1
|
Cai C, Liu S, Liu Y, Huang S, Lu S, Liu F, Luo X, Zouboulis CC, Shi G. Paeoniflorin mitigates insulin-like growth factor 1-induced lipogenesis and inflammation in human sebocytes by inhibiting the PI3K/Akt/FoxO1 and JAK2/STAT3 signaling pathways. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:56. [PMID: 39349732 PMCID: PMC11442718 DOI: 10.1007/s13659-024-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) is considered as a pathogenic factor contributing to sebaceous gland dysfunction, which leads to acne vulgaris. Paeoniflorin (Pae), a bioactive monomer derived from total glycosides of paeony, has shown potential in treating various diseases. However, its anti-acne effects on human sebocytes are not well understood. In this study, we investigated the effects of Pae on acne development induced by IGF-1 in SZ95 sebocytes. Following IGF-1 stimulation, SZ95 sebocytes were exposed to Pae and then determined for proliferation, cell cycle, apoptosis, lipogenesis and pro-inflammatory cytokine secretion. We also analyzed the expression of proteins involved in the PI3K/Akt/FoxO1 and JAK2/STAT3 pathways. In vitro experiments demonstrated that Pae significantly inhibited colony formation, induced G1/S cell cycle arrest, promoted apoptosis, inhibited lipogenesis and cytokine synthesis in IGF-1-treated SZ95 sebocytes. Furthermore, Pae suppressed the phosphorylation of Akt, FoxO1, JAK2, and STAT3. Importantly, the sebo-suppressive and anti-inflammatory effects of Pae were enhanced by blocking PI3K and JAK2. In summary, our findings suggest that Pae has potent anti-proliferative and pro-apoptotic effects in SZ95 sebocytes. Additionally, Pae effectively protects against IGF-1-induced lipogenesis and inflammation by targeting the PI3K/Akt/FoxO1 and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Chuanchuan Cai
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Si Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yufeng Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shaobin Huang
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shiya Lu
- Huamei-Bond International College, Guangzhou, 510520, China
| | - Fang Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaohua Luo
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847, Dessau, Germany
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
2
|
Nishio J, Nakayama S, Chijiiwa Y, Koga M, Aoki M. Atypical Spindle Cell/Pleomorphic Lipomatous Tumor: A Review and Update. Cancers (Basel) 2024; 16:3146. [PMID: 39335118 PMCID: PMC11430808 DOI: 10.3390/cancers16183146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atypical spindle cell/pleomorphic lipomatous tumor (ASCPLT) is a rare and recently described adipocytic neoplasm that primarily occurs in the subcutis of the limbs and limb girdles, particularly of middle-aged adults. It has locally recurrent potential if incompletely excised but no risk for distant metastasis. ASCPLT is histologically similar to spindle cell/pleomorphic lipoma and atypical lipomatous tumor and shows a mixture of atypical spindle cells, adipocytes, lipoblasts, floret-like multinucleated giant cells, and/or pleomorphic cells. It has been recently recognized that ASCPLT can undergo sarcomatous transformation. However, the biological significance of morphological sarcomatous transformation in ASCPLT remains uncertain. Immunohistochemically, the tumor cells show variable expression of CD34, S-100 protein, and desmin. Loss of nuclear Rb expression is observed in the majority of cases. ASCPLT lacks MDM2 gene amplification but can show RB1 gene deletion in a significant subset of cases. Complete surgical excision is the treatment of choice. This review provides an overview of the current knowledge on the clinicoradiological features, pathogenesis, histopathology, and treatment of ASCPLT. In addition, we will discuss the differential diagnosis of this new entity.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoshiro Chijiiwa
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Mikiro Koga
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Wang W, Liu M, Fu X, Qi M, Zhu F, Fan F, Wang Y, Zhang K, Chu S. Hydroxysafflor yellow A ameliorates alcohol-induced liver injury through PI3K/Akt and STAT3/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155814. [PMID: 38878526 DOI: 10.1016/j.phymed.2024.155814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.
