1
|
Tang Y, Tang S, Yang W, Zhang Z, Wang T, Wu Y, Xu J, Pilarsky C, Mazzone M, Wang LW, Sun Y, Tian R, Tang Y, Wang Y, Wang C, Xue J. MED12 loss activates endogenous retroelements to sensitise immunotherapy in pancreatic cancer. Gut 2024:gutjnl-2024-332350. [PMID: 39216984 DOI: 10.1136/gutjnl-2024-332350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by its lethality and limited treatment options, including the utilisation of checkpoint blockade (ICB) immunotherapy. Epigenetic dysregulation is a defining feature of tumourigenesis that is implicated in immune surveillance, but remains elusive in PDAC. DESIGN To identify the factors that modulate immune surveillance, we employed in vivo epigenetic-focused CRISPR-Cas9 screen in mouse PDAC tumour models engrafted in either immunocompetent or immunodeficient mice. RESULTS Here, we identified MED12 as a top hit, emerging as a potent negative modulator of immune tumour microenviroment (TME) in PDAC. Loss of Med12 significantly promoted infiltration and cytotoxicity of immune cells including CD8+ T cells, natural killer (NK) and NK1.1+ T cells in tumours, thereby heightening the sensitivity of ICB treatment in a mouse model of PDAC. Mechanistically, MED12 stabilised heterochromatin protein HP1A to repress H3K9me3-marked endogenous retroelements. The derepression of retrotransposons induced by MED12 loss triggered cytosolic nucleic acid sensing and subsequent activation of type I interferon pathways, ultimately leading to robust inflamed TME . Moreover, we uncovered a negative correlation between MED12 expression and immune resposne pathways, retrotransposon levels as well as the prognosis of patients with PDAC undergoing ICB therapy. CONCLUSION In summary, our findings underscore the pivotal role of MED12 in remodelling immnue TME through the epigenetic silencing of retrotransposons, offering a potential therapeutic target for enhancing tumour immunogenicity and overcoming immunotherapy resistance in PDAC.
Collapse
Affiliation(s)
- Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Tang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wenjuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Yuyun Wu
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Lei-Wei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary and Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Ruijun Tian
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Hangzhou, China
- Biomedical and Health Translational Research Centre, Zhejiang University, Zhejiang, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Andolfi C, Bartolini C, Morales E, Gündoğdu B, Puhr M, Guzman J, Wach S, Taubert H, Aigner A, Eder IE, Handle F, Culig Z. MED12 and CDK8/19 Modulate Androgen Receptor Activity and Enzalutamide Response in Prostate Cancer. Endocrinology 2024; 165:bqae114. [PMID: 39253786 PMCID: PMC11398899 DOI: 10.1210/endocr/bqae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Prostate cancer progression is driven by androgen receptor (AR) activity, which is a target for therapeutic approaches. Enzalutamide is an AR inhibitor that prolongs the survival of patients with advanced prostate cancer. However, resistance mechanisms arise and impair its efficacy. One of these mechanisms is the expression of AR-V7, a constitutively active AR splice variant. The Mediator complex is a multisubunit protein that modulates gene expression on a genome-wide scale. MED12 and cyclin-dependent kinase (CDK)8, or its paralog CDK19, are components of the kinase module that regulates the proliferation of prostate cancer cells. In this study, we investigated how MED12 and CDK8/19 influence cancer-driven processes in prostate cancer cell lines, focusing on AR activity and the enzalutamide response. We inhibited MED12 expression and CDK8/19 activity in LNCaP (AR+, enzalutamide-sensitive), 22Rv1 (AR-V7+, enzalutamide-resistant), and PC3 (AR-, enzalutamide-insensitive) cells. Both MED12 and CDK8/19 inhibition reduced cell proliferation in all cell lines, and MED12 inhibition reduced proliferation in the respective 3D spheroids. MED12 knockdown significantly inhibited c-Myc protein expression and signaling pathways. In 22Rv1 cells, it consistently inhibited the AR response, prostate-specific antigen (PSA) secretion, AR target genes, and AR-V7 expression. Combined with enzalutamide, MED12 inhibition additively decreased the AR activity in both LNCaP and 22Rv1 cells. CDK8/19 inhibition significantly decreased PSA secretion in LNCaP and 22Rv1 cells and, when combined with enzalutamide, additively reduced proliferation in 22Rv1 cells. Our study revealed that MED12 and CDK8/19 regulate AR activity and that their inhibition may modulate response to enzalutamide in prostate cancer.
