- Biological Imaging Centre, Department of Medicine, Imperial College London, London, UK
| | - Caroline H Roney
- Division of Imaging Sciences and Bioengineering, King’s College London, London, UK
| | - Anastasia Shchendrygina
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Catherine A Mansfield
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Richard J Jabbour
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - David S Pitcher
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Rasheda A Chowdhury
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Nicholas S Peters
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| |
Collapse
|
34
|
Development of a drug screening system using three-dimensional cardiac tissues containing multiple cell types. Sci Rep 2021; 11:5654. [PMID: 33707655 PMCID: PMC7952584 DOI: 10.1038/s41598-021-85261-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/28/2021] [Indexed: 01/22/2023] Open
Abstract
We hypothesized that an appropriate ratio of cardiomyocytes, fibroblasts, endothelial cells, and extracellular matrix (ECM) factors would be required for the development of three-dimensional cardiac tissues (3D-CTs) as drug screening systems. To verify this hypothesis, ECM-coated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), ECM-coated cardiac fibroblasts (CFs), and uncoated cardiac endothelial cells (CEs) were mixed in the following ratios: 10:0:0 (10CT), 7:2:1 (7CT), 5:4:1 (5CT), and 2:7:1 (2CT). The expression of cardiac-, fibroblasts-, and endothelial-specific markers was assessed by FACS, qPCR, and immunostaining while that of ECM-, cell adhesion-, and ion channel-related genes was examined by qPCR. Finally, the contractile properties of the tissues were evaluated in the absence or presence of E-4031 and isoproterenol. The expression of ECM- and adhesion-related genes significantly increased, while that of ion channel-related genes significantly decreased with the CF proportion. Notably, 7CT showed the greatest contractility of all 3D-CTs. When exposed to E-4031 (hERG K channel blocker), 7CT and 5CT showed significantly decreased contractility and increased QT prolongation. Moreover, 10CT and 7CT exhibited a stronger response to isoproterenol than did the other 3D-CTs. Finally, 7CT showed the highest drug sensitivity among all 3D-CTs. In conclusion, 3D-CTs with an appropriate amount of fibroblasts/endothelial cells (7CT in this study) are suitable drug screening systems, e.g. for the detection of drug-induced arrhythmia.
Collapse
|
35
|
Marrouche NF, Greene T, Dean JM, Kholmovski EG, Boer LMD, Mansour M, Calkins H, Marchlinski F, Wilber D, Hindricks G, Mahnkopf C, Jais P, Sanders P, Brachmann J, Bax J, Dagher L, Wazni O, Akoum N. Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: The DECAAF II trial: Study design. J Cardiovasc Electrophysiol 2021; 32:916-924. [PMID: 33600025 DOI: 10.1111/jce.14957] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Success rates of catheter ablation in persistent atrial fibrillation (AF) remain suboptimal. A better and more targeted ablation strategy is urgently needed to optimize outcomes of AF treatment. We sought to assess the safety and efficacy of targeting atrial fibrosis during ablation of persistent AF patients in improving procedural outcomes. METHODS The DECAAF II trial (ClinicalTrials. gov identifier number NCT02529319) is a prospective, randomized, multicenter trial of patients with persistent AF. Patients with persistent AF undergoing a first-time ablation procedure were randomized in a 1:1 fashion to receive conventional pulmonary vein isolation (PVI) ablation (Group 1) or PVI + fibrosis-guided ablation (Group 2). Left atrial fibrosis and ablation induced scarring were defined by late gadolinium enhancement magnetic resonance imaging at baseline and at 3-12 months postablation, respectively. The primary endpoint is the recurrence of atrial arrhythmia postablation, including atrial fibrillation, atrial flutter, or atrial tachycardia after the 90-day postablation blanking period. Patients were followed for a period of 12-18 months with a smartphone ECG Device (ECG Check Device, Cardiac Designs Inc.). With an anticipated enrollment of 900 patients, this study has an 80% power to detect a 26% reduction in the hazard ratio of the primary endpoint. RESULTS AND CONCLUSION The DECAAF II trial is the first prospective, randomized, multicenter trial of patients with persistent AF using imaging defined atrial fibrosis as a treatment target. The trial will help define an optimal approach to catheter ablation of persistent AF, further our understanding of influencers of ablation lesion formation, and refine selection criteria for ablation based on atrial myopathy burden.
