1
|
Farris KM, Senior AM, Sobreira DR, Mitchell RM, Weber ZT, Ingerslev LR, Barrès R, Simpson SJ, Crean AJ, Nobrega MA. Dietary macronutrient composition impacts gene regulation in adipose tissue. Commun Biol 2024; 7:194. [PMID: 38365885 PMCID: PMC10873408 DOI: 10.1038/s42003-024-05876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Diet is a key lifestyle component that influences metabolic health through several factors, including total energy intake and macronutrient composition. While the impact of caloric intake on gene expression and physiological phenomena in various tissues is well described, the influence of dietary macronutrient composition on these parameters is less well studied. Here, we use the Nutritional Geometry framework to investigate the role of macronutrient composition on metabolic function and gene regulation in adipose tissue. Using ten isocaloric diets that vary systematically in their proportion of energy from fat, protein, and carbohydrates, we find that gene expression and splicing are highly responsive to macronutrient composition, with distinct sets of genes regulated by different macronutrient interactions. Specifically, the expression of many genes associated with Bardet-Biedl syndrome is responsive to dietary fat content. Splicing and expression changes occur in largely separate gene sets, highlighting distinct mechanisms by which dietary composition influences the transcriptome and emphasizing the importance of considering splicing changes to more fully capture the gene regulation response to environmental changes such as diet. Our study provides insight into the gene regulation plasticity of adipose tissue in response to macronutrient composition, beyond the already well-characterized response to caloric intake.
Collapse
Affiliation(s)
- Kathryn M Farris
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Robert M Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Zachary T Weber
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Liu Y, Duan M, Zhang D, Xie J. The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:701-712. [PMID: 37171185 PMCID: PMC10281885 DOI: 10.3724/abbs.2023086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023] Open
Abstract
Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical mechanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation, inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in knowledge.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Demao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
3
|
Barisón MJ, Nogoceke R, Josino R, Horinouchi CDDS, Marcon BH, Correa A, Stimamiglio MA, Robert AW. Functionalized Hydrogels for Cartilage Repair: The Value of Secretome-Instructive Signaling. Int J Mol Sci 2022; 23:ijms23116010. [PMID: 35682690 PMCID: PMC9181449 DOI: 10.3390/ijms23116010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury. The use of stem cells, associated or not with scaffolds, has shown potential in cartilage regeneration. However, it is currently known that the effect of stem cells occurs mainly through the secretion of paracrine factors that act on local cells. In this review, we will address the use of the secretome—a set of bioactive factors (soluble factors and extracellular vesicles) secreted by the cells—of mesenchymal stem cells as a treatment for cartilage regeneration. We will also discuss methodologies for priming the secretome to enhance the chondroregenerative potential. In addition, considering the difficulty of delivering therapies to the injured cartilage site, we will address works that use hydrogels functionalized with growth factors and secretome components. We aim to show that secretome-functionalized hydrogels can be an exciting approach to cell-free cartilage repair therapy.