Collapse
Affiliation(s)
- Chiara Andolfi
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Caterina Bartolini
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- University of Florence, 50 121 Florence, Italy
| | - Elisa Morales
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Johannes Gutenberg University Mainz, 55122 Mainz, Germany
| | - Büşra Gündoğdu
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Graudate School of Science and Engineering, Yıldız Technical University, 34220 Istanbul, Turkey
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04107 Leipzig, Germany
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Pathology, Neuropathology & Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Alfahed A, Ebili HO, Almoammar NE, Alasiri G, AlKhamees OA, Aldali JA, Al Othaim A, Hakami ZH, Abdulwahed AM, Waggiallah HA. Prognostic Values of Gene Copy Number Alterations in Prostate Cancer. Genes (Basel) 2023; 14:genes14050956. [PMID: 37239316 DOI: 10.3390/genes14050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulhadi M Abdulwahed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Naghizadeh MM, Bakhshandeh B, Noorbakhsh F, Yaghmaie M, Masoudi-Nejad A. Rewiring of miRNA-mRNA bipartite co-expression network as a novel way to understand the prostate cancer related players. Syst Biol Reprod Med 2023:1-12. [PMID: 37018429 DOI: 10.1080/19396368.2023.2187268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The differential expression and direct targeting of mRNA by miRNA are two main logics of the traditional approach to constructing the miRNA-mRNA network. This approach, could be led to the loss of considerable information and some challenges of direct targeting. To avoid these problems, we analyzed the rewiring network and constructed two miRNA-mRNA expression bipartite networks for both normal and primary prostate cancer tissue obtained from PRAD-TCGA. We then calculated beta-coefficient of the regression-model when miR was dependent and mRNA independent for each miR and mRNA and separately in both networks. We defined the rewired edges as a significant change in the regression coefficient between normal and cancer states. The rewired nodes through multinomial distribution were defined and network from rewired edges and nodes was analyzed and enriched. Of the 306 rewired edges, 112(37%) were new, 123(40%) were lost, 44(14%) were strengthened, and 27(9%) weakened connections were discovered. The highest centrality of 106 rewired mRNAs belonged to PGM5, BOD1L1, C1S, SEPG, TMEFF2, and CSNK2A1. The highest centrality of 68 rewired miRs belonged to miR-181d, miR-4677, miR-4662a, miR-9.3, and miR-1301. SMAD and beta-catenin binding were enriched as molecular functions. The regulation was a frequently repeated concept in the biological process. Our rewiring analysis highlighted the impact of β-catenin and SMAD signaling as also some transcript factors like TGFB1I1 in prostate cancer progression. Altogether, we developed a miRNA-mRNA co-expression bipartite network to identify the hidden aspects of the prostate cancer mechanism, which traditional analysis -like differential expression- was not detect it.
Collapse
Affiliation(s)
- Mohammad Mehdi Naghizadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
6
|
Yasutake N, Iwasaki T, Yamamoto H, Sonoda K, Kodama K, Okugawa K, Asanoma K, Yahata H, Kato K, Oda Y. Cyclin-dependent kinase 8 is an independent prognosticator in uterine leiomyosarcoma. Pathol Res Pract 2022; 235:153920. [DOI: 10.1016/j.prp.2022.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
7
|
Weitz P, Wang Y, Kartasalo K, Egevad L, Lindberg J, Grönberg H, Eklund M, Rantalainen M. Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression based convolutional neural networks. Bioinformatics 2022; 38:3462-3469. [PMID: 35595235 PMCID: PMC9237721 DOI: 10.1093/bioinformatics/btac343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/18/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
Motivation Molecular phenotyping by gene expression profiling is central in contemporary cancer research and in molecular diagnostics but remains resource intense to implement. Changes in gene expression occurring in tumours cause morphological changes in tissue, which can be observed on the microscopic level. The relationship between morphological patterns and some of the molecular phenotypes can be exploited to predict molecular phenotypes from routine haematoxylin and eosin-stained whole slide images (WSIs) using convolutional neural networks (CNNs). In this study, we propose a new, computationally efficient approach to model relationships between morphology and gene expression. Results We conducted the first transcriptome-wide analysis in prostate cancer, using CNNs to predict bulk RNA-sequencing estimates from WSIs for 370 patients from the TCGA PRAD study. Out of 15 586 protein coding transcripts, 6618 had predicted expression significantly associated with RNA-seq estimates (FDR-adjusted P-value <1×10−4) in a cross-validation and 5419 (81.9%) of these associations were subsequently validated in a held-out test set. We furthermore predicted the prognostic cell-cycle progression score directly from WSIs. These findings suggest that contemporary computer vision models offer an inexpensive and scalable solution for prediction of gene expression phenotypes directly from WSIs, providing opportunity for cost-effective large-scale research studies and molecular diagnostics. Availability and implementation A self-contained example is available from http://github.com/phiwei/prostate_coexpression. Model predictions and metrics are available from doi.org/10.5281/zenodo.4739097. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Philippe Weitz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yinxi Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Kimmo Kartasalo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.,Faculty of Medicine and Health Technology, Tampere University, Tampere, 33100, Finland
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden.,Science for Life Laboratory, Stockholm, 17177, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
8
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
9
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
10
|
Srivastava S, Makala H, Sharma V, Suri V, Sarkar C, Kulshreshtha R. MED12 is overexpressed in glioblastoma patients and serves as an oncogene by targeting the VDR/BCL6/p53 axis. Cell Mol Life Sci 2022; 79:104. [PMID: 35091793 PMCID: PMC11071957 DOI: 10.1007/s00018-021-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 11/03/2022]
Abstract