Collapse
Affiliation(s)
- Nassir F Marrouche
- Department of Cardiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tom Greene
- University of Utah, Salt Lake City, Utah, USA
| | | | | | | | - Moussa Mansour
- Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hugh Calkins
- Department of Cardiology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Francis Marchlinski
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Wilber
- Department of Cardiology, Loyola University Medical Center, Chicago, Illinois, USA
| | | | | | - Pierre Jais
- Department of Cardiology, Segalen University, Bordeaux, France
| | - Prashanthan Sanders
- Department of Cardiology, Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | | | - Jereon Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lilas Dagher
- Department of Cardiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Oussama Wazni
- Department of Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nazem Akoum
- Department of Cardiology, University of Washington Medical Center, Seattle, Washington, USA
| | | |
Collapse
|
36
|
Kostecki GM, Shi Y, Chen CS, Reich DH, Entcheva E, Tung L. Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes. Sci Rep 2021; 11:4430. [PMID: 33627695 PMCID: PMC7904933 DOI: 10.1038/s41598-021-83398-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Interactions between cardiac myofibroblasts and myocytes may slow conduction and generate spontaneous beating in fibrosis, increasing the chance of life-threatening arrhythmia. While co-culture studies have shown that myofibroblasts can affect cardiomyocyte electrophysiology in vitro, the extent of myofibroblast-myocyte electrical conductance in a syncytium is unknown. In this neonatal rat study, cardiac myofibroblasts were transduced with Channelrhodopsin-2, which allowed acute and selective increase of myofibroblast current, and plated on top of cardiomyocytes. Optical mapping revealed significantly decreased conduction velocity (- 27 ± 6%, p < 10-3), upstroke rate (- 13 ± 4%, p = 0.002), and action potential duration (- 14 ± 7%, p = 0.004) in co-cultures when 0.017 mW/mm2 light was applied, as well as focal spontaneous beating in 6/7 samples and a decreased cycle length (- 36 ± 18%, p = 0.002) at 0.057 mW/mm2 light. In silico modeling of the experiments reproduced the experimental findings and suggested the light levels used in experiments produced excess current similar in magnitude to endogenous myofibroblast current. Fitting the model to experimental data predicted a tissue-level electrical conductance across the 3-D interface between myofibroblasts and cardiomyocytes of ~ 5 nS/cardiomyocyte, and showed how increased myofibroblast-myocyte conductance, increased myofibroblast/myocyte capacitance ratio, and increased myofibroblast current, which occur in fibrosis, can work in tandem to produce pro-arrhythmic increases in conduction and spontaneous beating.
Collapse
Affiliation(s)
- Geran M Kostecki
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Yu Shi
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Zhao Y, Iyer S, Tavanaei M, Nguyen NT, Lin A, Nguyen TP. Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress. Front Physiol 2021; 11:622613. [PMID: 33603677 PMCID: PMC7884825 DOI: 10.3389/fphys.2020.622613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Life-threatening ventricular arrhythmias, typically arising from interfaces between fibrosis and surviving cardiomyocytes, are feared sequelae of structurally remodeled hearts under oxidative stress. Incomplete understanding of the proarrhythmic electrical remodeling by fibrosis limits the development of novel antiarrhythmic strategies. To define the mechanistic determinants of the proarrhythmia in electrical crosstalk between cardiomyocytes and noncardiomyocytes, we developed a novel in vitro model of interface between neonatal rat ventricular cardiomyocytes (NRVMs) and controls [NRVMs or connexin43 (Cx43)-deficient HeLa cells] vs. Cx43+ noncardiomyocytes [aged rat ventricular myofibroblasts (ARVFs) or HeLaCx43 cells]. We performed high-speed voltage-sensitive optical imaging at baseline and following acute H2O2 exposure. In NRVM-NRVM and NRVM-HeLa controls, no arrhythmias occurred under either experimental condition. In the NRVM-ARVF and NRVM-HeLaCx43 groups, Cx43+ noncardiomyocytes enabled passive decremental propagation of electrical impulses and impaired NRVM activation and repolarization, thereby slowing conduction and prolonging action potential duration. Following H2O2 exposure, arrhythmia triggers, automaticity, and non-reentrant and reentrant arrhythmias emerged. This study reveals that myofibroblasts (which generate cardiac fibrosis) and other noncardiomyocytes can induce not only structural remodeling but also electrical remodeling and that electrical remodeling by noncardiomyocytes can be particularly arrhythmogenic in the presence of an oxidative burst. Synergistic electrical remodeling between H2O2 and noncardiomyocytes may account for the clinical arrhythmogenicity of myofibroblasts at fibrotic interfaces with cardiomyocytes in ischemic/non-ischemic cardiomyopathies. Understanding the enhanced arrhythmogenicity of synergistic electrical remodeling by H2O2 and noncardiomyocytes may guide novel safe-by-design antiarrhythmic strategies for next-generation iatrogenic interfaces between surviving native cardiomyocytes and exogenous stem cells or engineered tissues in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Yali Zhao