Collapse
Affiliation(s)
- Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Furong Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Furong Fan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Yuanchuang Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Kaiyue Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China.
| |
Collapse
|
4
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
5
|
Lei Z, Pan C, Li F, Wei D, Ma Y. SGK1 promotes the lipid accumulation via regulating the transcriptional activity of FOXO1 in bovine. BMC Genomics 2024; 25:737. [PMID: 39080526 PMCID: PMC11290151 DOI: 10.1186/s12864-024-10644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Serum/glucocorticoid-inducible kinase 1 (SGK1) gene encodes a serine/threonine protein kinase that plays an essential role in cellular stress response and regulation of multiple metabolic processes. However, its role in bovine adipogenesis remains unknown. In this study, we aimed to clarify the role of SGK1 in bovine lipid accumulation and improvement of meat quality. METHODS Preadipocytes were induced to differentiation to detect the temporal expression pattern of SGK1. Heart, liver, lung, spleen, kidney, muscle and fat tissues were collected to detect its tissue expression profile. Recombinant adenovirus and the lentivirus were packaged for overexpression and knockdown. Oil Red O staining, quantitative real-time PCR, Western blot analysis, Yeast two-hybrid assay, luciferase assay and RNA-seq were performed to study the regulatory mechanism of SGK1. RESULTS SGK1 showed significantly higher expression in adipose and significantly induced expression in differentiated adipocytes. Furthermore, overexpression of SGK1 greatly promoted adipogenesis and inhibited proliferation, which could be shown by the remarkable increasement of lipid droplet, and the expression levels of adipogenic marker genes and cell cycle-related genes. Inversely, its knockdown inhibited adipogenesis and facilitated proliferation. Mechanistically, SGK1 regulates the phosphorylation and expression of two critical proteins of FoxO family, FOXO1/FOXO3. Importantly, SGK1 attenuates the transcriptional repression role of FOXO1 for PPARγ via phosphorylating the site S256, then promoting the bovine fat deposition. CONCLUSIONS SGK1 is a required epigenetic regulatory factor for bovine preadipocyte proliferation and differentiation, which contributes to a better understanding of fat deposition and meat quality improvement in cattle.
Collapse
Affiliation(s)
- Zhaoxiong Lei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Cuili Pan
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Fen Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
6
|
Xia B, Dai X, Shi H, Yin J, Xu T, Liu T, Yue G, Guo H, Liang R, Liu Y, Gao J, Wang X, Chen X, Tang J, Wang L, Zhu R, Zhang D. Lycopene Promotes Osteogenesis and Reduces Adipogenesis through Regulating FoxO1/PPARγ Signaling in Ovariectomized Rats and Bone Marrow Mesenchymal Stem Cells. Nutrients 2024; 16:1443. [PMID: 38794681 PMCID: PMC11123960 DOI: 10.3390/nu16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.
Collapse
Affiliation(s)
- Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Gaiyue Yue
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Haochen Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Ruiqiong Liang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
- Food and Pharmacy College, Xuchang University, 88 Bayi Road, Xuchang 461000, China
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xiaofei Chen
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Jinfa Tang
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| |
Collapse
|
7
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
8
|
Sun H, Chang Z, Li H, Tang Y, Liu Y, Qiao L, Feng G, Huang R, Han D, Yin DT. Multi-omics analysis-based macrophage differentiation-associated papillary thyroid cancer patient classifier. Transl Oncol 2024; 43:101889. [PMID: 38382228 PMCID: PMC10900934 DOI: 10.1016/j.tranon.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The reclassification of Papillary Thyroid Carcinoma (PTC) is an area of research that warrants attention. The connection between thyroid cancer, inflammation, and immune responses necessitates considering the mechanisms of differential prognosis of thyroid tumors from an immunological perspective. Given the high adaptability of macrophages to environmental stimuli, focusing on the differentiation characteristics of macrophages might offer a novel approach to address the issues related to PTC subtyping. METHODS Single-cell RNA sequencing data of medullary cells infiltrated by papillary thyroid carcinoma obtained from public databases was subjected to dimensionality reduction clustering analysis. The RunUMAP and FindAllMarkers functions were utilized to identify the gene expression matrix of different clusters. Cell differentiation trajectory analysis was conducted using the Monocle R package. A complex regulatory network for the classification of Immune status and Macrophage differentiation-associated Papillary Thyroid Cancer Classification (IMPTCC) was constructed through quantitative multi-omics analysis. Immunohistochemistry (IHC) staining was utilized for pathological histology validation. RESULTS Through the integration of single-cell RNA and bulk sequencing data combined with multi-omics analysis, we identified crucial transcription factors, immune cells/immune functions, and signaling pathways. Based on this, regulatory networks for three IMPTCC clusters were established. CONCLUSION Based on the co-expression network analysis results, we identified three subtypes of IMPTCC: Immune-Suppressive Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (ISMPTCC), Immune-Neutral Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (INMPTCC), and Immune-Activated Macrophage differentiation-associated Papillary Thyroid Carcinoma Classification (IAMPTCC). Each subtype exhibits distinct metabolic, immune, and regulatory characteristics corresponding to different states of macrophage differentiation.