Glioblastoma is the most life-threatening tumor of the central nervous system. Despite recent therapeutic advancements, maximum survival of glioblastoma patients remains dismal. The mediator complex is a set of proteins, essential for eukaryotic gene expression. Abnormal expression/mutations of specific mediator genes have been associated with progression of various cancers, however, its role and status in glioblastoma remains largely unknown. Our work shows overexpression of a subunit of kinase assembly of mediator complex, MED12, in various glioblastoma patient cohorts including Indian glioblastoma patients and cell lines. Functional characterization of MED12 using both overexpression and knockdown approach revealed that it promotes glioblastoma cell proliferation, migration and inhibits apoptosis. Transcriptome analysis post MED12 knockdown revealed Vitamin D receptor (VDR) pathway to be one of the key pathways affected by MED12 in glioblastoma. We studied direct interaction of MED12 with VDR protein using docking studies and co-immunoprecipitation assay. We identify BCL6, a secondary regulator of VDR signaling, to be directly regulated by MED12 through a combination of chromatin immunoprecipitation, qRT-PCR and western analyses. We further show that MED12 brings about the inhibition of p53 levels and apoptosis partly through induction of BCL6 in glioblastoma. Overall, this stands as the first report of MED12 over-expression and involvement in glioblastoma pathogenesis and identifies MED12 as an important mediator of VDR signaling and an attractive molecule for development of new therapeutic interventions.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hima Makala
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vaishali Suri
- Neuropathology Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
11
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
12
|
Sooraj D, Sun C, Doan A, Garama DJ, Dannappel MV, Zhu D, Chua HK, Mahara S, Wan Hassan WA, Tay YK, Guanizo A, Croagh D, Prodanovic Z, Gough DJ, Wan C, Firestein R. MED12 and BRD4 cooperate to sustain cancer growth upon loss of mediator kinase. Mol Cell 2022; 82:123-139.e7. [PMID: 34910943 DOI: 10.1016/j.molcel.2021.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022]
Abstract
Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Binding Sites
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/genetics
- Cyclin-Dependent Kinase 8/genetics
- Cyclin-Dependent Kinase 8/metabolism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Male
- Mediator Complex/antagonists & inhibitors
- Mediator Complex/genetics
- Mediator Complex/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Claire Sun
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Anh Doan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Daniel J Garama
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Marius V Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Danxi Zhu
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Hui K Chua
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Sylvia Mahara
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Wan Amir Wan Hassan
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Yeng Kwang Tay
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Aleks Guanizo
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Daniel Croagh
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Zdenka Prodanovic
- Department of Pathology, Monash Medical Centre, Clayton, VIC, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Chunhua Wan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
13
|
Straub J, Venigalla S, Newman JJ. Mediator's Kinase Module: A Modular Regulator of Cell Fate. Stem Cells Dev 2020; 29:1535-1551. [PMID: 33161841 DOI: 10.1089/scd.2020.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective gene expression is crucial in maintaining the self-renewing and multipotent properties of stem cells. Mediator is a large, evolutionarily conserved, multi-subunit protein complex that modulates gene expression by relaying signals from cell type-specific transcription factors to RNA polymerase II. In humans, this complex consists of 30 subunits arranged in four modules. One critical module of the Mediator complex is the kinase module consisting of four subunits: MED12, MED13, CDK8, and CCNC. The kinase module exists in variable association with the 26-subunit Mediator core and affects transcription through phosphorylation of transcription factors and by controlling Mediator structure and function. Many studies have shown the kinase module to be a key player in the maintenance of stem cells that is distinct from a general role in transcription. Genetic studies have revealed that dysregulation of this kinase subunit contributes to the development of many human diseases. In this review, we discuss the importance of the Mediator kinase module by examining how this module functions with the more recently identified transcriptional super-enhancers, how changes in the kinase module and its activity can lead to the development of human disease, and the role of this unique module in directing and maintaining cell state. As we look to use stem cells to understand human development and treat human disease through both cell-based therapies and tissue engineering, we need to remain aware of the on-going research and address critical gaps in knowledge related to the molecular mechanisms that control cell fate.
Collapse
Affiliation(s)
- Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| |
Collapse
|
14
|
Vlajnic T, Bubendorf L. Molecular pathology of prostate cancer: a practical approach. Pathology 2020; 53:36-43. [PMID: 33234230 DOI: 10.1016/j.pathol.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