Collapse
|
4
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
5
|
Song Y, Li L, Zhao W, Qian Y, Dong L, Fang Y, Yang L, Fan Y. Surface modification of electrospun fibers with mechano-growth factor for mitigating the foreign-body reaction. Bioact Mater 2021; 6:2983-2998. [PMID: 33732968 PMCID: PMC7930508 DOI: 10.1016/j.bioactmat.2021.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The implantation of synthetic polymeric scaffolds induced foreign-body reaction (FBR) seriously influence the wound healing and impair functionality recovery. A novel short peptide, mechano-growth factor (MGF), was introduced in this study to modify an electrospun polycaprolactone (PCL) fibrous scaffold to direct the macrophage phenotype transition and mitigate the FBR. In vitro studies discovered the cell signal transduction mechanism of MGF regulates the macrophage polarization via the expression of related genes and proteins. We found that macrophages response the MGF stimuli via endocytosis, then MGF promotes the histone acetylation and upregulates the STAT6 expression to direct an anti-inflammatory phenotype transition. Subsequently, an immunoregulatory electrospun PCL fibrous scaffold was modified by silk fibroin (SF) single-component layer-by-layer assembly, and the SF was decorated with MGF via click chemistry. Macrophages seeded on scaffold to identify the function of MGF modified scaffold in directing macrophage polarization in vitro. Parallelly, rat subcutaneous implantation model and rat tendon adhesion model were performed to detect the immunomodulatory ability of the MGF-modified scaffold in vivo. The results demonstrate that MGF-modified scaffold is beneficial to the transformation of macrophages to M2 phenotype in vitro. More importantly, MGF-functionalized scaffold can inhibit the FBR at the subcutaneous tissue and prevent tissue adhesion.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, PR China
| | - Lili Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Yunnan Fang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| |
Collapse
|
6
|
Wakade VS, Shende P. Strategic advancements and multimodal applications of biofilm therapy. Expert Opin Biol Ther 2020; 21:395-412. [PMID: 32933329 DOI: 10.1080/14712598.2020.1822319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Biofilm is a layer of mucilage consisting of bacterial species like Escherichia coli and Streptococcus aureus adhering to the solid cell surface. Biofilm is an important and novel approach in a delivery system consisting of six elements that includes extracellular DNA, enzymes, proteins, bacteria, exopolysaccharides and water channels. The biofilm formation is based on two mechanisms: extra polymeric substance and quorum sensing. The microbes present in biofilm prevent direct interaction between the cell surface and foreign materials, like allergens, or toxic gases, like carbon-monoxide and chlorofluorocarbon, entering the body. AREAS COVERED The authors focus on the novel applications of biofilms such as adhesives, tissue engineering, targeted delivery system, probiotics, nutrients delivery, etc. Moreover, the information of the factors for biofilm formation, techniques useful in biofilm formation, and clinical studies are also covered in this article. EXPERT OPINION Many people believe that biofilms have a negative impact on human health, but the expert opinion states that biofilm is a futuristic approach useful in therapeutics for the treatment of tumors and cancer. Biofilms can be combined with novel delivery systems such as nanoparticles, microparticles, etc. for better therapeutic action.
Collapse
Affiliation(s)
- Varun S Wakade
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), India
| |
Collapse
|
7
|
Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors. Int J Mol Sci 2020; 21:ijms21196995. [PMID: 32977489 PMCID: PMC7582825 DOI: 10.3390/ijms21196995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is a key regulator of tissue growth and development that is also implicated in the initiation and progression of various cancers. The human IGF1 gene contains six exons and five long introns, the transcription of which is controlled by two promoters (P1 and P2). Alternate promoter usage, as well as alternative splicing (AS) of IGF1, results in the expression of six various variants (isoforms) of mRNA, i.e., IA, IB, IC, IIA, IIB, and IIC. A mature 70-kDa IGF1 protein is coded only by exons 3 and 4, while exons 5 and 6 are alternatively spliced code for the three C-terminal E peptides: Ea (exon 6), Eb (exon 5), and Ec (fragments of exons 5 and 6). The most abundant of those transcripts is IGF1Ea, followed by IGF1Eb and IGF1Ec (also known as mechano-growth factor, MGF). The presence of different IGF1 transcripts suggests tissue-specific auto- and/or paracrine action, as well as separate regulation of both of these gene promoters. In physiology, the role of different IGF1 mRNA isoforms and pro-peptides is best recognized in skeletal muscle tissue. Their functions include the development and regeneration of muscles, as well as maintenance of proper muscle mass. In turn, in nervous tissue, a neuroprotective function of short peptides, produced as a result of IGF1 expression and characterized by significant blood-brain barrier penetrance, has been described and could be a potential therapeutic target. When it comes to the regulation of carcinogenesis, the potential biological role of different var iants of IGF1 mRNAs and pro-peptides is also intensively studied. This review highlights the role of IGF1 isoform expression (mRNAs, proteins) in physiology and different types of human tumors (e.g., breast cancer, cervical cancer, colorectal cancer, osteosarcoma, prostate and thyroid cancers), as well as mechanisms of IGF1 spliced variants involvement in tumor biology.