Collapse
Affiliation(s)
- Hanlin Sun
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongqiang Li
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yifeng Tang
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yihao Liu
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Lixue Qiao
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Guicheng Feng
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Runzhi Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China.
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - De-Tao Yin
- Department of Thyroid Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China; Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China; Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou 450052, Henan, PR China.
| |
Collapse
|
9
|
Jeung D, Lee GE, Chen W, Byun J, Nam SB, Park YM, Lee HS, Kang HC, Lee JY, Kim KD, Hong YS, Lee CJ, Kim DJ, Cho YY. Ribosomal S6 kinase 2-forkhead box protein O4 signaling pathway plays an essential role in melanogenesis. Sci Rep 2024; 14:9440. [PMID: 38658799 PMCID: PMC11043394 DOI: 10.1038/s41598-024-60165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.
Collapse
Affiliation(s)
- Dohyun Jeung
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Ga-Eun Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Weidong Chen
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Jiin Byun
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Soo-Bin Nam
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - You-Min Park
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Hye Suk Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Joo Young Lee
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Kwang Dong Kim
- Division of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang-eup, Cheongju-si, Chongbuk, 28116, South Korea
| | - Cheol-Jung Lee
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Dae Joon Kim
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAllen, TX, 78504, USA
| | - Yong-Yeon Cho
- BK21-4Th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
10
|
Mu Q, Miao L, Qian L, Lin Y, Jiang W, Ge X. Regulation of sirt1 and foxO1 in glucose metabolism of Megalobrama amblycephala. Gene 2024; 903:148172. [PMID: 38242371 DOI: 10.1016/j.gene.2024.148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Both silent information regulator 2 homolog 1 (sirt1) and forkhead box transcription factor 1 (foxO1) are crucial transcription factors involved in glucolipid metabolism and energy regulation. The presnt study aimed to understand their regulatory roles in glucose metabolism. Molecular cloning and sequencing of sirt1 gene of Megalobrama amblycephala (masirt1) was conducted and cellular localization of both the factors were analysed. Their effects and action patterns in the glucose metabolism of Megalobrama amblycephala (M. amblycephala) were investigated through acute and long-term glucose tolerance assays. The results revealed that the full-length masirt1 cDNA sequence was 2350 bp and closely related to Sinocyclocheilus rhinocerous. Sirt1 and foxO1 were found to be mutually dependent and localized in the nucleus. Acute glucose tolerance tests revealed that the expression levels of both factors in the liver of M. amblycephala showed an initial increase followed by a decrease. Plasma glucose levels in M. amblycephala significantly increased at 2 and 12 h (P < 0.05). In a long-term breeding experiment with high-sugar feeding, the expressions of the sirt1 and foxO1 genes in the kidney and intestine of M. amblycephala exhibited synergistic changes. The 51WS groups had significantly higher levels of sirt1 and foxO1 gene expression in the kidney and intestine compared to the 0WS and 17WS groups (P < 0.05). Overall, masirt1 is evolutionarily highly conserved, and the interaction site of sirt1 and foxO1 is located in the nucleus. In long-term hyperglycemic regulation, sirt1 and foxO1 exhibit synergistic regulatory effects in the kidney and intestine of M. amblycephala. This study provides insights into how sirt1 and foxO1 regulate glucose metabolism in M. amblycephala.
