1
|
Li X, Feng R, Xiang R, Tao L, Zhao YP, Tang P, Zuo Z, Gao DS, Lou Q, Pu P, Chen YM, Chen J, Lv FJ, Wang L, Zhao H, Shi QY, He YT, Khan NA, Chang J, Mao M. Bilateral superselective adrenal artery embolization for bilateral primary aldosteronism: a novel approach in an efficacy and safety proof-of-principle trial. Hypertens Res 2025; 48:189-199. [PMID: 39261700 DOI: 10.1038/s41440-024-01881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Superselective adrenal artery embolization (SAAE) offers a novel approach for treating primary aldosteronism (PA). In this study, we aimed to assess the efficacy and safety of SAAE for the treatment of PA based on the lateralization results obtained from adrenal vein sampling (AVS).In this prospective study, we enrolled 40 patients with PA who underwent SAAE. The patients were categorized into two groups, unilateral PA and bilateral PA, based on AVS results. Clinical parameters and biochemical markers were assessed at 3 and 12 months postoperatively. The primary outcomes were changes in blood pressure and defined daily dose (DDD) of antihypertensive medications compared to baseline. Thirty-eight patients achieved technical success, with favorable clinical and biochemical efficacy rates. At three months postoperatively, the clinical efficacy rates were 79.2% and 78.6% for the UPA and BPA groups, respectively. At 12 months, the rates were 83.3% and 71.4%, respectively. Both groups exhibited a significant decrease in average blood pressure at 3 and 12 months compared with baseline (P < 0.001), and there was also a notable reduction in DDD (P < 0.05). At three months, the biochemical efficacy rates were 61.9% and 58.3% in the UPA and BPA groups, respectively. Due to loss to follow-up, biochemical indicators were not assessed at 12 months postoperatively. No severe adverse reactions occurred during or after SAAE. Patients with both UPA and BPA can benefit from SAAE. The superiority of bilateral adrenal artery embolization in the treatment of BPA over unilateral adrenal artery embolization requires further investigation.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Feng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong-Peng Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhong Zuo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian-Sa Gao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Lou
- Library of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Pu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Ming Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng-Jie Lv
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiu-Yue Shi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Tian He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nouman Ali Khan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Chang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Min Mao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Daneshpour H, Brüdgam D, Stüfchen I, Heinrich DA, Bidlingmaier M, Beuschlein F, Kürzinger L, Williams TA, Reincke M, Schneider H, Adolf C. Impact of confirmatory test results on subtype classification and biochemical outcome following unilateral adrenalectomy in patients with primary aldosteronism. Front Endocrinol (Lausanne) 2024; 15:1495959. [PMID: 39678193 PMCID: PMC11637841 DOI: 10.3389/fendo.2024.1495959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Context Primary aldosteronism (PA) is the most common form of endocrine hypertension. According to the Endocrine Society Practice Guidelines, the diagnosis of PA requires a pathological screening test result and non-suppressible aldosterone levels during confirmatory testing. Sequential testing with more than one confirmatory test may result in discordant test results. Objective and patients We investigated the association of discordant results of captopril challenge test (CCT) and saline infusion test (SIT) on patient subtype classification by adrenal vein sampling (AVS) and outcome in 111 consecutive patients from the German Conn's Registry. Concordance was defined as non-suppressible aldosterone levels upon both tests, while discordance was defined as conflicting test results. Patients with unilateral disease were offered adrenalectomy (ADX). Biochemical and clinical outcomes were assessed using the PASO criteria. Results 85 of 111 (77%) patients had concordant results of CCT and SIT. Although baseline characteristics were comparable between patients with concordant and discordant tests, the latter had significantly lower aldosterone levels after testing (CCT: 170 vs. 114pg/ml; SIT: 139 vs. 101pg/ml; p=0.004). In 35% of patients with discordant (n=9) and 46% of concordant test results (n=39), AVS suggested lateralized PA. In 36 of 48 cases ADX was performed. 86% of patients with discordant and 72% with concordant results had complete biochemical success. Conclusion The use of two confirmatory tests in patients with PA results in discordant results in approximately 23% of cases. Patients having discordant confirmatory test results had a comparable rate of lateralized PA and underwent adrenalectomy with similar long-term outcome.
Collapse
Affiliation(s)
- Hediyeh Daneshpour
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Denise Brüdgam
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Isabel Stüfchen
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Daniel Alexander Heinrich
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Holger Schneider
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| |
Collapse
|
3
|
Ryan MJ, Clemmer JS, Mathew RO, Faulkner JL, Taylor EB, Abais-Battad JM, Hollis F, Sullivan JC. Revisiting sex as a biological variable in hypertension research. J Clin Invest 2024; 134:e180078. [PMID: 39225093 PMCID: PMC11364402 DOI: 10.1172/jci180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Michael J. Ryan
- Columbia VA Health Care System, Columbia, South Carolina, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John S. Clemmer
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy O. Mathew
- Loma Linda VA Health Care System, Loma Linda, California, USA
| | | | - Erin B. Taylor
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Fiona Hollis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | |
Collapse
|
4
|
Butz F, Müller-Debus CF, Mogl MT. [Gender medicine: endocrine and neuroendocrine diseases : Implications for surgery and perioperative management]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:736-741. [PMID: 39102037 DOI: 10.1007/s00104-024-02140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Gender medicine is also becoming increasingly more important in the field of surgery of endocrine and neuroendocrine diseases. Gender differences in the incidence, symptoms and disease progression are common to all (neuro)endocrine diseases. Understanding these special features, which include socioeconomic aspects as well as different anatomical and biological factors, is essential for the selection of optimal diagnostics and treatment but in some cases further scientific research is required. To date, there is a paucity of gender-specific recommendations in established guideline recommendations. There is an enormous potential in all areas of endocrine surgery to take advantage of differences between men and women in the diagnostics, surgical treatment and perioperative management. Individualized approaches could lead to improved surgical outcomes, reduced perioperative complications and improved follow-up.