Collapse
|
8
|
Podratz JL, Tang JJ, Polzin MJ, Schmeichel AM, Nesbitt JJ, Windebank AJ, Madigan NN. Mechano growth factor interacts with nucleolin to protect against cisplatin-induced neurotoxicity. Exp Neurol 2020; 331:113376. [PMID: 32511954 DOI: 10.1016/j.expneurol.2020.113376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Mechano growth factor (MGF) is an alternatively spliced form of insulin-like growth factor-1 (IGF-1) that has shown to be neuroprotective against 6-hydroxydopamine toxicity and ischemic injury in the brain. MGF also induces neural stem cell proliferation in the hippocampus and preserves olfactory function in aging mice. Cisplatin is a chemotherapy drug that induces peripheral neuropathy in 30-40% of treated patients. Our studies were designed to see if MGF would protect dorsal root ganglion (DRG) neurons from cisplatin-induced neurotoxicity and to identify potential mechanisms that may be involved. Expression of endogenous MGF in adult DRG neurons in vivo ameliorated cisplatin-induced thermal hyperalgesia. Exogenous MGF and MGF with a cysteine added to the N-terminus (CMGF) also protected embryonic DRG neurons from cisplatin-induced cell death in vitro. Mass spectroscopy analysis of proteins bound to MGF showed that nucleolin is a key-binding partner. Antibodies against nucleolin prevented the neuroprotective effect of MGF and CMGF in culture. Both nucleolin and MGF are located in the nucleolus of DRG neurons. RNAseq of RNA associated with MGF indicated that MGF may be involved in RNA processing, protein targeting and transcription/translation. Nucleolin is an RNA binding protein that is readily shuttled between the nucleus, cytoplasm and plasma membrane. Nucleolin and MGF may work together to prevent cisplatin-induced neurotoxicity. Exploring the known mechanisms of nucleolin may help us better understand the mechanisms of cisplatin toxicity and how MGF protects DRG neurons.
Collapse
Affiliation(s)
- J L Podratz
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Tang
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - M J Polzin
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - J J Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - A J Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.
| | - N N Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
9
|
Shende P, Gandhewar N. Current Trend and Pro-survival Approaches for Augmenting Stem Cell Viability. Curr Pharm Biotechnol 2020; 21:1154-1164. [PMID: 32297579 DOI: 10.2174/1389201021666200416130253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stem cells are of two types: embryonic and adult stem cells and they act as a repair system by replenishing body tissue. Stem cells differentiate into different types of cells, such as neural, hematopoietic, adipose, etc. and are used for the treatment of various conditions like myocardial infarction, spinal cord injury, Parkinson's disease and diabetes. METHODS This article focuses on recent research development that addresses the viability issues of stem cells. The efficiency of transplanted stem cells reduces due to conditions like hypoxia, inflammation, nutrient deprivation, immunogenicity, extracellular matrix loss on delivery and mechanical stress. RESULTS To increase the viability of stem cells, techniques like scaffolds of stem cells with hydrogel or alginate, pre-conditioning, different routes of administration and encapsulation, are implemented. CONCLUSION For the protection of stem cells against apoptosis, different pathways, namely Phosphoinositide 3-Kinase (PI3K/AKT), Hypoxia-Inducible Factor (HIF1), Mitogen-Activated Protein Kinases (MAPK) and Hippo, are discussed. DISCUSSION Activation of the PI3K/AKT pathway decreases the concentration of apoptotic factors, while the HIF pathway protects stem cells against the micro-environment of tissue (hypoxia).