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Shankar Iyer
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Maryam Tavanaei
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Nicole T Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Andrew Lin
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Thao P Nguyen
- Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
38
|
Fragão-Marques M, Miranda I, Martins D, Barroso I, Mendes C, Pereira-Neves A, Falcão-Pires I, Leite-Moreira A. Atrial matrix remodeling in atrial fibrillation patients with aortic stenosis. BMC Cardiovasc Disord 2020; 20:468. [PMID: 33129260 PMCID: PMC7603735 DOI: 10.1186/s12872-020-01754-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to evaluate atrium extracellular matrix remodeling in atrial fibrillation (AF) patients with severe aortic stenosis, through histological fibrosis quantification and extracellular matrix gene expression analysis, as well as serum quantification of selected protein targets. METHODS A posthoc analysis of a prospective study was performed in a cohort of aortic stenosis patients. Between 2014 and 2019, 56 patients with severe aortic stenosis submitted to aortic valve replacement surgery in a tertiary hospital were selected. RESULTS Fibrosis was significantly increased in the AF group when compared to sinus rhythm (SR) patients (p = 0.024). Moreover, cardiomyocyte area was significantly higher in AF patients versus SR patients (p = 0.008). Conversely, collagen III gene expression was increased in AF patients (p = 0.038). TIMP1 was less expressed in the atria of AF patients. MMP16/TIMP4 ratio was significantly decreased in AF patients (p = 0.006). TIMP1 (p = 0.004) and TIMP2 (p = 0.012) were significantly increased in the serum of AF patients. Aortic valve maximum (p = 0.0159) and mean (p = 0.031) gradients demonstrated a negative association with serum TIMP1. CONCLUSIONS Atrial fibrillation patients with severe aortic stenosis present increased atrial fibrosis and collagen type III synthesis, with extracellular matrix remodelling demonstrated by a decrease in the MMP16/TIMP4 ratio, along with an increased serum TIMP1 and TIMP2 proteins.
Collapse
Affiliation(s)
- Mariana Fragão-Marques
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal.
- Department of Clinical Pathology, São João University Hospital Centre, Porto, Portugal.
| | - I Miranda
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - D Martins
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - I Barroso
- Department of Clinical Pathology, São João University Hospital Centre, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, University of Porto, Porto, Portugal
| | - C Mendes
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - A Pereira-Neves
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, Porto, Portugal
| | - I Falcão-Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| | - A Leite-Moreira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Alameda Professor Hernani Monteiro, 4200, Porto, Portugal
| |
Collapse
|
39
|
Abstract
Non-linear electrical waves propagate through the heart and control cardiac contraction. Abnormal wave propagation causes various forms of the heart disease and can be lethal. One of the main causes of abnormality is a condition of cardiac fibrosis, which, from mathematical point of view, is the presence of multiple non-conducting obstacles for wave propagation. The fibrosis can have different texture which varies from diffuse (e.g., small randomly distributed obstacles), patchy (e.g., elongated interstitional stria), and focal (e.g., post-infarct scars) forms. Recently, Nezlobinsky et al. (2020) used 2D biophysical models to quantify the effects of elongation of obstacles (fibrosis texture) and showed that longitudinal and transversal propagation differently depends on the obstacle length resulting in anisotropy for wave propagation. In this paper, we extend these studies to 3D tissue models. We show that 3D consideration brings essential new effects; for the same obstacle length in 3D systems, anisotropy is about two times smaller compared to 2D, however, wave propagation is more stable with percolation threshold of about 60% (compared to 35% in 2D). The percolation threshold increases with the obstacle length for the longitudinal propagation, while it decreases for the transversal propagation. Further, in 3D, the dependency of velocity on the obstacle length for the transversal propagation disappears.