Collapse
Affiliation(s)
- Frederike Butz
- Chirurgische Klinik Campus Charité Mitte, Campus Virchow-Klinikum, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Charlotte Friederieke Müller-Debus
- Chirurgische Klinik Campus Charité Mitte, Campus Virchow-Klinikum, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Martina T Mogl
- Chirurgische Klinik Campus Charité Mitte, Campus Virchow-Klinikum, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| |
Collapse
|
5
|
Parksook WW, Brown JM, Milks J, Tsai LC, Chan J, Moore A, Niebuhr Y, Honzel B, Newman AJ, Vaidya A. Saline suppression testing-induced hypocalcemia and implications for clinical interpretations. Eur J Endocrinol 2024; 191:241-250. [PMID: 39073780 PMCID: PMC11322817 DOI: 10.1093/ejendo/lvae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Extracellular calcium critically regulates physiologic aldosterone production. Moreover, abnormal calcium flux and signaling are involved in the pathogenesis of the majority of primary aldosteronism cases. METHODS We investigated the influence of the saline suppression test (SST) on calcium homeostasis in prospectively recruited participants (n = 86). RESULTS During SST, 100% of participants had decreases in serum calcium, with 48% developing frank hypocalcemia. Serum calcium declined from 2.30 ± 0.08 mmol/L to 2.13 ± 0.08 mmol/L (P < .001) with parallel increases in parathyroid hormone from 6.06 ± 2.39 pmol/L to 8.13 ± 2.42 pmol/L (P < .001). In contrast, serum potassium and bicarbonate did not change, whereas eGFR increased and serum glucose decreased (P < .001). Lower body surface area (translating to greater effective circulating volume expansion during SST) was associated with greater reductions in (β = .33, P = .001), and absolutely lower, serum calcium levels (β = .25, P = .001). When evaluating clinically-relevant diagnostic thresholds, participants with post-SST aldosterone levels <138 pmol/L had lower post-SST calcium and 25-hydroxyvitamin D levels (P < .05), and higher post-SST parathyroid hormone levels (P < .05) compared with those with post-SST aldosterone levels >277 pmol/L. CONCLUSION SST uniformly decreases serum calcium, which is likely to be due to the combination of variable dilution, increased renal clearance, and vitamin D status. These acute reductions in bioavailable calcium are associated with lower post-SST aldosterone. Given the critical role of extracellular calcium in regulating aldosterone production, these findings warrant renewed inquiry into the validity of SST interpretations for excluding primary aldosteronism.
Collapse
Affiliation(s)
- Wasita W Parksook
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Medicine (Division of Endocrinology and Metabolism, and Division of General Internal Medicine), Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Jenifer M Brown
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Cardiovascular Medicine, Boston, MA 02115, United States
| | - Julia Milks
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Laura C Tsai
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Justin Chan
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Anna Moore
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yvonne Niebuhr
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Brooke Honzel
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew J Newman
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Anand Vaidya
- Center for Adrenal Disorders, Boston, MA 02115, United States
- Division of Endocrinology, Diabetes, and Hypertension, Boston, MA 02115, United States
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
6
|
Ahn CH, Lee YB, Kim JH, Oh YL, Kim JH, Jung KC. Correlation of Histopathologic Subtypes of Primary Aldosteronism with Clinical Phenotypes and Postsurgical Outcomes. J Clin Endocrinol Metab 2024; 109:e1582-e1592. [PMID: 38127970 DOI: 10.1210/clinem/dgad747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Clinical implications of unilateral primary aldosteronism (PA) histopathology remain to be determined in various ethnic populations. OBJECTIVE We examined the histopathology of unilateral PA using CYP11B2 immunostaining in relation to clinical phenotypes and postsurgical outcomes. METHODS Patients consecutively operated for unilateral PA from 2010 to 2020 at 3 tertiary hospitals in South Korea were retrospectively enrolled. Adrenals with solitary aldosterone-producing adenomas and/or dominant aldosterone-producing nodules were classified as the classical and the others as the nonclassical groups. The classical group was subdivided into mixed or solitary group according to whether other aldosterone-producing lesions coexist or not. RESULTS Of the 240 cases, 124 were solitary, 86 mixed, and 30 nonclassical. Baseline serum potassium concentration was lower in the solitary group than the mixed or nonclassical group. Plasma aldosterone concentration after saline loading was the highest in the solitary group (median 31.65 ng/dL), followed by the mixed group (median 25.40 ng/dL), and the lowest in the nonclassical group (median 14.20 ng/dL). Solitary and mixed groups showed higher lateralization indices and lower contralateral indices than the nonclassical group. The contralateral index was lower in the solitary group than the mixed group. At 6 to 12 months after adrenalectomy, fewer antihypertensive medications were required for the solitary and mixed groups than the nonclassical group. CONCLUSION The solitary group, followed by the mixed group, was associated with more severe hyperaldosteronism and more suppressed aldosterone production from the contralateral side than the nonclassical group. Histopathologic phenotypes were related to the clinical manifestations and may suggest postoperative prognosis.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620, Republic of Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Young Lyun Oh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jung Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
7
|
Charoensri S, Bashaw L, Dehmlow C, Ellies T, Wyckoff J, Turcu AF. Evaluation of a Best-Practice Advisory for Primary Aldosteronism Screening. JAMA Intern Med 2024; 184:174-182. [PMID: 38190155 PMCID: PMC10775078 DOI: 10.1001/jamainternmed.2023.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Importance Primary aldosteronism (PA) is a common cause of secondary hypertension and an independent risk factor for cardiovascular morbidity and mortality. Fewer than 2% to 4% of patients at risk are evaluated for PA. Objective To develop and evaluate an electronic health record best-practice advisory (BPA) that assists with PA screening. Design, Setting, and Participants This prospective quality improvement study was conducted at academic center outpatient clinics. Data analysis was performed between February and June 2023 and included adults with hypertension and at least 1 of the following: 4 or more current antihypertensive medications; hypokalemia; age younger than 35 years; or adrenal nodule(s). Patients previously tested for PA were excluded. Exposure A noninterruptive BPA was developed to trigger for PA screening candidates seen in outpatient setting by clinicians who treat hypertension. The BPA included an order set for PA screening and a link to results interpretation guidance. Main Outcomes and Measures (1) The number of PA screening candidates identified by the BPA between October 1, 2021, and