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School Pharmacy and Technology Management SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| | - Nivedita Gandhewar
- Shobhaben Pratapbhai Patel School Pharmacy and Technology Management SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| |
Collapse
|
10
|
Jiang X, Zhang Z, Peng T, Wang G, Xu Q, Li G. miR‑204 inhibits the osteogenic differentiation of mesenchymal stem cells by targeting bone morphogenetic protein 2. Mol Med Rep 2019; 21:43-50. [PMID: 31746352 PMCID: PMC6896275 DOI: 10.3892/mmr.2019.10791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are used to investigate regeneration and differentiation. MicroRNA-204 (miR-204) in involved in the Runt-related transcription factor 2/alkaline phosphatase/bone morphogenic protein 2 (Runx2/ALP/BMP2) signaling pathway that regulates bone marrow mesenchymal stem cell (BMSC) differentiation; however, the mechanisms underlying the effects of miR-204 are yet to be determined. The aim of the present study was to investigate the effects of miR-204 on BMSC differentiation. BMSCs were derived from rat bone marrow. The expression levels of Runx2, ALP and BMP2 were measured via reverse transcription-quantitative polymerase chain reaction and western blot analyses following transfection of BMSCs with miR-204 agomir or BMP2 expression vector. The ability of the miR-204 gene to directly bind BMP2 mRNA was assessed using dual-luciferase assays. Ossification was measured via alizarin red stain assays. It was observed that the expression levels of Runx2 and ALP increased over time, whereas those of miR-204 decreased; additionally, miR-204 agomir upregulation inhibited the expression of Runx2, ALP and BMP2 in BMSCs. It was revealed that miR-204 directly interacted with BMP2 mRNA, and that transfection with miR-204 agomir suppressed ossification in BMSCs by targeting the BMP2/Runx2/ALP signaling pathway.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Zuofu Zhang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Tao Peng
- Department of Orthopedics, Pingdu People's Hospital, Pingdu, Shandong 266700, P.R. China
| | - Guangda Wang
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Qiang Xu
- Department of Joint Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Guangrun Li
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
11
|
Jing X, Ye Y, Bao Y, Zhang J, Huang J, Wang R, Guo J, Guo F. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway. Exp Cell Res 2018; 366:81-91. [PMID: 29470961 DOI: 10.1016/j.yexcr.2018.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Abstract
Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci 2017; 189:52-62. [DOI: 10.1016/j.lfs.2017.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
|
14
|
Song Y, Xu K, Yu C, Dong L, Chen P, Lv Y, Chiang MY, Li L, Liu W, Yang L. The use of mechano growth factor to prevent cartilage degeneration in knee osteoarthritis. J Tissue Eng Regen Med 2017; 12:738-749. [DOI: 10.1002/term.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Kang Xu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA USA
| | - Can Yu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Lili Dong
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Peixing Chen
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Yonggang Lv
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Martin Y.M. Chiang
- Biosystems and Biomaterials DivisionNational Institute of Standards and Technology Gaithersburg MD USA
| | - Linhao Li
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical EngineeringBeihang University Beijing China
| | - Wanqian Liu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| | - Li Yang
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering CollegeChongqing University Chongqing China
| |
Collapse
|
15
|
Delivery of biotinylated IGF-1 with biotinylated self-assembling peptides combined with bone marrow stem cell transplantation promotes cell therapy for myocardial infarction. Exp Ther Med 2017; 14:3441-3446. [PMID: 29042931 PMCID: PMC5639271 DOI: 10.3892/etm.2017.4982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is a promising approach for cardiac repair. The aim of the present study was to determine the feasibility of using biotinylated insulin-like growth factor 1 (IGF-1) with biotinylated self-assembling peptides (tethered IGF-1) combined with bone marrow stem cells (BMSCs) transplantation for the treatment of heart failure. Tethered IGF-1 was synthesized and its effect on H9c2 cells was analyzed. Reverse transcription-quantitative polymerase chain reaction and western blot assays demonstrated that tethered IGF-1 did not significantly affect the expression and phosphorylation of AKT, whereas it significantly increased the expression of cardiac troponin T (P<0.01). A rabbit myocardial infarction model was constructed and rabbits were divided into four groups: Control group (no treatment), group 1 (G1; BMSC transplantation), group 2 (G2; BMSCs + non-biotinylated IGF-1) and group 3 (G3; BMSCs + tethered IGF-1). At 4 weeks after modeling, cardiac tissues were obtained for analysis. In the control group, myocardial fibers were disordered, a large number of inflammatory cells infiltrated the cardiac tissues, and apoptosis occurred in ~50% of cells. However, in G1, G2 and G3, muscle cells were well ordered, and a lesser degree of myocardial degeneration and inflammatory cell infiltration was observed. Compared with the control group, the apoptosis rates of myocardial cells in G1-G3 were significantly decreased (P<0.01). Furthermore, compared with G1 and G2, tissue morphology was improved in G3and the number of apoptotic myocardial cells was significantly decreased (P<0.01). These results suggest that treatment with tethered IGF-1 + BMSCs significantly suppresses cell apoptosis and induces the expression of cardiac maturation proteins. These findings provide a novel insight into how the delivery of tethered IGF-1 with BMSCs could potentially enhance the prognosis of patients with heart failure treatment.