Collapse
|
40
|
Arai S, Lloyd K, Takahashi T, Mammoto K, Miyazawa T, Tamura K, Kaneko T, Ishida K, Moriyama Y, Mitsui T. Dynamic Properties of Heart Fragments from Different Regions and Their Synchronization. Bioengineering (Basel) 2020; 7:E81. [PMID: 32751255 PMCID: PMC7552607 DOI: 10.3390/bioengineering7030081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
The dynamic properties of the heart differ based on the regions that effectively circulate blood throughout the body with each heartbeat. These properties, including the inter-beat interval (IBI) of autonomous beat activity, are retained even in in vitro tissue fragments. However, details of beat dynamics have not been well analyzed, particularly at the sub-mm scale, although such dynamics of size are important for regenerative medicine and computational studies of the heart. We analyzed the beat dynamics in sub-mm tissue fragments from atria and ventricles of hearts obtained from chick embryos over a period of 40 h. The IBI and contraction speed differed by region and atrial fragments retained their values for a longer time. The major finding of this study is synchronization of these fragment pairs physically attached to each other. The probability of achieving this and the time required differ for regional pairs: atrium-atrium, ventricle-ventricle, or atrium-ventricle. Furthermore, the time required to achieve 1:1 synchronization does not depend on the proximity of initial IBI of paired fragments. Various interesting phenomena, such as 1:n synchronization and a reentrant-like beat sequence, are revealed during synchronization. Finally, our observation of fragment dynamics indicates that mechanical motion itself contributes to the synchronization of atria.
Collapse
Affiliation(s)
- Shin Arai
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kento Lloyd
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomonori Takahashi
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kazuki Mammoto
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Takashi Miyazawa
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kei Tamura
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomoyuki Kaneko
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan;
| | - Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Yuuta Moriyama
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| |
Collapse
|
41
|
Callegari S, Macchi E, Monaco R, Magnani L, Tafuni A, Croci S, Nicastro M, Garrapa V, Banchini A, Becchi G, Corradini E, Goldoni M, Rocchio F, Sala R, Benussi S, Ferrara D, Alfieri O, Corradi D. Clinicopathological Bird's-Eye View of Left Atrial Myocardial Fibrosis in 121 Patients With Persistent Atrial Fibrillation: Developing Architecture and Main Cellular Players. Circ Arrhythm Electrophysiol 2020; 13:e007588. [PMID: 32538131 DOI: 10.1161/circep.119.007588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Scientific research on atrial fibrosis in atrial fibrillation (AF) has mainly focused on quantitative or molecular features. The purpose of this study was to perform a clinicoarchitectural/structural investigation of fibrosis to provide one key to understanding the electrophysiological/clinical aspects of AF. METHODS We characterized the fibrosis (amount, architecture, cellular components, and ultrastructure) in left atrial biopsies from 121 patients with persistent/long-lasting persistent AF (group 1; 59 males; 60±11 years; 91 mitral disease-related AF, 30 nonmitral disease-related AF) and from 39 patients in sinus rhythm with mitral valve regurgitation (group 2; 32 males; 59±12 years). Ten autopsy hearts served as controls. RESULTS Qualitatively, the fibrosis exhibited the same characteristics in all cases and displayed particular architectural scenarios (which we arbitrarily subdivided into 4 stages) ranging from isolated foci to confluent sclerotic areas. The percentage of fibrosis was larger and at a more advanced stage in group 1 versus group 2 and, within group 1, in patients with rheumatic disease versus nonrheumatic cases. In patients with AF with mitral disease and no rheumatic disease, the percentage of fibrosis and the fibrosis stages correlated with both left atrial volume index and AF duration. The fibrotic areas mainly consisted of type I collagen with only a minor cellular component (especially fibroblasts/myofibroblasts; average value range 69-150 cells/mm2, depending on the areas in AF biopsies). A few fibrocytes-circulating and bone marrow-derived mesenchymal cells-were also detectable. The fibrosis-entrapped cardiomyocytes showed sarcolemmal damage and connexin 43 redistribution/internalization. CONCLUSIONS Atrial fibrosis is an evolving and inhomogeneous histological/architectural change that progresses through different stages ranging from isolated foci to confluent sclerotic zones which-seemingly-constrain impulse conduction across restricted regions of electrotonically coupled cardiomyocytes. The fibrotic areas mainly consist of type I collagen extracellular matrix and, only to a lesser extent, mesenchymal cells.