While localised prostate cancer can be cured by local treatment, 'high-risk' prostate cancer often progresses to castration resistant disease and remains incurable with a dismal prognosis. In recent years, technical advances and development of novel methodologies have largely contributed to a better understanding of underlying molecular mechanisms that promote tumour growth and progression. Consecutively, novel therapeutic strategies for treatment of prostate cancer have emerged during the last decade, calling for the identification of predictive biomarkers. The concept of personalised medicine is to tailor treatment according to the specific tumour profile of an individual patient. Moreover, acquired molecular changes during tumour evolution and in response to therapy selection pressure require adapted predictive marker testing at different time points during the disease. In this setting, the pathologist plays a critical role in patient management and treatment selection. In this review, we provide a comprehensive overview of the current knowledge of molecular aspects of prostate cancer and their potential utility in the context of different therapeutic approaches. Furthermore, we discuss methods for molecular marker testing in routine clinical practice, with a focus on castration resistant prostate cancer.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Srivastava S, Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 2020; 236:3163-3177. [PMID: 33174211 DOI: 10.1002/jcp.30099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional dysregulation is central to many diseases including cancer. Mutation or deregulated expression of proteins involved in transcriptional machinery leads to aberrant gene expression that disturbs intricate cellular processes of division and differentiation. The subunits of the mediator complex are master regulators of stimuli-derived transcription and are essential for transcription by RNA polymerase II. MED12 is a part of the CDK8 kinase module of the mediator complex and is essential for kinase assembly and function. Other than its function in activation of the kinase activity of CDK8 mediator, it also brings about transcription repression or activation, in response to several signalling pathways, a function that is independent of its role as a part of kinase assembly. Accumulating evidence suggests that MED12 controls complex transcription programs that are defining in cell fate determination, differentiation, and carcinogenesis. Mutations or differential expression of MED12 manifest in several human disorders and diseases. For instance, MED12 mutations are the gold standard for the diagnosis of several X-linked intellectual disability syndromes. Further, certain MED12 mutations are categorised as driver mutations in carcinogenesis as well. This is a timely review that provides for the first time a wholesome view on the critical roles and pathways regulated by MED12, its interactions along with the implications of MED12 alterations/mutations in various cancers and nonneoplastic disorders. Based on the preclinical studies, MED12 indeed emerges as an attractive novel therapeutic target for various diseases and intellectual disorders.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Introduction of Somatic Mutation in MED12 Induces Wnt4/β-Catenin and Disrupts Autophagy in Human Uterine Myometrial Cell. Reprod Sci 2020; 27:823-832. [PMID: 32046450 DOI: 10.1007/s43032-019-00084-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Uterine fibroids (UFs) or leiomyoma are frequently associated with somatic mutations in the mediator complex subunit 12 (MED12) gene; however, the function of these mutations in human UF biology is yet to be determined. Herein, we determined the functional role of the most common MED12 somatic mutation in the modulation of oncogenic Wnt4/β-catenin and mammalian target of rapamycin (mTOR) signaling pathways. Using an immortalized human uterine myometrial smooth muscle cell line (UtSM), we constitutively overexpressed either MED12-Wild Type or the most common MED12 somatic mutation (c.131G>A), and the effects of this MED12 mutation were compared between these cell lines. This immortalized cell line was used as a model because it expresses wild type MED12 protein and do not possess MED12 somatic mutations. By comparing the effect between MED12-WT and MED12-mutant (mut) stable cell populations, we observed increased levels of protein expression of Wnt4 and β-catenin in MED12-mut cells as compared with MED12-WT cells. MED12-mut cells also expressed increased levels of mTOR protein and oncogenic cyclin D1 which are hallmarks of cell growth and tumorigenicity. This somatic mutation in MED12 showed an effect on cell-cycle progression by induction of S-phase cells. MED12-mut cells also showed inhibition of autophagy as compared with MED12-WT cells. Together, these findings indicate that the MED12 somatic mutation has the potentials for myometrial cell transformation by dysregulating oncogenic Wnt4/β-catenin and its downstream mTOR signaling which might be associated with autophagy abrogation, cell proliferation, and tumorigenicity.
Collapse
|
17
|
Zhang S, O'Regan R, Xu W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer 2019; 126:939-948. [PMID: 31869450 DOI: 10.1002/cncr.32672] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation induced by disease-defining genetic alterations of proteins in transcriptional machinery is a key feature of cancers. Mediator complex subunit 12 (MED12) is the central architectural subunit in the kinase module of Mediator, a large transcriptional regulatory complex that controls essential steps of transcription. Emerging evidence links deregulated MED12 to human cancers. MED12 is frequently mutated in benign tumors and cancers. Although the missense mutations of MED12 in benign tumors disrupt the kinase activity of Mediator, MED12 mutations in cancers could eliminate the interaction between Mediator complex and RNA polymerase II, leading to severe transcriptional misregulation. Aberrant expression of MED12 is associated with the prognosis of various types of human cancers. Loss of MED12 function has been associated with the development of resistance to chemotherapeutics. Moreover, MED12 is modified by posttranscriptional regulations. Arginine methylation of MED12 has been shown to regulate MED12-mediated transcriptional regulation and response to chemotherapeutics in human cancer cell lines. In this mini-review, the authors provide an overview of the roles of MED12 in the development of benign and malignant tumors as well as its roles in chemoresistance. The studies of MED12 exemplify that aberrant transcriptional programming is a therapeutic vulnerability for certain types of cancer.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruth O'Regan
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
18
|