Collapse
|
16
|
Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 2017; 10:23. [PMID: 28683812 PMCID: PMC5501366 DOI: 10.1186/s13041-017-0304-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.
Collapse
Affiliation(s)
- Jason J Tang
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jewel L Podratz
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Miranda Lange
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Heidi J Scrable
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA.,The Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anthony J Windebank
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
17
|
Sha Y, Afandi R, Zhang B, Yang L, Lv Y. MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway. Growth Factors 2017; 35:29-38. [PMID: 28553731 DOI: 10.1080/08977194.2017.1327856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Injured anterior cruciate ligament (ACL) is hard to heal due to the poor proliferative potential of ACL fibroblasts. To verify whether mechano-growth factor (MGF) E peptide can restore the cell proliferation of injured ACL fibroblasts, ACL fibroblasts pretreated with MGF E peptide were subjected to injurious stretch and the outcomes were evaluated at 0 and 24 h. After injured, the type III collagen synthesis was increased at 0 h while inhibited at 24 h. The matrix metalloproteinase-2 (MMP-2) activity/expression was up-regulated, but the cell proliferation was inhibited. Fortunately, exogenous MGF E peptide decreased the type I/III collagen synthesis at 0 h but improved the type III collagen synthesis at 24 h. It decreased the MMP-2 activity/expression of injured ACL fibroblasts. Besides, MGF E peptide accelerated the cell proliferation via MEK-ERK1/2 signaling pathway. Our results implied that MGF E peptide pretreatment could provide a new efficient approach for ACL regeneration.
Collapse
Affiliation(s)
- Yongqiang Sha
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Ruli Afandi
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Bingbing Zhang
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Li Yang
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Yonggang Lv
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| |
Collapse
|
18
|
Armakolas N, Armakolas A, Antonopoulos A, Dimakakos A, Stathaki M, Koutsilieris M. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev Oncol Hematol 2016; 108:137-145. [DOI: 10.1016/j.critrevonc.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 10/05/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022] Open
|
19
|
Armakolas N, Dimakakos A, Armakolas A, Antonopoulos A, Koutsilieris M. Possible role of the Ec peptide of IGF‑1Ec in cartilage repair. Mol Med Rep 2016; 14:3066-72. [PMID: 27571686 PMCID: PMC5042773 DOI: 10.3892/mmr.2016.5627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
The Ec peptide (PEc) of insulin-like growth factor 1 Ec (IGF-1Ec) induces human mesenchymal stem cell (hMSC) mobilization and activates extracellular signal‑regulated kinase 1/2 (ERK 1/2) in various cells. The aim of the present study was to examine the effects of PEc on the mobilization and differentiation of hMSCs, as well as the possibility of its implementation in combination with transforming growth factor β1 (TGF‑β1) for cartilage repair. The effects of the exogenous administration of PEc and TGF‑β1, alone and in combination, on hMSCs were assessed using a trypan blue assay, reverse transcription-quantitative polymerase chain reaction, western blot analysis, Alcian blue staining, wound healing assays and migration/invasion assays. It was determined that PEc is involved in the differentiation process of hMSCs towards hyaline cartilage. Treatment of hMSCs with either PEc, TGF‑β1 or both, demonstrated comparable cartilage matrix deposition. Furthermore, treatment with PEc in combination with TGF‑β1 was associated with a significant increase in hMSC mobilization when compared with treatment with TGF‑β1 or PEc alone (P<0.05). Thus, PEc appears to facilitate in vitro hMSC mobilization and differentiation towards chondrocytes, enhancing the role of TGF‑β1.