Collapse
Affiliation(s)
- Qiaoqiao Mu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
11
|
Liu X, Wang C, Li Y, Wang Y, Sun X, Wang Q, Luo J, Lv W, Yang X, Liu Y. Fecal microbiota transplantation revealed the function of folic acid on reducing abdominal fat deposition in broiler chickens mediated by gut microbiota. Poult Sci 2024; 103:103392. [PMID: 38194829 PMCID: PMC10792633 DOI: 10.1016/j.psj.2023.103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Excess abdominal fat reduces carcass yield and feed conversion ratio, thereby resulting in significant economic losses in the poultry industry. Our previous study demonstrated that dietary addition of folic acid reduced fat deposition and changed gut microbiota and short-chain fatty acid. However, whether folic acid regulating abdominal fat deposition was mediated by gut microbiota was unclear. A total of 210 one-day-old broiler chickens were divided into 3 groups including the control (CON), folic acid (FA), and fecal microbiota transplantation (FMT) groups. From 14th day, broiler chickens in CON and FA groups were given perfusion administration with 1 mL diluent daily, while 1 mL fecal microbiota transplantation suspension from FA group prepared before was perfusion in FMT group receiving control diets. The result showed that abdominal fat percentage was significantly lower in FA and FMT groups when compared with CON group (P < 0.05). Morphology analysis revealed that the villus height of jejunum and ileum were significantly higher in FMT group (P < 0.05), and the villus height of jejunum was also significantly higher in FA group (P < 0.05), while the diameter and cross-sectional area (CSA) of adipocytes were significantly decreased in FA and FMT groups when compared with CON group (P < 0.05). Western blot results indicated that the expression levels of FOXO1 and PLIN1 in FMT group were significantly increased (P < 0.05), whereas the expression levels of PPARγ, C/EBPα, and FABP4 were significantly decreased (P < 0.05). Additionally, the Chao1, Observed-species, Shannon and Simpson indexes in FA and FMT groups were significantly higher (P < 0.05), but the microbiota were similar between FMT and FA groups (P < 0.05). LEfSe analysis determined that Lactobacillus, Clostridium and Dehalobacterium were found to be predominant in FA group, while Oscillospira, Shigella, and Streptococcus were the dominant microflora in FMT group. Furthermore, these cecal microbiota were mostly involved in infectious disease, cellular community prokaryotes, cell motility and signal transduction in FA group (P < 0.05), whereas functional capacities involved in signal transduction, cell motility, infectious disease and environment adaptation were enriched significantly of cecal microbiota in FMT group (P < 0.05). In summary, both fecal microbiota transplantation from the broiler chickens of dietary added folic acid and dietary folic acid addition effectively reduced abdominal fat deposition, indicating that the regulatory effect of folic acid on abdominal fat deposition was mediated partly by gut microbiota in broiler chickens.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yumeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiarui Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wen Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
12
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
13
|
Tang S, Yao L, Ruan J, Kang J, Cao Y, Nie X, Lan W, Zhu Z, Han W, Liu Y, Tian J, Seale P, Qin L, Ding C. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci Transl Med 2024; 16:eadf4590. [PMID: 38266107 DOI: 10.1126/scitranslmed.adf4590] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/18/2023] [Indexed: 01/26/2024]
Abstract
The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA sequencing of human IPFP and synovial tissues were performed to elucidate the cellular composition and transcriptional profile. Computational trajectory analysis revealed that dipeptidyl peptidase 4+ mesenchymal cells function as a common progenitor for IPFP adipocytes and synovial lining layer fibroblasts, suggesting that IPFP and synovium represent an integrated tissue unit. OA induced a profibrotic and inflammatory phenotype in mesenchymal lineage cells with biglycan+ intermediate fibroblasts as a major contributor to OA fibrosis. Apolipoprotein E (APOE) signaling from intermediate fibroblasts and macrophages was identified as a critical regulatory factor. Ex vivo incubation of human cartilage with soluble APOE accelerated proteoglycan degeneration. Inhibition of APOE signaling by intra-articular injection of an anti-APOE neutralizing antibody attenuated the progression of collagenase-induced OA in mice, demonstrating a detrimental effect of APOE on cartilage. Our studies provide a framework for designing further therapeutic strategies for OA by describing the cellular and transcriptional landscape of human IPFP and synovium in healthy versus OA joints.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lutian Yao
- Department of Orthopaedic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jingliang Kang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yumei Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaoyu Nie
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiren Lan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jing Tian
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
14
|
Tokumasu R, Yasuhara R, Kang S, Funatsu T, Mishima K. Transcription factor FoxO1 regulates myoepithelial cell diversity and growth. Sci Rep 2024; 14:1069. [PMID: 38212454 PMCID: PMC10784559 DOI: 10.1038/s41598-024-51619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.