Xu M, Wang F, Li G, Wang X, Fang X, Jin H, Chen Z, Zhang J, Fu L. MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC. Mol Cancer 2019; 18:93. [PMID: 31072327 PMCID: PMC6509838 DOI: 10.1186/s12943-019-1020-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Mediator complex subunit 12 (MED12) is an essential hub for transcriptional regulation, in which mutations and overexpression were reported to be associated with several kinds of malignancies. Nevertheless, the role of MED12 in non-small cell lung cancer (NSCLC) remains to be elucidated. Methods MED12 mutation was detected by Next-generation sequencing. The expression of MED12 in 179 human NSCLC tissue samples and 73 corresponding adjacent normal lung tissue samples was measured by immunohistochemistry (IHC). CRISPR-Cas9 was used to knock out MED12 in PC9 and SPC-A1 cells. MED12 rescued stable cell lines were generated by lentivirus infection. We traced cell division process by live cell imaging. The molecular mechanism of aborted cytokinesis resulted by MED12 knockout was investigated by RNA-seq. Effects of MED12 deletion on the proliferation of NSCLC cells were determined by MTT assay and Colony-formation assay in vitro and xenograft tumor model in nude mouse. Cell senescence was measured by SA-β-gal staining. Results In our study, no MED12 exon mutation was detected in NSCLC samples, whereas we found that MED12 was overexpressed in human NSCLC tissues, which positively correlated with the tumor volume and adversely affected patient survival. Furthermore, knockout MED12 in NSCLC cell lines resulted in cytokinesis failure, displayed a multinuclear phenotype, and disposed to senescence, and become non-viable. Lack of MED12 decreased the proliferative potential of NSCLC cells and limited the tumor growth in vivo. Mechanism investigations revealed that MED12 knockout activated LIMK2, caused aberrant actin cytoskeleton remodeling, and disrupted the abscission of intercellular bridge, which led to the cytokinesis failure. Reconstitution of exogenous MED12 restored actin dynamics, normal cytokinesis and cell proliferation capacity in MED12 knockout cells. Conclusions These results revealed a novel role of MED12 as an important regulator for maintaining accurate cytokinesis and survival in NSCLC cells, which may offer a therapeutic strategy to control tumor growth for NSCLC patients especially those highly expressed MED12. Electronic supplementary material The online version of this article (10.1186/s12943-019-1020-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.,Radiotherapy Department of Thorax & Abdomen Tumor, Cancer Center, The First People's Hospital of Foshan Affiliated to Sun Yat-sen University, Foshan, 528000, China
| | - Fang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Guibo Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Xiaokun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Xiaona Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Haoxuan Jin
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liwu Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
19
|
Immunohistochemical profiling of receptor tyrosine kinases, MED12, and TGF-βRII of surgically resected small cell lung cancer, and the potential of c-kit as a prognostic marker. Oncotarget 2018; 8:39711-39726. [PMID: 28055980 PMCID: PMC5503646 DOI: 10.18632/oncotarget.14410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
The limited number of available treatments for patients with small-cell lung cancer (SCLC) has prompted us to further investigate the biology of SCLC by molecular profiling. We collected formalin-fixed paraffin-embedded tumor samples from 127 patients with SCLC, who had undergone surgery at 16 institutions between January 2003 and January 2013, and analyzed the association between disease-specific survival and protein expression of c-kit, c-Met, epidermal growth factor receptor, human EGFR-related 2, vascular endothelial growth factor receptor II, anaplastic lymphoma kinase, mediator complex subunit 12 (MED12), and transforming growth factor beta receptor II (TGF-βRII) by immunohistochemistry (IHC). Of the 125 evaluable samples, all tumors expressed MED12, and 123 samples (98.4%) expressed TGF-βRII. MED12 was highly expressed in the nucleus in 92% of the positive samples while TGF-βRII was highly expressed in the cytoplasm in 55% of the positive samples. High c-kit expression was an independent favorable prognostic marker confirmed by multivariate analysis (hazard ratio: 0.543, 95% confidence interval: 0.310-0.953, p = 0.033). Both the relapse free-survival and overall survival of patients who underwent adjuvant chemotherapy were statistically longer in those with high c-kit expression (n = 38) than those with intermediate, low, or no c-kit expression (n = 19) (not reached vs 11.6 months, p = 0.021; not reached vs 25.9 months, p = 0.028). IHC for c-kit may offer a prognostic marker for early-stage SCLC, and the results for MED12 and TGF-βRII may suggest the biological characteristics of SCLC. Further investigation of the roles of their related molecules in early stage SCLC is required.
Collapse
|
20
|
Luo XL, Deng CC, Su XD, Wang F, Chen Z, Wu XP, Liang SB, Liu JH, Fu LW. Loss of MED12 Induces Tumor Dormancy in Human Epithelial Ovarian Cancer via Downregulation of EGFR. Cancer Res 2018; 78:3532-3543. [PMID: 29735544 DOI: 10.1158/0008-5472.can-18-0134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/24/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
A high rate of disease relapse makes epithelial ovarian cancer (EOC) the leading cause of death among all gynecologic malignancies. These relapses are often due to tumor dormancy. Here we identify the RNA polymerase II transcriptional mediator subunit 12 (MED12) as an important molecular regulator of tumor dormancy. MED12 knockout (KO) induced dormancy of EOC cells in vitro and in vivo, and microarray analysis showed that MED12 KO decreased expression of EGFR. Restoration of EGFR expression in MED12 KO cells restored proliferation. Additionally, MED12 bound to the promoter of EGFR, and correlation studies showed that MED12 expression positively correlated with EGFR expression in EOC patient samples. Clinical data demonstrated that chemotherapy-resistant patients expressed lower levels of MED12 compared with responsive patients. Overall, our data show that MED12 plays an important role in regulating dormancy of EOC through regulation of EGFR.Significance: MED12 is identified as a novel, important regulator of tumor dormancy in human ovarian cancer. Cancer Res; 78(13); 3532-43. ©2018 AACR.
Collapse
Affiliation(s)
- Xiao-Lin Luo
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng-Cheng Deng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao-Dong Su
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhen Chen
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing-Ping Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shao-Bo Liang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji-Hong Liu
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Li-Wu Fu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
21
|
Weber H, Garabedian MJ. The mediator complex in genomic and non-genomic signaling in cancer. Steroids 2018; 133:8-14. [PMID: 29157917 PMCID: PMC5864542 DOI: 10.1016/j.steroids.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance.