Collapse
Affiliation(s)
- Sergio Callegari
- Center of Excellence for Toxicological Research (CERT) (S.C.), University of Parma, Italy
| | - Emilio Macchi
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Rodolfo Monaco
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Luca Magnani
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Alessandro Tafuni
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy & Advanced Biotechnologies Unit, Azienda Unità, Sanitaria Locale-IRCCS, Reggio Emilia, Italy (S.C., M.N.)
| | - Maria Nicastro
- Clinical Immunology, Allergy & Advanced Biotechnologies Unit, Azienda Unità, Sanitaria Locale-IRCCS, Reggio Emilia, Italy (S.C., M.N.)
| | - Valentina Garrapa
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Antonio Banchini
- Forensic Medicine Unit (A.B.), Department of Medicine and Surgery, University of Parma, Italy
| | - Gabriella Becchi
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Emilia Corradini
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Matteo Goldoni
- Laboratory of Industrial Toxicology (M.G.), Department of Medicine and Surgery, University of Parma, Italy
| | - Francesca Rocchio
- International Centre for T1D, Paediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", Department of Biomedical & Clinical Science, Hospital "L. Sacco", University of Milan, Italy (F.R.)
| | - Roberto Sala
- General Pathology Unit (R.S.), Department of Medicine and Surgery, University of Parma, Italy
| | | | - David Ferrara
- Cardiothoracic Surgery Unit, Department of Cardiology, San Raffaele University Hospital, Milan, Italy (D.F., O.A.)
| | - Ottavio Alfieri
- Cardiothoracic Surgery Unit, Department of Cardiology, San Raffaele University Hospital, Milan, Italy (D.F., O.A.)
| | - Domenico Corradi
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| |
Collapse
|
42
|
Squecco R, Chellini F, Idrizaj E, Tani A, Garella R, Pancani S, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020; 9:cells9051199. [PMID: 32408529 PMCID: PMC7290305 DOI: 10.3390/cells9051199] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle repair/regeneration may benefit by Platelet-Rich Plasma (PRP) treatment owing to PRP pro-myogenic and anti-fibrotic effects. However, PRP anti-fibrotic action remains controversial. Here, we extended our previous researches on the inhibitory effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the effector cells of fibrosis, focusing on gap junction (GJ) intercellular communication. The myofibroblastic phenotype was evaluated by cell shape analysis, confocal fluorescence microscopy and Western blotting analyses of α-smooth muscle actin and type-1 collagen expression, and electrophysiological recordings of resting membrane potential, resistance, and capacitance. PRP negatively regulated myofibroblast differentiation by modifying all the assessed parameters. Notably, myofibroblast pairs showed an increase of voltage-dependent GJ functionality paralleled by connexin (Cx) 43 expression increase. TGF-β1-treated cells, when exposed to a GJ blocker, or silenced for Cx43 expression, failed to differentiate towards myofibroblasts. Although a minority, myofibroblast pairs also showed not-voltage-dependent GJ currents and coherently Cx26 expression. PRP abolished the TGF-β1-induced voltage-dependent GJ current appearance while preventing Cx43 increase and promoting Cx26 expression. This study adds insights into molecular and functional mechanisms regulating fibroblast-myofibroblast transition and supports the anti-fibrotic potential of PRP, demonstrating the ability of this product to hamper myofibroblast generation targeting GJs.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (R.S.); (E.I.); (R.G.)
| | - Sofia Pancani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children’s Hospital, 50134 Florence, Italy; (P.P.); (F.B.)
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (S.P.); (S.Z.-O.)