Collapse
Affiliation(s)
- Rino Tokumasu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, Graduate School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| | - Seya Kang
- Division of Dentistry for Persons with Disabilities, Department of Perioperative Medicine, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Takahiro Funatsu
- Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
15
|
Zhang S, You Y, Li Y, Yuan H, Zhou J, Tian L, Liu Y, Wang B, Zhu E. Foxk1 stimulates adipogenic differentiation via a peroxisome proliferator-activated receptor gamma 2-dependent mechanism. FASEB J 2023; 37:e23266. [PMID: 37889840 DOI: 10.1096/fj.202301153r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Adipogenesis is a tightly regulated process, and its dysfunction has been linked to metabolic disorders such as obesity. Forkhead box k1 (Foxk1) is known to play a role in the differentiation of myogenic precursor cells and tumorigenesis of different types of cancers; however, it is not clear whether and how it influences adipocyte differentiation. Here, we found that Foxk1 was induced in mouse primary bone marrow stromal cells (BMSCs) and established mesenchymal progenitor/stromal cell lines C3H/10T1/2 and ST2 after adipogenic treatment. In addition, obese db/db mice have higher Foxk1 expression in inguinal white adipose tissue than nonobese db/m mice. Foxk1 overexpression promoted adipogenic differentiation of C3H/10T1/2, ST2 cells and BMSCs, along with the enhanced expression of CCAAT/enhancer binding protein-α, peroxisome proliferator-activated receptor γ (Pparγ), and fatty acid binding protein 4. Moreover, Foxk1 overexpression enhanced the expression levels of lipogenic factors during adipogenic differentiation in both C3H/10T1/2 cells and BMSCs. Conversely, Foxk1 silencing impaired these cells from fully differentiating. Furthermore, adipogenic stimulation induced the nuclear translocation of Foxk1, which depended on the mTOR and PI3-kinase signaling pathways. Subsequently, Foxk1 is directly bound to the Pparγ2 promoter, stimulating its transcriptional activity and promoting adipocyte differentiation. Collectively, our study provides the first evidence that Foxk1 promotes adipocyte differentiation from progenitor cells by promoting nuclear translocation and upregulating the transcriptional activity of the Pparγ2 promoter during adipogenic differentiation.
Collapse
Affiliation(s)
- Shan Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanru You
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yachong Li
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Department of Endodontics, School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Cui X, Zhong H, Wu Y, Zhang Z, Zhang X, Li L, He J, Chen C, Wu Z, Ji C. The secreted peptide BATSP1 promotes thermogenesis in adipocytes. Cell Mol Life Sci 2023; 80:377. [PMID: 38010450 PMCID: PMC10682272 DOI: 10.1007/s00018-023-05027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Although brown adipose tissue (BAT) has historically been viewed as a major site for energy dissipation through thermogenesis, its endocrine function has been increasingly recognized. However, the circulating factors in BAT that play a key role in controlling systemic energy homeostasis remain largely unexplored. Here, we performed a peptidomic analysis to profile the extracellular peptides released from human brown adipocytes upon exposure to thermogenic stimuli. Specifically, we identified a secreted peptide that modulates adipocyte thermogenesis in a cell-autonomous manner, and we named it BATSP1. BATSP1 promoted BAT thermogenesis and induced browning of white adipose tissue in vivo, leading to increased energy expenditure under cold stress. BATSP1 treatment in mice prevented high-fat diet-induced obesity and improved glucose tolerance and insulin resistance. Mechanistically, BATSP1 facilitated the nucleocytoplasmic shuttling of forkhead transcription factor 1 (FOXO1) and released its transcriptional inhibition of uncoupling protein 1 (UCP1). Overall, we provide a comprehensive analysis of the human brown adipocyte extracellular peptidome following acute forskolin (FSK) stimulation and identify BATSP1 as a novel regulator of thermogenesis that may offer a potential approach for obesity treatment.