December 31, 2022; (2) the rates of PA screening; and (3) the BPA use patterns, stratified by physician specialty were assessed. Results Over 15 months, the BPA identified 14 603 unique candidates (mean [SD] age, 65.5 [16.9] years; 7300 women [49.9%]; 371 [2.5%] Asian, 2383 [16.3%] Black, and 11 225 [76.9%] White individuals) for PA screening, including 7028 (48.1%) with treatment-resistant hypertension, 6351 (43.5%) with hypokalemia, 1537 (10.5%) younger than 35 years, and 445 (3.1%) with adrenal nodule(s). In total, 2040 patients (14.0%) received orders for PA screening. Of these, 1439 patients (70.5%) completed the recommended screening within the system, and 250 (17.4%) had positive screening results. Most screening orders were placed by internists (40.0%) and family medicine physicians (28.1%). Family practitioners (80.3%) and internists (68.9%) placed most orders via the embedded order set, while specialists placed most orders (83.0%-95.4%) outside the BPA. Patients who received screening were younger and included more women and Black patients than those not screened. The likelihood of screening was higher among patients with obesity and dyslipidemia and lower in those with chronic kidney disease and established cardiovascular complications. Conclusions and Relevance The study results suggest that noninterruptive BPAs are potentially promising PA screening-assistance tools, particularly among primary care physicians. Combined with artificial intelligence algorithms that optimize the detection yield, refined BPAs may contribute to personalized hypertension care.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Linda Bashaw
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Cheryl Dehmlow
- Health Information and Technology Systems, University of Michigan, Ann Arbor
| | - Tammy Ellies
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Jennifer Wyckoff
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
8
|
Bechmann N, Moskopp ML, Constantinescu G, Stell A, Ernst A, Berthold F, Westermann F, Jiang J, Lui L, Nowak E, Zopp S, Pacak K, Peitzsch M, Schedl A, Reincke M, Beuschlein F, Bornstein SR, Fassnacht M, Eisenhofer G. Asymmetric Adrenals: Sexual Dimorphism of Adrenal Tumors. J Clin Endocrinol Metab 2024; 109:471-482. [PMID: 37647861 PMCID: PMC11032253 DOI: 10.1210/clinem/dgad515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
CONTEXT Sexual dimorphism has direct consequences on the incidence and survival of cancer. Early and accurate diagnosis is crucial to improve prognosis. OBJECTIVE This work aimed to characterized the influence of sex and adrenal asymmetry on the emergence of adrenal tumors. METHODS We conducted a multicenter, observational study involving 8037 patients with adrenal tumors, including adrenocortical carcinoma (ACC), aldosterone-producing adenoma (APA), cortisol-secreting adrenocortical adenomas (CSAs), non-aldosterone-producing adrenal cortical adenoma (NAPACA), pheochromocytoma (PCC), and neuroblastoma (NB), and investigated tumor lateralization according to sex. Human adrenal tissues (n = 20) were analyzed with a multiomics approach that allows determination of gene expression, catecholamine, and steroid contents in a single sample. In addition, we performed a literature review of computed tomography and magnetic resonance imaging-based studies examining adrenal gland size. RESULTS ACC (n = 1858); CSA (n = 68), NAPACA (n = 2174), and PCC (n = 1824) were more common in females than in males (female-to-male ratio: 1.1:1-3.8:1), whereas NBs (n = 2320) and APAs (n = 228) were less prevalent in females (0.8:1). ACC, APA, CSA, NAPACA, and NB occurred more frequently in the left than in the right adrenal (left-to-right ratio: 1.1:1-1.8:1), whereas PCC arose more often in the right than in the left adrenal (0.8:1). In both sexes, the left adrenal was larger than the right adrenal; females have smaller adrenals than males. CONCLUSION Adrenal asymmetry in both sexes may be related to the pathogenesis of adrenal tumors and should be considered during the diagnosis of these tumors.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mats Leif Moskopp
- Department of Neurosurgery, Vivantes Friedrichshain Hospital, Charité Academic Teaching Hospital, 10249 Berlin, Germany
| | - Georgiana Constantinescu
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anthony Stell
- School of Computing and Information Systems, University of Melbourne, 3052 Melbourne, Australia
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Frank Berthold
- Children's Hospital, University of Cologne, 50735 Cologne, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, 200031 Shanghai, China
| | - Longfei Lui
- Department of Urology, Xiangya Hospital, Central South University, 410017 Changsha, China
| | - Elisabeth Nowak
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany
| | - Stephanie Zopp
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20892, USA
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Schedl
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Martin Reincke
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität Munich, 80539 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital of Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Yu D, Zhang J, Li X, Xiao S, Xing J, Li J. Developing the novel diagnostic model and potential drugs by integrating bioinformatics and machine learning for aldosterone-producing adenomas. Front Mol Biosci 2024; 10:1308754. [PMID: 38239411 PMCID: PMC10794617 DOI: 10.3389/fmolb.2023.1308754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Aldosterone-producing adenomas (APA) are a common cause of primary aldosteronism (PA), a clinical syndrome characterized by hypertension and electrolyte disturbances. If untreated, it may lead to serious cardiovascular complications. Therefore, there is an urgent need for potential biomarkers and targeted drugs for the diagnosis and treatment of aldosteronism. Methods: We downloaded two datasets (GSE156931 and GSE60042) from the GEO database and merged them by de-batch effect, then screened the top50 of differential genes using PPI and enriched them, followed by screening the Aldosterone adenoma-related genes (ARGs) in the top50 using three machine learning algorithms. We performed GSEA analysis on the ARGs separately and constructed artificial neural networks based on the ARGs. Finally, the Enrich platform was utilized to identify drugs with potential therapeutic effects on APA by tARGseting the ARGs. Results: We identified 190 differential genes by differential analysis, and then identified the top50 genes by PPI, and the enrichment analysis showed that they were mainly enriched in amino acid metabolic pathways. Then three machine learning algorithms identified five ARGs, namely, SST, RAB3C, PPY, CYP3A4, CDH10, and the ANN constructed on the basis of these five ARGs had better diagnostic effect on APA, in which the AUC of the training set is 1 and the AUC of the validation set is 0.755. And then the Enrich platform identified drugs tARGseting the ARGs with potential therapeutic effects on APA. Conclusion: We identified five ARGs for APA through bioinformatic analysis and constructed Artificial neural network (ANN) based on them with better diagnostic effects, and identified drugs with potential therapeutic effects on APA by tARGseting these ARGs. Our study provides more options for the diagnosis and treatment of APA.