- Correspondence: ; Tel.: +39-0552-7580-63
| |
Collapse
|
43
|
Schram-Serban C, Heida A, Roos-Serote MC, Knops P, Kik C, Brundel B, Bogers AJJC, de Groot NMS. Heterogeneity in Conduction Underlies Obesity-Related Atrial Fibrillation Vulnerability. Circ Arrhythm Electrophysiol 2020; 13:e008161. [PMID: 32301327 DOI: 10.1161/circep.119.008161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obese patients are more vulnerable to development of atrial fibrillation but pathophysiology underlying this relation is only partly understood. The aim of this study is to compare the severity and extensiveness of conduction disorders between obese patients and nonobese patients measured at a high-resolution scale. METHODS Patients (N=212) undergoing cardiac surgery (male:161, 63±11 years) underwent epicardial mapping of the right atrium, Bachmann bundle, and left atrium during sinus rhythm. Conduction delay (CD) was defined as interelectrode conduction time of 7 to 11 ms and conduction block (CB) as conduction time ≥12 ms. Prevalence of CD/CB, continuous CDCB (cCDCB), length of CD/CB/cCDCB lines, and severity of CB were analyzed. RESULTS In obese patients, the overall incidence of CD (3.1% versus 2.6%; P=0.002), CB (1.8% versus 1.2%; P<0.001), and cCDCB (2.6% versus 1.9%; P<0.001) was higher and CD (P=0.012) and cCDCB (P<0.001) lines are longer. There were more conduction disorders at Bachmann bundle and this area has a higher incidence of CD (4.4% versus 3.3%, P=0.002), CB (3.1% versus 1.6%, P<0.001), cCDCB (4.6% versus 2.7%, P<0.001) and longer CD (P<0.001) or cCDCB (P=0.017) lines. The severity of CB is also higher, particularly in the Bachmann bundle (P=0.008) and pulmonary vein (P=0.020) areas. In addition, obese patients have a higher incidence of early de-novo postoperative atrial fibrillation (P=0.003). Body mass index (P=0.037) and the overall amount of CB (P=0.012) were independent predictors for incidence of early postoperative atrial fibrillation. CONCLUSIONS Compared with nonobese patients, obese patients have higher incidences of conduction disorders, which are also more extensive and more severe. These differences in heterogeneity in conduction are already present during sinus rhythm and may explain the higher vulnerability to atrial fibrillation of obese patients.
Collapse
Affiliation(s)
- Corina Schram-Serban
- Department of Cardiology (C.S.-S., A.H., M.C.R.-S., P.K., N.M.S.d.G.), Erasmus University Medical Center, Rotterdam
| | - Annejet Heida
- Department of Cardiology (C.S.-S., A.H., M.C.R.-S., P.K., N.M.S.d.G.), Erasmus University Medical Center, Rotterdam
| | - Maarten C Roos-Serote
- Department of Cardiology (C.S.-S., A.H., M.C.R.-S., P.K., N.M.S.d.G.), Erasmus University Medical Center, Rotterdam
| | - Paul Knops
- Department of Cardiology (C.S.-S., A.H., M.C.R.-S., P.K., N.M.S.d.G.), Erasmus University Medical Center, Rotterdam
| | - Charles Kik
- Department of Cardio-Thoracic Surgery (C.K., A.J.J.C.B.), Erasmus University Medical Center, Rotterdam
| | - Bianca Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam (B.B.).,Cardiovascular Sciences, Amsterdam, The Netherlands (B.B.)
| | - Ad J J C Bogers
- Department of Cardio-Thoracic Surgery (C.K., A.J.J.C.B.), Erasmus University Medical Center, Rotterdam
| | - Natasja M S de Groot
- Department of Cardiology (C.S.-S., A.H., M.C.R.-S., P.K., N.M.S.d.G.), Erasmus University Medical Center, Rotterdam
| |
Collapse
|
44
|
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2020; 7:43. [PMID: 32296716 PMCID: PMC7138102 DOI: 10.3389/fcvm.2020.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice with a large socioeconomic impact due to its associated morbidity, mortality, reduction in quality of life and health care costs. Currently, antiarrhythmic drug therapy is the first line of treatment for most symptomatic AF patients, despite its limited efficacy, the risk of inducing potentially life-threating ventricular tachyarrhythmias as well as other side effects. Alternative, in-hospital treatment modalities consisting of electrical cardioversion and invasive catheter ablation improve patients' symptoms, but often have to be repeated and are still associated with serious complications and only suitable for specific subgroups of AF patients. The development and progression of AF generally results from the interplay of multiple disease pathways and is accompanied by structural and functional (e.g., electrical) tissue remodeling. Rational development of novel treatment modalities for AF, with its many different etiologies, requires a comprehensive insight into the complex pathophysiological mechanisms. Monolayers of atrial cells represent a simplified surrogate of atrial tissue well-suited to investigate atrial arrhythmia mechanisms, since they can easily be used in a standardized, systematic