Collapse
Affiliation(s)
| | - Andreas Dimakakos
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
20
|
Galectin-3 Enhances Migration of Minature Pig Bone Marrow Mesenchymal Stem Cells Through Inhibition of RhoA-GTP Activity. Sci Rep 2016; 6:26577. [PMID: 27215170 PMCID: PMC4877579 DOI: 10.1038/srep26577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are used in tissue engineering because of their migration characters. However, BM-MSCs have limitations in terms of reaching injuries and self-renewal. Therefore, enhancement of BM-MSC migration is important for therapeutic applications. Here, we assessed whether galectin-3 (Gal-3) increases the migration of minature pig BM-MSCs. Gal-3 was knocked down by short hairpin RNA (shRNA) or overexpressed using a lentiviral vector in Wuzhishan minature pig BM-MSCs. Proliferation and migration assays showed that knockdown of Gal-3 impaired BM-MSC proliferation and migration, whereas Gal-3 overexpression promoted these behaviors. RhoA-GTP activity was upregulated in Gal-3 shRNA-transfected BM-MSCs, while Rac-1- and Cdc42-GTP showed no changes. Western blotting indicated downregulation of p-AKT (ser473) and p-Erk1/2 after serum starvation for 12 h in Gal-3-knockdown BM-MSCs. p-AKT (ser473) expression was upregulated after serum starvation for 6 h, and p-Erk1/2 expression was unchanged in Gal-3-overexpressing BM-MSCs. Treatment with C3 transferase or Y27632 enhanced migration, whereas Gal-3 knockdown impaired migration in treated cells. These results demonstrate that Gal-3 may enhance BM-MSC migration, mainly through inhibiting RhoA-GTP activity, increasing p-AKT (ser473) expression, and regulating p-Erk1/2 levels. Our study suggests a novel function of Gal-3 in regulating minature pig BM-MSC migration, which may be beneficial for therapeutic applications.
Collapse
|
21
|
Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med 2016; 11:2398-2410. [PMID: 27074878 DOI: 10.1002/term.2139] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Abstract
Osteochondral lesions due to injury or other pathology commonly result in the development of osteoarthritis and progressive joint destruction. Bioengineered scaffolds are widely studied for regenerative surgery strategies in osteochondral defect management, also combining the use of stem cells, growth factors and hormones. The utility in tissue engineering of human adipose-derived stem cells (ASCs) isolated from adipose tissue has been widely noted. Autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of endogenous growth factors and hormones. Here we compared the effects of three-dimensional (3D) collagen type I scaffold culture and combined treatment with PRP and human recombinant insulin on the chondro-/osteogenic differentiation of ASCs. Histochemical and biomolecular analyses demonstrated that chondro-/osteogenic differentiation was increased in ASC-populated 3D collagen scaffolds compared with two-dimensional (2D) plastic dish culture. Chondro-/osteogenic differentiation was further enhanced in the presence of combined PRP (5% v/v) and insulin (100 nm) treatment. In addition, chondro-/osteogenic differentiation associated with the contraction of ASC-populated 3D collagen scaffold and increased β1/β3-integrin expression. Inhibition studies demonstrated that PRP/insulin-induced chondro-/osteogenic differentiation is independent of insulin-like growth factor 1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) signalling; IGF-R1/mTOR inhibition even enhanced ASC chondro-/osteogenic differentiation. Our findings underline that 3D collagen scaffold culture in association with platelet-derived growth factors and insulin favour the chondro-/osteogenic differentiation of ASCs, suggesting new translational applications in regenerative medicine for the management of osteochondral defects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Alessandra Bielli
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Augusto Orlandi
- Institute of Anatomical Pathology, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
22
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
23
|
Song Y, Yu C, Wang C, Ma X, Xu K, Zhong JL, Lv Y, Sung KP, Yang L. Mechano growth factor-C24E, a potential promoting biochemical factor for ligament tissue engineering. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Lashine ESM, Haikal AF, Kul MEA, Nasrallah LA, Naglah AM. Synthesis and Biological Evaluation of the Anti-Inflammatory Activity for some Novel Oxpholipin-11D Analogues. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.705.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2015; 39:2503-9. [DOI: 10.1007/s00264-015-2974-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
26
|
Mechano-growth factor enhances differentiation of bone marrow-derived mesenchymal stem cells. Biotechnol Lett 2015; 37:2341-8. [DOI: 10.1007/s10529-015-1915-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022]
|
27
|
Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 2015; 52:463-75. [PMID: 25818452 DOI: 10.1016/j.biomaterials.2015.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (P<0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P<0.05), indicating that MGF and TGF-β3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair.