Collapse
Affiliation(s)
- Deshui Yu
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| | - Jinxuan Zhang
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| | - Xintao Li
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Jizhang Xing
- Department of Urology, Air Force Medical Center, Beijing, China
| | - Jianye Li
- Department of Urology, Air Force Medical Center, Beijing, China
- China Medical University, Shenyang, China
| |
Collapse
|
10
|
Stölting G, Scholl UI. Adrenal Anion Channels: New Roles in Zona Glomerulosa Physiology and in the Pathophysiology of Primary Aldosteronism. Handb Exp Pharmacol 2024; 283:59-79. [PMID: 37495852 DOI: 10.1007/164_2023_680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The mineralocorticoid aldosterone is produced in the zona glomerulosa of the adrenal cortex. Its synthesis is regulated by the serum concentrations of the peptide hormone angiotensin II and potassium. The primary role of aldosterone is to control blood volume and electrolytes. The autonomous production of aldosterone (primary aldosteronism, PA) is considered the most frequent cause of secondary hypertension. Aldosterone-producing adenomas and (micro-)nodules are frequent causes of PA and often carry somatic mutations in ion channels and transporters. Rare familial forms of PA are due to germline mutations. Both somatic and germline mutations in the chloride channel gene CLCN2, encoding ClC-2, have been identified in PA. Clinical findings and results from cell culture and animal models have advanced our knowledge about the role of anions in PA. The zona glomerulosa of the adrenal gland has now been firmly established as a tissue in which anions play a significant role for signaling. In this overview, we aim to summarize the current knowledge and highlight novel concepts as well as open questions.
Collapse
Affiliation(s)
- Gabriel Stölting
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ute I Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Kitamoto T, Idé T, Tezuka Y, Wada N, Shibayama Y, Tsurutani Y, Takiguchi T, Inoue K, Suematsu S, Omata K, Ono Y, Morimoto R, Yamazaki Y, Saito J, Sasano H, Satoh F, Nishikawa T. Identifying primary aldosteronism patients who require adrenal venous sampling: a multi-center study. Sci Rep 2023; 13:21722. [PMID: 38081870 PMCID: PMC10713522 DOI: 10.1038/s41598-023-47967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Adrenal venous sampling (AVS) is crucial for subtyping primary aldosteronism (PA) to explore the possibility of curing hypertension. Because AVS availability is limited, efforts have been made to develop strategies to bypass it. However, it has so far proven unsuccessful in applying clinical practice, partly due to heterogeneity and missing values of the cohorts. For this purpose, we retrospectively assessed 210 PA cases from three institutions where segment-selective AVS, which is more accurate and sensitive for detecting PA cases with surgical indications, was available. A machine learning-based classification model featuring a new cross-center domain adaptation capability was developed. The model identified 102 patients with PA who benefited from surgery in the present cohort. A new data imputation technique was used to address cross-center heterogeneity, making a common prediction model applicable across multiple cohorts. Logistic regression demonstrated higher accuracy than Random Forest and Deep Learning [(0.89, 0.86) vs. (0.84, 0.84), (0.82, 0.84) for surgical or medical indications in terms of f-score]. A derived integrated flowchart revealed that 35.2% of PA cases required AVS with 94.1% accuracy. The present model enabled us to reduce the burden of AVS on patients who would benefit the most.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan.
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, 2608670, Japan.
| | - Tsuyoshi Idé
- IBM Research, T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Yuta Tezuka
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Norio Wada
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
| | - Yui Shibayama
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, 0608604, Japan
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 0608648, Japan
| | - Yuya Tsurutani
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Tomoko Takiguchi
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kosuke Inoue
- Department of Social Epidemiology, Graduate School of Medicine, Kyoto University, Kyoto, 6048135, Japan
| | - Sachiko Suematsu
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism, and Endocrinology, Tohoku University Hospital, Sendai, 9808574, Japan
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Ryo Morimoto
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Jun Saito
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, 9808574, Japan
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Tetsuo Nishikawa
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, 2220036, Japan
| |
Collapse
|
12
|
Ha J, Park JH, Kim KJ, Kim JH, Jung KY, Lee J, Choi JH, Lee SH, Hong N, Lim JS, Park BK, Kim JH, Jung KC, Cho J, Kim MK, Chung CH. 2023 Korean Endocrine Society Consensus Guidelines for the Diagnosis and Management of Primary Aldosteronism. Endocrinol Metab (Seoul) 2023; 38:597-618. [PMID: 37828708 PMCID: PMC10765003 DOI: 10.3803/enm.2023.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Primary aldosteronism (PA) is a common, yet underdiagnosed cause of secondary hypertension. It is characterized by an overproduction of aldosterone, leading to hypertension and/or hypokalemia. Despite affecting between 5.9% and 34% of patients with hypertension, PA is frequently missed due to a lack of clinical awareness and systematic screening, which can result in significant cardiovascular complications. To address this, medical societies have developed clinical practice guidelines to improve the management of hypertension and PA. The Korean Endocrine Society, drawing on a wealth of research, has formulated new guidelines for PA. A task force has been established to prepare PA guidelines, which encompass epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and follow-up care. The Korean clinical guidelines for PA aim to deliver an evidence-based protocol for PA diagnosis, treatment, and patient monitoring. These guidelines are anticipated to ease the burden of this potentially curable condition.