Collapse
Affiliation(s)
- Hannah Weber
- Departments of Microbiology and Urology, NYU School of Medicine, 550 First Ave, New York, NY 10012, United States
| | - Michael J Garabedian
- Departments of Microbiology and Urology, NYU School of Medicine, 550 First Ave, New York, NY 10012, United States.
| |
Collapse
|
22
|
Yoon N, Lim S, Kang SY, Kwon GY, Jeon HG, Jeong BC, Seo SI, Jeon SS, Lee HM, Choi HY. Mutation of MED12 is not a frequent occurrence in prostate cancer of Korean patients. Asian J Androl 2018; 19:346-349. [PMID: 26924278 PMCID: PMC5427792 DOI: 10.4103/1008-682x.172826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is one of the major health care problems, but the molecular pathogenesis has been relatively insufficiently elucidated. Recently, whole exome sequencing of prostate cancer identified recurrent mutations involving MED12 in Caucasian patients, which finding was not reproduced in one subsequent study by Sanger sequencing. Thus, we investigated mutation status of MED12 in exons 2 and 26 by Sanger sequencing in 102 radical prostatectomy cases from Korean patients. The analysis found the mutation in none of the cases. Therefore, MED12 mutation does not appear to represent a significant molecular alteration in this cohort of patients according to the analysis by the traditional “gold standard.”
Collapse
Affiliation(s)
- Nara Yoon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Sharon Lim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - So Young Kang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Hwang Gyun Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Seong Il Seo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Hyun Moo Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| |
Collapse
|
23
|
Overexpression of p54 nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth. Oncotarget 2018. [PMID: 29535823 PMCID: PMC5828187 DOI: 10.18632/oncotarget.24063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The non-POU domain-containing octamer binding protein p54nrb/NONO is a multifunctional nuclear protein involved in RNA splicing, processing, and transcriptional regulation of nuclear hormone receptors. Through chromosome copy number analysis via whole-exome sequencing, we revealed amplification of the chromosome Xq11.22-q21.33 locus containing the androgen receptor (AR) and NONO genes in androgen-independent, castration-resistant prostate cancer (CRPC)-like LNCaP-SF cells. Moreover, NONO was frequently amplified and overexpressed in patients with CRPC. RNA sequencing data revealed that a truncated ephrin type-A receptor 6 (EPHA6) splice variant (EPHA6-001) was overexpressed in LNCaP-SF cells, and knockdown of NONO or EPHA6-001 prevented EPHA6-001 expression and reduced proliferation and invasion by LNCaP-SF cells grown under androgen deprivation conditions. Growth inhibition and differential splicing of EPHA6 mRNA by p54nrb/NONO were confirmed in gene silencing experiments in 22Rv1 PCa cells. Importantly, NONO knockdown in LNCaP-SF cells led to reduced tumor growth in castrated mice. These findings indicate that p54nrb/NONO is amplified and overexpressed in CRPC cells and clinical samples, and facilitates CRPC growth by mediating aberrant EPHA6 splicing. We therefore propose that p54nrb/NONO constitutes a novel and attractive therapeutic target for CRPC.
Collapse
|
24
|
Zuber V, Bettella F, Witoelar A, Andreassen OA, Mills IG, Urbanucci A. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics 2017; 18:270. [PMID: 28359301 PMCID: PMC5374680 DOI: 10.1186/s12864-017-3620-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs. RESULTS Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia. CONCLUSIONS This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine molecular mechanisms of human phenotypic variation.
Collapse
Affiliation(s)
- Verena Zuber
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aree Witoelar
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - the CRUK GWAS
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- PCUK Movember Centre of Excellence, CCRCB, Queen’s University, Belfast, UK
| | - the TRICL Consortium
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- PCUK Movember Centre of Excellence, CCRCB, Queen’s University, Belfast, UK
| | - Ole A. Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- PCUK Movember Centre of Excellence, CCRCB, Queen’s University, Belfast, UK
| | - Alfonso Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 Gene Reduces Proliferation of Human Leiomyoma Cells Mediated via Wnt/β-Catenin Signaling Pathway. Endocrinology 2017; 158:592-603. [PMID: 27967206 PMCID: PMC5460776 DOI: 10.1210/en.2016-1097] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
Abstract
Uterine fibroids, or leiomyoma, are the most common benign tumors in women of reproductive age. In this work, the effect of silencing the mediator complex subunit 12 (Med12) gene in human uterine fibroid cells was evaluated. The role of Med12 in the modulation of Wnt/β-catenin and cell proliferation-associated signaling was evaluated in human uterine fibroid cells. Med12 was silenced in the immortalized human uterine fibroid cell line (HuLM) using a lentivirus-based Med12 gene-specific RNA interference strategy. HuLM cells were infected with lentiviruses carrying Med12-specific short hairpin RNA (shRNA) sequences or a nonfunctional shRNA scrambled control with green fluorescence protein. Stable cells that expressed low levels of Med12 protein were characterized. Wnt/β-catenin signaling, sex steroid receptor signaling, cell cycle-associated, and fibrosis-associated proteins were measured. Med12 knockdown cells showed significantly (P < 0.05) reduced levels of Wnt4 and β-catenin proteins as well as cell proliferation, as compared with scrambled control cells. Med12 knockdown cells also showed reduced levels of cell cycle-associated cyclin D1, Cdk1, and Cdk2 proteins as well as reduced activation of p-extracellular signal-regulated kinase, p-protein kinase B, and transforming growth factor (TGF)-β signaling pathways as compared with scrambled control cells. Moreover, TGF-β-regulated fibrosis-related proteins such as fibronectin, collagen type 1, and plasminogen activator inhibitor-1 were significantly (P < 0.05) reduced in Med12 knockdown cells as compared with scrambled control cells. Together, these results suggest that Med12 plays a key role in the regulation of HuLM cell proliferation through the modulation of Wnt/β-catenin, cell cycle-associated, and fibrosis-associated protein expression.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Archana Laknaur
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Nahed Ismail
- Clinical Microbiology Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Sunil K. Halder
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| |
Collapse
|
26
|
Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 2017; 8:13671. [PMID: 28067867 PMCID: PMC5227331 DOI: 10.1038/ncomms13671] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
Germline mutations in the BRCA2 tumour suppressor are associated with both an increased lifetime risk of developing prostate cancer (PCa) and increased risk of aggressive disease. To understand this aggression, here we profile the genomes and methylomes of localized PCa from 14 carriers of deleterious germline BRCA2 mutations (BRCA2-mutant PCa). We show that BRCA2-mutant PCa harbour increased genomic instability and a mutational profile that more closely resembles metastastic than localized disease. BRCA2-mutant PCa shows genomic and epigenomic dysregulation of the MED12L/MED12 axis, which is frequently dysregulated in metastatic castration-resistant prostate cancer (mCRPC). This dysregulation is enriched in BRCA2-mutant PCa harbouring intraductal carcinoma (IDC). Microdissection and sequencing of IDC and juxtaposed adjacent non-IDC invasive carcinoma in 10 patients demonstrates a common ancestor to both histopathologies. Overall we show that localized castration-sensitive BRCA2-mutant tumours are uniquely aggressive, due to de novo aberration in genes usually associated with metastatic disease, justifying aggressive initial treatment.