Collapse
|
28
|
Armakolas A, Kaparelou M, Dimakakos A, Papageorgiou E, Armakolas N, Antonopoulos A, Petraki C, Lekarakou M, Lelovas P, Stathaki M, Psarros C, Donta I, Galanos PS, Msaouel P, Gorgoulis VG, Koutsilieris M. Oncogenic Role of the Ec Peptide of the IGF-1Ec Isoform in Prostate Cancer. Mol Med 2015; 21:167-79. [PMID: 25569803 DOI: 10.2119/molmed.2014.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 12/30/2022] Open
Abstract
IGF-1 is one of the key molecules in cancer biology; however, little is known about the role of the preferential expression of the premature IGF-1 isoforms in prostate cancer. We have examined the role of the cleaved COO- terminal peptide (PEc) of the third IGF-1 isoform, IGF-1Ec, in prostate cancer. Our evidence suggests that endogenously produced PEc induces cellular proliferation in the human prostate cancer cells (PC-3) in vitro and in vivo, by activating the ERK1/2 pathway in an autocrine/paracrine manner. PEc overexpressing cells and tumors presented evidence of epithelial to mesenchymal transition, whereas the orthotopic injection of PEc-overexpressing, normal prostate epithelium cells (HPrEC) in SCID mice was associated with increased metastatic rate. In humans, the IGF-1Ec expression was detected in prostate cancer biopsies, where its expression correlates with tumor stage. Our data describes the action of PEc in prostate cancer biology and defines its potential role in tumor growth, progression and metastasis.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Maria Kaparelou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Andreas Dimakakos
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Efstathia Papageorgiou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | | | | | | | - Maria Lekarakou
- Department of Pathology, Metropolitan General Hospital, Athens, Greece
| | - Pavlos Lelovas
- Biomedical Research Foundation Academy of Athens, Center for Experimental Surgery, Athens, Greece
| | - Martha Stathaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Constantinos Psarros
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Ismene Donta
- Laboratory for Research of the Musculoskeletal System Theodoros Garofalidis, University of Athens, KAT Hospital Kifisia, Attiki, Greece
| | - Panos S Galanos
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, Medical School, University of Athens, Greece
| | - Paul Msaouel
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, Medical School, University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael Koutsilieris
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| |
Collapse
|
29
|
Doroudian G, Pinney J, Ayala P, Los T, Desai TA, Russell B. Sustained delivery of MGF peptide from microrods attracts stem cells and reduces apoptosis of myocytes. Biomed Microdevices 2014; 16:705-15. [PMID: 24908137 PMCID: PMC4418932 DOI: 10.1007/s10544-014-9875-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Local release of drugs may have many advantages for tissue repair but also presents major challenges. Bioengineering approaches allow microstructures to be fabricated that contain bioactive peptides for sustained local delivery. Heart tissue damage is associated with local increases in mechano growth factor (MGF), a member of the IGF-1 family. The E domain of MGF peptide is anti-apoptotic and a stem cell homing factor. The objectives of this study were to fabricate a microrod delivery device of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogel loaded with MGF peptide and to determine the elution profile and bioactivity of MGF. The injectable microrods are 30 kPa stiffness and 15 μm widths by 100 μm lengths, chosen to match heart stiffness and myocyte size. Successful encapsulation of native MGF peptide within microrods was achieved with delivery of MGF for 2 weeks, as measured by HPLC. Migration of