Collapse
Affiliation(s)
- Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Yeun Jung
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Soo Lim
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Han Kim
- Departments of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jooyoung Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-kyung Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Committee of Clinical Practice Guideline of Korean Endocrine Society
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Departments of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - The Korean Adrenal Study Group of Korean Endocrine Society
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Departments of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
13
|
Stölting G, Dinh HA, Volkert M, Hellmig N, Schewe J, Hennicke L, Seidel E, Oberacher H, Zhang J, Lifton RP, Urban I, Long M, Rivalan M, Nottoli T, Scholl UI. Isradipine therapy in Cacna1dIle772Met/+ mice ameliorates primary aldosteronism and neurologic abnormalities. JCI Insight 2023; 8:e162468. [PMID: 37698934 PMCID: PMC10619505 DOI: 10.1172/jci.insight.162468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.
Collapse
Affiliation(s)
- Gabriel Stölting
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hoang An Dinh
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Volkert
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Hellmig
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Schewe
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Luise Hennicke
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Seidel
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Junhui Zhang
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P. Lifton
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | | | - Melissa Long
- Animal Behavior Phenotyping Facility (ABPF), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Rivalan
- Animal Behavior Phenotyping Facility (ABPF), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy Nottoli
- Section of Comparative Medicine, Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ute I. Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Beninato T, Duh QY, Long KL, Kiernan CM, Miller BS, Patel S, Randle RW, Wachtel H, Zanocco KA, Zern NK, Drake FT. Challenges and controversies in adrenal surgery: A practical approach. Curr Probl Surg 2023; 60:101374. [PMID: 37770163 DOI: 10.1016/j.cpsurg.2023.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Affiliation(s)
- Toni Beninato
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Quan-Yang Duh
- Veterans Affairs Medical Center, San Francisco, San Francisco, CA
| | | | - Colleen M Kiernan
- Vanderbilt University Medical Center, Veterans Affairs Medical Center, Tennessee Valley Health System, Nashville, TN
| | - Barbra S Miller
- Division of Surgical Oncology, The Ohio State University, Columbus, OH
| | - Snehal Patel
- Emory University School of Medicine, Atlanta, GA
| | | | | | - Kyle A Zanocco
- David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA
| | | | | |
Collapse
|
15
|
Heizhati M, Aierken X, Gan L, Lin M, Luo Q, Wang M, Hu J, Maimaiti N, Duiyimuhan G, Yang W, Yao L, Zhu Q, Li N. Prevalence of primary aldosteronism in patients with concomitant hypertension and obstructive sleep apnea, baseline data of a cohort. Hypertens Res 2023:10.1038/s41440-023-01226-w. [PMID: 36882631 DOI: 10.1038/s41440-023-01226-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Obstructive sleep apnea (OSA) and primary aldosteronism (PA) often coexist in hypertension, whereas whether hypertensive patients with OSA should be screened for PA is controversial and whether gender, age, obesity and OSA severity should be considered is unexplored. We explored cross-sectionally prevalence and associated factors of PA in co-existent hypertension and OSA by considering gender, age, obesity and OSA severity. OSA was defined as AHI ≥5 events/h. PA diagnosis was defined, based on the 2016 Endocrine Society Guideline. We included 3306 patients with hypertension (2564 with OSA). PA prevalence was significantly higher in hypertensives with OSA than in those without OSA (13.2 vs 10.0%, P = 0.018). In gender-specific analysis, PA prevalence was significantly higher in hypertensive men with OSA, compared to non-OSA ones (13.8 vs 7.7%, P = 0.001). In further analysis, PA prevalence was significantly higher in hypertensive men with OSA aged <45 years (12.7 vs 7.0%), 45-59 years (16.6 vs 8.5%), and with overweight and obesity (14.1 vs 7.1%) than did their counterparts (P < 0.05). For OSA severity, men participants showed increased PA prevalence from non to moderate OSA and a decrease in the severe OSA group (7.7 vs 12.9 vs 15.1 vs 13.7%, P = 0.008). Young and middle age, moderate-severe OSA, weight, and blood pressure showed a positive independent association with PA presence in logistic regression. In conclusion, PA is prevalent in co-existent hypertension and OSA, indicating the need for PA screening. Studies are needed for women, older and lean population due to the smaller samples in this study.