and controllable manner to study the role of specific pathways and processes in the genesis, perpetuation and termination of atrial arrhythmias. In this review, we provide an overview of the currently available two- and three-dimensional multicellular in vitro systems for investigating the initiation, maintenance and termination of atrial arrhythmias and AF. This encompasses cultures of primary (animal-derived) atrial cardiomyocytes (CMs), pluripotent stem cell-derived atrial-like CMs and (conditionally) immortalized atrial CMs. The strengths and weaknesses of each of these model systems for studying atrial arrhythmias will be discussed as well as their implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation. Sci Rep 2020; 10:764. [PMID: 31964904 PMCID: PMC6972912 DOI: 10.1038/s41598-020-57449-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibrosis occurs in many forms of heart disease. It is well established that the spatial pattern of fibrosis, its texture, substantially affects the onset of arrhythmia. However, in most modelling studies fibrosis is represented by multiple randomly distributed short obstacles that mimic only one possible texture, diffuse fibrosis. An important characteristic feature of other fibrosis textures, such as interstitial and patchy textures, is that fibrotic inclusions have substantial length, which is suggested to have a pronounced effect on wave propagation. In this paper, we study the effect of the elongation of inexcitable inclusions (obstacles) on wave propagation in a 2D model of cardiac tissue described by the TP06 model for human ventricular cells. We study in detail how the elongation of obstacles affects various characteristics of the waves. We quantify the anisotropy induced by the textures, its dependency on the obstacle length and the effects of the texture on the shape of the propagating wave. Because such anisotropy is a result of zig-zag propagation we show, for the first time, quantification of the effects of geometry and source-sink relationship, on the zig-zag nature of the pathway of electrical conduction. We also study the effect of fibrosis in the case of pre-existing anisotropy and introduce a procedure for scaling of the fibrosis texture. We show that fibrosis can decrease or increase the preexisting anisotropy depending on its scaled texture.
Collapse
|
46
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
47
|
Zhan H, Zhang J, Jiao A, Wang Q. Stretch-activated current in human atrial myocytes and Na + current and mechano-gated channels' current in myofibroblasts alter myocyte mechanical behavior: a computational study. Biomed Eng Online 2019; 18:104. [PMID: 31653259 PMCID: PMC6814973 DOI: 10.1186/s12938-019-0723-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background The activation of stretch-activated channels (SACs) in cardiac myocytes, which changes the phases of action potential repolarization, is proven to be highly efficient for the conversion of atrial fibrillation. The expression of Na+ current in myofibroblasts (Mfbs) regenerates myocytes’ action potentials, suggesting that Mfbs play an active role in triggering cardiac rhythm disturbances. Moreover, the excitation of mechano-gated channels (MGCs) in Mfbs depolarizes their membrane potential and contributes to the increased risk of post-infarct arrhythmia. Although these electrophysiological mechanisms have been largely known, the roles of these currents in cardiac mechanics are still debated. In this study, we aimed to investigate the mechanical influence of these currents via mathematical modeling. A novel mathematical model was developed by integrating models of human atrial myocyte (including the stretch-activated current, Ca2+–force relation, and mechanical behavior of a single segment) and Mfb (including our formulation of Na+ current and mechano-gated channels’ current). The effects of the changes in basic cycle length, number of coupled Mfbs and intercellular coupling conductance on myocyte mechanical properties were compared. Results Our results indicated that these three currents significantly regulated myocyte mechanical parameters. In isosarcometric contraction, these currents increased segment force by 13.8–36.6% and dropped element length by 12.1–31.5%. In isotonic contraction, there are 2.7–5.9% growth and 0.9–24% reduction. Effects of these currents on the extremum of myocyte mechanical parameters become more significant with the increase of basic cycle length, number of coupled Mfbs and intercellular coupling conductance. Conclusions The results demonstrated that stretch-activated current in myocytes and Na+ current and mechano-gated channels’ current in Mfbs significantly influenced myocyte mechanical behavior and should be considered in future cardiac mechanical mathematical modeling.