human mesenchymal stem cells (hMSCs) increased with MGF microrod treatment (1.72 ± 0.23, p < 0.05). Inhibition of the apoptotic pathway in neonatal rat ventricular myocytes was induced by 8 h of hypoxia (1 % O2). Protection from apoptosis by MGF microrod treatment was shown by the TUNEL assay and increased Bcl-2 expression (2 ± 0.19, p < 0.05). Microrods without MGF regulated the cytoskeleton, adhesion, and proliferation of hMSCs, and MGF had no effect on these properties. Therefore, the combination microdevice provided both the mechanical cues and 2-week MGF bioactivity to reduce apoptosis and recruit stem cells, suggesting potential use of MGF microrods for cardiac regeneration therapy in vivo.
Collapse
Affiliation(s)
- Golnar Doroudian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - James Pinney
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Perla Ayala
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Tamara Los
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Tejal A. Desai
- Department of Physiology and Division of Bioengineering, University of California at San Francisco, San Francisco, CA, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol Lett 2014; 36:2559-69. [PMID: 25129046 DOI: 10.1007/s10529-014-1625-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/06/2014] [Indexed: 01/16/2023]
Abstract
Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm(-2) FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm(-2) FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.
Collapse
|
31
|
Durzyńska J, Barton E. IGF expression in HPV-related and HPV-unrelated human cancer cells. Oncol Rep 2014; 32:893-900. [PMID: 25018100 PMCID: PMC4121407 DOI: 10.3892/or.2014.3329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022] Open
Abstract
The human Igf-1 gene not only produces insulin‑like growth factor-I (IGF-I), but also different carboxy‑terminal extensions, known as E peptides, through alternative splicing. We and others have shown that human Eb peptide (hEb) derived from Igf-1 has intrinsic biological activity and is localized to nuclei of transfected cells. Since hEb actions can complement the activity of IGF-I itself, the aim of the present study was to compare IGF-I isoforms at the endogenous protein and transcript level in cancer cell lines, including HeLa, U2OS, HepG2 and K562 cells. Quantitative real-time PCR (qRT‑PCR) using Igf-1 isoform specific primers was performed to determine expression patterns, using β-actin as a reference gene. The overall relative Igf-1 transcript level was different across the cell lines, with ~80-fold higher expression in K562 (130.2±31.2) than in U2OS cells (1.7±1.1). The relative copy number of Igf-1b was the highest in HepG2 (69.9±28.6) and K562 cells (28.3±6.7), whereas the relative copy numbers of Igf-1a and Igf-1c were significantly higher in K562 cells compared to all other cell lines. Immunoblotting using total cell lysates, cytoplasmic and nuclear fractions were carried out to determine the level and distribution of IGF-I proteins. K562 cells exhibited the highest level of hEb in total cell lysates and nuclear fractions and no cell lines displayed hEb in the cytoplasmic fractions. In contrast, IGF-IA was the highest in HeLa cells and was enriched only in the cytoplasmic fraction. Since relatively low IGF-1A transcript level but relatively high pro‑IGF-1A protein level is plausible, we hypothesized that these transcripts could be processed with higher efficiency and/or the protein product may be stabilized by viral HPV oncogenes in HeLa cells. We assert that while it is important to analyze Igf-1 transcript level, it may be more relevant to determine the IGF isoforms at the protein level.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, 61‑614 Poznań, Poland
| | - Elisabeth Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|