Collapse
Affiliation(s)
- Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Xiayire Aierken
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mengyue Lin
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Menghui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Junli Hu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nuerguli Maimaiti
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Gulinuer Duiyimuhan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Wenbo Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
16
|
Gong S, Tetti M, Kemter E, Peitzsch M, Mulatero P, Bidlingmaier M, Eisenhofer G, Wolf E, Reincke M, Williams TA. TSPAN12 (Tetraspanin 12) Is a Novel Negative Regulator of Aldosterone Production in Adrenal Physiology and Aldosterone-Producing Adenomas. Hypertension 2023; 80:440-450. [PMID: 36458545 DOI: 10.1161/hypertensionaha.122.19783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Aldosterone-producing adenomas (APAs) are a major cause of primary aldosteronism, a condition of low-renin hypertension, in which aldosterone overproduction is usually driven by a somatic activating mutation in an ion pump or channel. TSPAN12 is differentially expressed in different subgroups of APAs suggesting a role in APA pathophysiology. Our objective was to determine the function of TSPAN12 (tetraspanin 12) in adrenal physiology and pathophysiology. METHODS APA specimens, pig adrenals under dietary sodium modulation, and a human adrenocortical cell line HAC15 were used for functional characterization of TSPAN12 in vivo and in vitro. RESULTS Gene ontology analysis of 21 APA transcriptomes dichotomized according to high versus low TSPAN12 transcript levels highlighted a function for TSPAN12 related to the renin-angiotensin system. TSPAN12 expression levels in a cohort of 30 APAs were inversely correlated with baseline plasma aldosterone concentrations (R=-0.47; P=0.009). In a pig model of renin-angiotensin system activation by dietary salt restriction, TSPAN12 mRNA levels and TSPAN12 immunostaining were markedly increased in the zona glomerulosa layer of the adrenal cortex. In vitro stimulation of human adrenocortical human adrenocortical cells with 10 nM angiotensin II for 6 hours caused a 1.6-fold±0.13 increase in TSPAN12 expression, which was ablated by 10 μM nifedipine (P=0.0097) or 30 μM W-7 (P=0.0022). Gene silencing of TSPAN12 in human adrenocortical cells demonstrated its inverse effect on aldosterone secretion under basal and angiotensin II stimulated conditions. CONCLUSIONS Our findings show that TSPAN12 is a negative regulator of aldosterone production and could contribute to aldosterone overproduction in primary aldosteronism.
Collapse
Affiliation(s)
- Siyuan Gong
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (S.G., M.T., M.B., M.R., T.A.W.)
| | - Martina Tetti
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (S.G., M.T., M.B., M.R., T.A.W.).,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany (E.K., E.W.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (M.P., G.E.)
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (S.G., M.T., M.B., M.R., T.A.W.)
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (M.P., G.E.).,Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany (G.E.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany (E.K., E.W.)
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (S.G., M.T., M.B., M.R., T.A.W.)
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany (S.G., M.T., M.B., M.R., T.A.W.).,Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (M.T., P.M., T.A.W.)
| |
Collapse
|
17
|
Vaidya A, Hundemer GL, Nanba K, Parksook WW, Brown JM. Primary Aldosteronism: State-of-the-Art Review. Am J Hypertens 2022; 35:967-988. [PMID: 35767459 PMCID: PMC9729786 DOI: 10.1093/ajh/hpac079] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
We are witnessing a revolution in our understanding of primary aldosteronism (PA). In the past 2 decades, we have learned that PA is a highly prevalent syndrome that is largely attributable to pathogenic somatic mutations, that contributes to cardiovascular, metabolic, and kidney disease, and that when recognized, can be adequately treated with widely available mineralocorticoid receptor antagonists and/or surgical adrenalectomy. Unfortunately, PA is rarely diagnosed, or adequately treated, mainly because of a lack of awareness and education. Most clinicians still possess an outdated understanding of PA; from primary care physicians to hypertension specialists, there is an urgent need to redefine and reintroduce PA to clinicians with a modern and practical approach. In this state-of-the-art review, we provide readers with the most updated knowledge on the pathogenesis, prevalence, diagnosis, and treatment of PA. In particular, we underscore the public health importance of promptly recognizing and treating PA and provide pragmatic solutions to modify clinical practices to achieve this.
Collapse
Affiliation(s)
- Anand Vaidya
- Department of Medicine, Center for Adrenal Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory L Hundemer
- Department of Medicine (Division of Nephrology) and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wasita W Parksook
- Department of Medicine, Division of Endocrinology and Metabolism, and Division of General Internal Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Jenifer M Brown
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Nanba K, Baker JE, Blinder AR, Bick NR, Liu CJ, Lim JS, Wachtel H, Cohen DL, Williams TA, Reincke M, Lyden ML, Bancos I, Young WF, Else T, Giordano TJ, Udager AM, Rainey WE. Histopathology and Genetic Causes of Primary Aldosteronism in Young Adults. J Clin Endocrinol Metab 2022; 107:2473-2482. [PMID: 35779252 PMCID: PMC9761569 DOI: 10.1210/clinem/dgac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Due to its rare incidence, molecular features of primary aldosteronism (PA) in young adults are largely unknown. Recently developed targeted mutational analysis identified aldosterone-driver somatic mutations in aldosterone-producing lesions, including aldosterone-producing adenomas (APAs), aldosterone-producing nodules (APNs), and aldosterone-producing micronodules, formerly known as aldosterone-producing cell clusters. OBJECTIVE To investigate histologic and genetic characteristics of lateralized PA in young adults. METHODS Formalin-fixed, paraffin-embedded adrenal tissue sections from 74 young patients with lateralized PA (<35 years old) were used for this study. Immunohistochemistry (IHC) for aldosterone synthase (CYP11B2) was performed to define the histopathologic diagnosis. Somatic mutations in aldosterone-producing lesions were further determined by CYP11B2 IHC-guided DNA sequencing. RESULTS Based on the CYP11B2 IHC results, histopathologic classification was made as follows: 48 APAs, 20 APNs, 2 multiple aldosterone-producing nodules (MAPN), 1 double APN, 1 APA with MAPN, and 2 nonfunctioning adenomas (NFAs). Of 45 APAs with successful sequencing, 43 (96%) had somatic mutations, with KCNJ5 mutations being the most common genetic cause of young-onset APA (35/45, 78%). Of 18 APNs with successful sequencing, all of them harbored somatic mutations, with CACNA1D mutations being the most frequent genetic alteration in young-onset APN (8/18, 44%). Multiple CYP11B2-expressing lesions in patients with MAPN showed several aldosterone-driver mutations. No somatic mutations were identified in NFAs. CONCLUSION APA is the most common histologic feature of lateralized PA in young adults. Somatic KCNJ5 mutations are common in APAs, whereas CACNA1D mutations are often seen in APNs in this young PA population.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Correspondence: Kazutaka Nanba, MD, Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| | - Jessica E Baker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nolan R Bick
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jung Soo Lim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heather Wachtel
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debbie L Cohen
- Division of Renal, Electrolyte and Hypertension, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Melanie L Lyden
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William E Rainey
- Correspondence: William E. Rainey, PhD, Department of Molecular and Integrative Physiology, University of Michigan, 2558 MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Turcu AF, Nhan W, Grigoryan S, Zhang L, Urban C, Liu H, Holevinski L, Zhao L. Primary Aldosteronism Screening Rates Differ with Sex, Race, and Comorbidities. J Am Heart Assoc 2022; 11:e025952. [PMID: 35861830 PMCID: PMC9707846 DOI: 10.1161/jaha.122.025952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background
Primary aldosteronism (PA) is a common but under‐recognized cause of secondary hypertension. Data directly comparing screening rates across single and overlapping indications are lacking.