Collapse
Affiliation(s)
- Heqing Zhan
- College of Medical Information, Hainan Medical University, Haikou, 571199, China.
| | - Jingtao Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Anquan Jiao
- College of Medical Information, Hainan Medical University, Haikou, 571199, China
| | - Qin Wang
- College of Medical Information, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
48
|
Bae H, Kim T, Lim I. Effects of nitric oxide on apoptosis and voltage-gated calcium channels in human cardiac myofibroblasts. Clin Exp Pharmacol Physiol 2019; 47:16-26. [PMID: 31519057 DOI: 10.1111/1440-1681.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
We characterised the voltage-gated Ca2+ channels (VGCCs) in human cardiac fibroblasts (HCFs) and myofibroblasts (HCMFs) and investigated the effects of nitric oxide (NO) on apoptosis and on these channels. Western blotting and immunofluorescence analyses show that α-smooth muscle actin (a myofibroblast marker) was markedly expressed in passage (P) 12-15 but not in P4 HCF cells, whereas calponin (a fibroblast marker) was expressed only in P4 cells. CaV 1.2 (L-type) and CaV 3.3 (T-type) of VGCCs were highly expressed in P12-15 cells, but only weak CaV 2.3 (R-type) expression was identified in P4 cells using reverse transcription-polymerase chain reaction analysis. S-Nitroso-N-acetylpenicillamine (SNAP, an NO donor) decreased cell viability of HCMFs in a dose-dependent manner and induced apoptotic changes, and nifedipine (an L-type Ca2+ channel blocker) prevented apoptosis as shown with immunofluorescence staining and flow cytometry. Whole-cell mode patch-clamp recordings demonstrate the presence of L-type Ca2+ (IC a,L ) and T-type Ca2+ (IC a,T ) currents in HCMFs. SNAP inhibited IC a,L of HCMFs, but pre-treatment with ODQ (a guanylate cyclase inhibitor) or KT5823 (a PKG inhibitor) prevented it. Pre-treating cells with KT5720 (a PKA inhibitor) or SQ22536 (an adenylate cyclase inhibitor) blocked SNAP-induced inhibition of IC a,L . 8-Bromo-cyclic GMP or 8-bromo-cyclic AMP also inhibited IC a,L . However, pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) did not block the SNAP effect, nor did DL-dithiothreitol (a reducing agent) reverse it. These data suggest that high concentrations of NO injure HCMFs and inhibit IC a,L through the PKG and PKA signalling pathways but not through the S-nitrosylation pathway.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Shusterman V, Nagpal P, Thedens D, Zhu X, Matasic DS, Yoon JY, Morgan G, Hoffman S, London B. Magnetic Resonance Imaging of Contracting Ultrathin Cardiac Tissue. Biomed Phys Eng Express 2019; 5:045003. [PMID: 32733693 PMCID: PMC7392236 DOI: 10.1088/2057-1976/ab1c1c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Integrating cardiac-tissue patches into the beating heart and evaluating the long-term effects of such integration on cardiac contractility are two challenges in an emerging field of regenerative medicine. This pilot study presents tools for the imaging of contracting multicellular cardiac tissue constructs (MTCs) in vitro and demonstrates the feasibility of tracking the early development of strand geometry and contractions in ultrathin strands and layers of cardiac tissue using CINE MRI. APPROACH Cultured, ultrathin (~50-100-micron) MTCs of rat neonatal cardiomyocytes were plated in rectangular cell chambers (4.5 × 2.0 cm) with and without ultrathin, carbon EP electrodes embedded in the floor of the cell chamber. Two-dimensional, steady-state free precession (SSFP) CINE MRI, cell microscopy, and tissue photography were performed on Days 5-9 of cell development. Potential confounders and MRI artifacts were evaluated using non-contracting cardiac tissues and cell-free chambers filled with the cell-culture medium. MAIN RESULTS Synchronized contractions formed by Day 7; individual contracting tissue strands became identifiable by Day 9. The global patterns and details of the strand geometry and movement patterns in the SSFP images were in excellent agreement with microscopic and photographic images. No synchronized movement was identifiable by either microscopy or CINE MRI in the non-contracting MTCs or the cell-free medium. The EP recordings revealed well-defined depolarization and repolarization waveforms; the imaging artifacts generated by the carbon electrodes were small. SIGNIFICANCE This pilot study demonstrates the feasibility of imaging cardiac-strand patterns and contractile activity in ultrathin, two-dimensional cardiac tissue in commonly used clinical scanners.
Collapse
|
50
|
Cavallini F, Tarantola M. ECIS based wounding and reorganization of cardiomyocytes and fibroblasts in co-cultures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:116-127. [DOI: 10.1016/j.pbiomolbio.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
|