Men that carrier BRCA2 germline mutations are at risk of developing prostate cancer. Here, the authors analyse the genomes of prostate cancer from these individuals and demonstrate increased genomic instability in comparison to sporadic prostate cancer.
Collapse
|
27
|
Brägelmann J, Klümper N, Offermann A, von Mässenhausen A, Böhm D, Deng M, Queisser A, Sanders C, Syring I, Merseburger AS, Vogel W, Sievers E, Vlasic I, Carlsson J, Andrén O, Brossart P, Duensing S, Svensson MA, Shaikhibrahim Z, Kirfel J, Perner S. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer. Clin Cancer Res 2016; 23:1829-1840. [PMID: 27678455 DOI: 10.1158/1078-0432.ccr-16-0094] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches.Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities (n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer (n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq.Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro, inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion.Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Niklas Klümper
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Anne Offermann
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Anne von Mässenhausen
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Diana Böhm
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Mario Deng
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Angela Queisser
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Christine Sanders
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Isabella Syring
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Clinic for Urology and Pediatric Urology, University Hospital of Bonn, Bonn, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Ignacija Vlasic
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Brossart
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Stefan Duensing
- Molecular Uro-oncology, Department of Urology, University of Heidelberg, Heidelberg, Germany
| | - Maria A Svensson
- Department of Research and Education, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Zaki Shaikhibrahim
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany.
| |
Collapse
|
28
|
Al-Hendy A, Diamond MP, Boyer TG, Halder SK. Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells. J Clin Endocrinol Metab 2016; 101:1542-51. [PMID: 26820714 PMCID: PMC4880168 DOI: 10.1210/jc.2015-3555] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Somatic mutations in the Med12 gene are known to activate Wnt/β-catenin signaling in human uterine fibroids (UFs). OBJECTIVE The objective of the study was to examine the role of vitamin D3 in the modulation of Wnt/β-catenin and mammalian target of rapamycin (mTOR) signaling in human UF cells. DESIGN Immortalized human UF cells (HuLM) and human primary UF (PUF) cells were treated with increasing concentrations of vitamin D3 and thereafter analyzed using Western blots and immunocytochemistry. MAIN OUTCOME MEASURES Wnt/β-catenin and mTOR signaling proteins in cultured HuLM and PUF cells were measured. RESULTS UF tumors with Med12 somatic mutations showed an up-regulation of Wnt4 and β-catenin as compared with adjacent myometrium. Vitamin D3 administration reduced the levels of Wnt4 and β-catenin in both HuLM and PUF cells. Vitamin D3 also reduced the expression/activation of mTOR signaling in both cell types. In contrast, vitamin D3 induced the expression of DNA damaged-induced transcription 4 (an inhibitor of mTOR) and tuberous sclerosis genes (TSC1/2) in a concentration-dependent manner in HuLM cells. Furthermore, we observed a concentration-dependent reduction of Wisp1 (Wnt induced signaling protein 1) and flap endonuclease 1 proteins in HuLM cells. Additionally, abrogation of vitamin D receptor expression (by silencing) in normal myometrial cells induces Wnt4/β-catenin as well as prompts a fibrotic process including an increase in cell proliferation and increased extracellular matrix production. Together these results suggest that vitamin D3 functions as an inhibitor of Wnt4/β-catenin and mTOR signaling pathways, which may play major roles in fibroid pathogenesis. CONCLUSIONS Vitamin D3 may have utility as a novel long-term therapeutic and/or preventive option for uterine fibroids.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Michael P Diamond
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Thomas G Boyer
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Sunil K Halder
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| |
Collapse
|
29
|
Kämpjärvi K, Kim NH, Keskitalo S, Clark AD, von Nandelstadh P, Turunen M, Heikkinen T, Park MJ, Mäkinen N, Kivinummi K, Lintula S, Hotakainen K, Nevanlinna H, Hokland P, Böhling T, Bützow R, Böhm J, Mecklin JP, Järvinen H, Kontro M, Visakorpi T, Taipale J, Varjosalo M, Boyer TG, Vahteristo P. Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate 2016; 76:22-31. [PMID: 26383637 DOI: 10.1002/pros.23092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mediator is a multiprotein interface between eukaryotic gene-specific transcription factors and RNA polymerase II. Mutations in exon 2 of the gene encoding MED12, a key subunit of the regulatory kinase module in Mediator, are extremely frequent in uterine leiomyomas, breast fibroadenomas, and phyllodes tumors. These mutations disrupt kinase module interactions and lead to diminished Mediator-associated kinase activity. MED12 mutations in exon 26, resulting in a substitution of leucine 1224 to phenylalanine (L1224F), have been recurrently observed in prostate cancer. METHODS To elucidate the molecular mechanisms leading to tumorigenesis in prostate cancer, we analyzed global interaction profiles of wild-type and L1224F mutant MED12 with quantitative affinity purification-mass spectrometry (AP-MS). Immunoprecipitation and kinase activity assay were used to further assess the interactions between Mediator complex subunits and kinase activity. The presence of L1224F mutation was analyzed in altogether 877 samples representing prostate hyperplasia, prostate cancer, and various tumor types in which somatic MED12 mutations have previously been observed. RESULTS In contrast to N-terminal MED12 mutations observed in uterine leiomyomas, the L1224F mutation compromises neither the interaction of MED12 with kinase module subunits Cyclin C and CDK8/19 nor Mediator-associated CDK activity. Instead, the L1224F mutation was shown to affect interactions between MED12 and other Mediator components (MED1, MED13, MED13L, MED14, MED15, MED17, and MED24). Mutation screening revealed one mutation in a Finnish (Caucasian) prostate cancer patient, whereas no mutations in any other tumor type were observed. CONCLUSIONS Specific somatic MED12 mutations in prostate cancer and uterine leiomyomas accumulate in two separate regions of the gene and promote tumorigenesis through clearly distinct mechanisms.
Collapse
Affiliation(s)
- Kati Kämpjärvi
- Genome-Scale Biology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Nam Hee Kim
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alison D Clark
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Pernilla von Nandelstadh
- Genome-Scale Biology Research Program and Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mikko Turunen
- Genome-Scale Biology Research Program and Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Tuomas Heikkinen
- Genome-Scale Biology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Min Ju Park
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Netta Mäkinen
- Genome-Scale Biology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Kati Kivinummi
- Institute of Biosciences and Medical Technology - BioMediTech and Fimlab Laboratories, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Susanna Lintula
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Tom Böhling
- Department of Pathology, The Laboratory of Helsinki University Central Hospital (HUSLAB), Helsinki University Central Hospital and Medicum, University of Helsinki, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, The Laboratory of Helsinki University Central Hospital (HUSLAB), Helsinki University Central Hospital and Medicum, University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital and University of Eastern Finland, Jyväskylä, Finland
| | - Heikki Järvinen
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mika Kontro
- Hematology Research Unit Helsinki, Department of Medicine, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Tapio Visakorpi
- Institute of Biosciences and Medical Technology - BioMediTech and Fimlab Laboratories, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jussi Taipale
- Genome-Scale Biology Research Program and Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Pia Vahteristo
- Genome-Scale Biology Research Program and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
31
|
Broude EV, Győrffy B, Chumanevich AA, Chen M, McDermott MSJ, Shtutman M, Catroppo JF, Roninson IB. Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer. Curr Cancer Drug Targets 2015; 15:739-49. [PMID: 26452386 PMCID: PMC4755306 DOI: 10.2174/156800961508151001105814] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/28/2015] [Accepted: 06/28/2015] [Indexed: 12/18/2022]
Abstract
CDK8 and its paralog CDK19, in complex with CCNC, MED12 and MED13, are transcriptional regulators that mediate several carcinogenic pathways and the chemotherapy-induced tumor-supporting paracrine network. Following up on our previous observation that CDK8, CDK19 and CCNC RNA expression is associated with shorter relapse-free survival (RFS) in breast cancer, we now found by immunohistochemical analysis that CDK8/19 protein is overexpressed in invasive ductal carcinomas relative to non-malignant mammary tissues. Meta-analysis of transcriptomic data revealed that higher CDK8 expression is associated with shorter RFS in all molecular subtypes of breast cancer. These correlations were much stronger in patients who underwent systemic adjuvant therapy, suggesting that CDK8 impacts the failure of systemic therapy. The same associations were found for CDK19, CCNC and MED13. In contrast, MED12 showed the opposite association with a longer RFS. The expression levels of CDK8 in breast cancer samples were directly correlated with the expression of MYC, as well as CDK19, CCNC and MED13 but inversely correlated with MED12. CDK8, CDK19 and CCNC expression was strongly increased and MED12 expression was decreased in tumors with mutant p53. Gene amplification is the most frequent type of genetic alterations of CDK8, CDK19, CCNC and MED13 in breast cancers (9.7% of which have amplified MED13), whereas point mutations are more common in MED12. These results suggest that the expression of CDK8 and its interactive genes has a profound impact on the response to adjuvant therapy in breast cancer in accordance with the role of CDK8 in chemotherapy-induced tumor-supporting paracrine activities.
Collapse
Affiliation(s)
- Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter St. Coker Life Science Building, Room 713C, Columbia, SC 29208, USA.
| | | | | | | | | | | | | | | |
Collapse
|