Methods and Results
We conducted a retrospective review of adults with hypertension seen in outpatient clinics at a tertiary referral academic center between January 1, 2017, and June 30, 2020. We included patients with hypertension plus at least one of the following: resistant hypertension; age<35 years; obstructive sleep apnea; hypokalemia; or an adrenal mass. We excluded patients with adrenal insufficiency, severe renal disease, or heart failure, and renovascular hypertension. Of 203 535 patients with hypertension, 86044 (42.3%) met at least 1 PA screening criterion, and of these, 2898 (3.4%) were screened for PA. Screening occurred in 2.7% of patients with resistant hypertension; 4.2% of those with obstructive sleep apnea; 5.1% of those <35 years; 10.0% of those with hypokalemia; and 47.3% of patients with an adrenal mass. Screening rates were higher in patients with multiple risk factors: 16.8% for ≥3, 5.7% for 2, and 2.5% for 1 criterion. Multiple logistic regression showed that the odds of PA screening were higher in patients with hypokalemia: odds ratio (95% CI): 3.0 (2.7–3.3); women: 1.3 (1.2–1.4); Black versus White: 1.5 (1.4–1.7); those with obstructive sleep apnea, chronic renal disease, stroke, and dyslipidemia.
Conclusions
Consideration for PA is given in a small subset of at‐risk patients, and typically after comorbidities have developed.
Collapse
Affiliation(s)
- Adina F. Turcu
- Division of Metabolism, Endocrinology, and Diabetes University of Michigan Ann Arbor MI
| | - Winnie Nhan
- Division of Metabolism, Endocrinology, and Diabetes University of Michigan Ann Arbor MI
| | - Seda Grigoryan
- Division of Metabolism, Endocrinology, and Diabetes University of Michigan Ann Arbor MI
| | - Lei Zhang
- School of Public Health University of Michigan Ann Arbor MI
| | - Caitlin Urban
- Michigan State University College of Human Medicine East Lansing MI
| | - Haiping Liu
- Division of Metabolism, Endocrinology, and Diabetes University of Michigan Ann Arbor MI
| | - Lynn Holevinski
- University of Michigan Medical School, Data Office for Clinical and Translational Research Ann Arbor MI
| | - Lili Zhao
- School of Public Health University of Michigan Ann Arbor MI
| |
Collapse
|
20
|
Santana LS, Guimaraes AG, Almeida MQ. Pathogenesis of Primary Aldosteronism: Impact on Clinical Outcome. Front Endocrinol (Lausanne) 2022; 13:927669. [PMID: 35813615 PMCID: PMC9261097 DOI: 10.3389/fendo.2022.927669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary arterial hypertension, with a prevalence of approximately 20% in patients with resistant hypertension. In the last decade, somatic pathogenic variants in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 genes, which are involved in maintaining intracellular ionic homeostasis and cell membrane potential, were described in aldosterone-producing adenomas (aldosteronomas). All variants in these genes lead to the activation of calcium signaling, the major trigger for aldosterone production. Genetic causes of familial hyperaldosteronism have been expanded through the report of germline pathogenic variants in KCNJ5, CACNA1H and CLCN2 genes. Moreover, PDE2A and PDE3B variants were associated with bilateral PA and increased the spectrum of genetic etiologies of PA. Of great importance, the genetic investigation of adrenal lesions guided by the CYP11B2 staining strongly changed the landscape of somatic genetic findings of PA. Furthermore, CYP11B2 staining allowed the better characterization of the aldosterone-producing adrenal lesions in unilateral PA. Aldosterone production may occur from multiple sources, such as solitary aldosteronoma or aldosterone-producing nodule (classical histopathology) or clusters of autonomous aldosterone-producing cells without apparent neoplasia denominated aldosterone-producing micronodules (non-classical histopathology). Interestingly, KCNJ5 mutational status and classical histopathology of unilateral PA (aldosteronoma) have emerged as relevant predictors of clinical and biochemical outcome, respectively. In this review, we summarize the most recent advances in the pathogenesis of PA and discuss their impact on clinical outcome.
Collapse
Affiliation(s)
- Lucas S. Santana
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Augusto G. Guimaraes
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Madson Q. Almeida
- Unidade de Adrenal, Laboratório de Hormônios e Genética Molecular Laboratório de Investigação Médica 42 (LIM/42), Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Oncologia Endócrina, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Renin-independent aldosterone production from one or both affected adrenal(s), a condition known as primary aldosteronism (PA), is a common cause of secondary hypertension. In this review, we aimed to summarize recent findings regarding pathophysiology of bilateral forms of PA, including sporadic bilateral hyperaldosteronism (BHA) and rare familial hyperaldosteronism. RECENT FINDINGS The presence of subcapsular aldosterone synthase (CYP11B2)-expressing aldosterone-producing micronodules, also called aldosterone-producing cell clusters, appears to be a common histologic feature of adrenals with sporadic BHA. Aldosterone-producing micronodules frequently harbor aldosterone-driver somatic mutations. Other potential factors leading to sporadic BHA include rare disease-predisposing germline variants, circulating angiotensin II type 1 receptor autoantibodies, and paracrine activation of aldosterone production by adrenal mast cells. The application of whole exome sequencing has also identified new genes that cause inherited familial forms of PA. SUMMARY Research over the past 10 years has significantly improved our understanding of the molecular pathogenesis of bilateral PA. Based on the improved understanding of BHA, future studies should have the ability to develop more personalized treatment options and advanced diagnostic tools for patients with PA.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Familial forms and molecular profile of primary hyperaldosteronism. HIPERTENSION Y RIESGO VASCULAR 2022; 39:167-173. [DOI: 10.1016/j.hipert.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
23
|
Abstract
Primary aldosteronism is considered the commonest cause of secondary hypertension. In affected individuals, aldosterone is produced in an at least partially autonomous fashion in adrenal lesions (adenomas, [micro]nodules or diffuse hyperplasia). Over the past decade, next-generation sequencing studies have led to the insight that primary aldosteronism is largely a genetic disorder. Sporadic cases are due to somatic mutations, mostly in ion channels and pumps, and rare cases of familial hyperaldosteronism are caused by germline mutations in an overlapping set of genes. More than 90% of aldosterone-producing adenomas carry somatic mutations in K+ channel Kir3.4 (KCNJ5), Ca2+ channel CaV1.3 (CACNA1D), alpha-1 subunit of the Na+/K+ ATPase (ATP1A1), plasma membrane Ca2+ transporting ATPase 3 (ATP2B3), Ca2+ channel CaV3.2 (CACNA1H), Cl− channel ClC-2 (CLCN2), β-catenin (CTNNB1), and/or G-protein subunits alpha q/11 (GNAQ/11). Mutations in some of these genes have also been identified in aldosterone-producing (micro)nodules, suggesting a disease continuum from a single cell, acquiring a somatic mutation, via a nodule to adenoma formation, and from a healthy state to subclinical to overt primary aldosteronism. Individual glands can have multiple such lesions, and they can occur on both glands in bilateral disease. Familial hyperaldosteronism, typically with early onset, is caused by germline mutations in steroid 11-beta hydroxylase/ aldosterone synthase (CYP11B1/2), CLCN2, KCNJ5, CACNA1H, and CACNA1D.
Collapse
Affiliation(s)
- Ute I Scholl
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Germany
| |
Collapse
|
24
|
Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol Metab 2022; 33:36-49. [PMID: 34743804 DOI: 10.1016/j.tem.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
Primary aldosteronism (PA) can be sporadic or familial and classified into unilateral and bilateral forms. Sporadic PA predominates with excessive aldosterone production usually arising from a unilateral aldosterone-producing adenoma (APA) or bilateral adrenocortical hyperplasia. Familial PA is rare and caused by germline variants, that partly correspond to somatic alterations in APAs. Classification into unilateral and bilateral PA determines the treatment approach but does not accurately mirror disease pathology. Some evidence indicates a disease continuum ranging from balanced aldosterone production from each adrenal to extreme asymmetrical bilateral aldosterone production. Nonetheless, surgical removal of the overactive adrenal in unilateral PA achieves highly successful outcomes and almost all patients are biochemically cured of their aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| |
Collapse
|
25
|
Parksook WW, Yozamp N, Hundemer GL, Moussa M, Underhill J, Fudim T, Sacks B, Vaidya A. Morphologically Normal-Appearing Adrenal Glands as a Prevalent Source of Aldosterone Production in Primary Aldosteronism. Am J Hypertens 2021; 35:561-571. [PMID: 34883509 PMCID: PMC9890245 DOI: 10.1093/ajh/hpab189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Normal-appearing adrenal glands on cross-sectional imaging may still be the source of aldosterone production in primary aldosteronism (PA). METHODS We evaluated the prevalence of aldosterone production among morphologically normal-appearing adrenal glands and the impact of this phenomenon on interpretations of localization studies and treatment decisions. We performed a retrospective cohort study of PA patients with at least 1 normal adrenal gland and reanalyzed contemporary studies to assess interpretations of imaging and adrenal venous sampling (AVS) at the individual patient and adrenal levels. RESULTS Among 243 patients, 43 (18%) had bilateral normal-appearing adrenals and 200 (82%) had a unilateral normal-appearing adrenal, for a total of 286 normal-appearing adrenal glands. 38% of these normal-appearing adrenal glands were a source of aldosteronism on AVS, resulting in discordance between imaging and AVS findings in 31% of patients. Most patients with lateralizing PA underwent curative unilateral treatment (80%); however, curative treatment was pursued in 92% of patients who had concordant imaging-AVS results but in only 38% who had discordant results (P < 0.05). In young patients, imaging-AVS discordance was detected in 32% of those under 45 years and 21% of those under 35 years. Among 20 contemporary studies (including 4,904 patients and 6,934 normal-appearing adrenal glands), up to 64% of normal-appearing adrenals were a source of aldosteronism resulting in 31% of patients having discordant results. CONCLUSIONS Morphologically normal-appearing adrenal glands are commonly the source of aldosterone production in PA, even among young patients. The lack of awareness of this issue may result in inappropriate treatment recommendations.
Collapse
Affiliation(s)
- Wasita W Parksook
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine (Division of Endocrinology and Metabolism, and Division of General Internal Medicine), Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nicholas Yozamp
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory L Hundemer
- Department of Medicine (Division of Nephrology) and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Marwan Moussa
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Underhill
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tali Fudim
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Sacks
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Chiodini I, Gennari L. Grand Challenge in Adrenal Endocrinology: Is the Legacy of the Past a Challenge for the Future of Precision Medicine? Front Endocrinol (Lausanne) 2021; 12:747006. [PMID: 34539585 PMCID: PMC8446680 DOI: 10.3389/fendo.2021.747006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Iacopo Chiodini
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|