Collapse
Affiliation(s)
- Xianwei Cui
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Hong Zhong
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Yangyang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Zhuo Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Xiaoxiao Zhang
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Lu Li
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Jin He
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Chen Chen
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Zhenggang Wu
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
17
|
Liu Y, Xing L, Zhang Y, Liu X, Li T, Zhang S, Wei H, Li J. Mild Intermittent Cold Stimulation Affects Cardiac Substance Metabolism via the Neuroendocrine Pathway in Broilers. Animals (Basel) 2023; 13:3577. [PMID: 38003194 PMCID: PMC10668735 DOI: 10.3390/ani13223577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the impact of cold adaptation on the neuroendocrine and cardiac substance metabolism pathways in broilers. The broilers were divided into the control group (CC), cold adaptation group (C3), and cold-stressed group (C9), and experimental period was divided into the training period (d 1-35), recovery period (d 36-43), and cold stress period (d 43-44). During the training period, the CC group was reared at ambient temperature, while C3 and C9 groups were reared at 3 °C and 9 °C lower than the ambient temperature, respectively, for 5 h/d at 1 d intervals. During the recovery period, all the groups were maintained at 20 °C. Lastly, during the cold stress period, the groups were divided into two sub-groups, and each sub-group was placed at 10 °C for 12 h (Y12) or 24 h (Y24) for acute cold stimulation. The blood, hypothalamic, and cardiac tissues samples were obtained from all the groups during the training, recovery, and acute stress periods. The results revealed that the transcription of calcium voltage-gated channel subunit alpha 1 C (CACNAIC) was increased in the hypothalamic tissues of the C3 group (p < 0.05). Moreover, compared to the CC group, the serum norepinephrine (NE) was increased in the C9 group (p < 0.05), but insulin (INS) was decreased in the C9 group (p < 0.05). In addition, the transcription of the phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), SREBP1c, FASN, ACC1, and SCD genes was down-regulated in the C3 and C9 groups (p < 0.05); however, their expression increased in the C3 and C9 groups after acute cold stimulation (p < 0.05). Compared to the CC group, the transcription of forkhead box O1 (FoxO1), PEPCK, G6Pase, GLUT1, HK1, PFK, and LDHB genes was up-regulated in the C3 and C9 groups (p < 0.05. Furthermore, compared to the CC and C9 groups, the protein and mRNA expressions of heat shock protein (HSP) 70 and HSP90 were significantly increased in the C3 group (p < 0.05). These results indicate that intermittent cold training can enhance cold stress tolerance in broilers by regulating their neuroendocrine and cardiac substance metabolism pathways.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (L.X.); (Y.Z.); (X.L.); (T.L.); (S.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
18
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Xie L, Li W, Zheng X, Liu L, Lin L, Niu J, Yang T. Treponema pallidum membrane protein Tp47 induced autophagy and inhibited cell migration in HMC3 cells via the PI3K/AKT/FOXO1 pathway. J Cell Mol Med 2023; 27:3065-3074. [PMID: 37487001 PMCID: PMC10568662 DOI: 10.1111/jcmm.17872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
The migratory ability of microglia facilitates their rapid transport to a site of injury to kill and remove pathogens. However, the effect of Treponema pallidum membrane proteins on microglia migration remains unclear. The effect of Tp47 on the migration ability and autophagy and related mechanisms were investigated using the human microglial clone 3 cell line. Tp47 inhibited microglia migration, the expression of autophagy-associated protein P62 decreased, the expression of Beclin-1 and LC3-II/LC3-I increased, and the autophagic flux increased in this process. Furthermore, autophagy was significantly inhibited, and microglial cell migration was significantly increased after neutralisation with an anti-Tp47 antibody. In addition, Tp47 significantly inhibited the expression of p-PI3K, p-AKT, and p-mTOR proteins, and the sequential activation of steps in the PI3K/AKT/mTOR pathways effectively prevented Tp47-induced autophagy. Moreover, Tp47 significantly inhibited the expression of p-FOXO1 protein and promoted FOXO1 nuclear translocation. Inhibition of FOXO1 effectively suppressed Tp47-induced activation of autophagy and inhibition of migration. Treponema pallidum membrane protein Tp47-induced autophagy and inhibited cell migration in HMC3 Cells via the PI3K/AKT/FOXO1 pathway. These data will contribute to understanding the mechanism by which T. pallidum escapes immune killing and clearance after invasion into the central nervous system.
Collapse
Affiliation(s)
- Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Xin‐Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Li‐Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Li‐Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Jian‐Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Tian‐Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| |
Collapse
|
20
|
Bu S, Xiong A, Yang Z, Aissa-Brahim F, Chen Y, Zhang Y, Zhou X, Cao F. Bilobalide Induces Apoptosis in 3T3-L1 Mature Adipocytes through ROS-Mediated Mitochondria Pathway. Molecules 2023; 28:6410. [PMID: 37687239 PMCID: PMC10489643 DOI: 10.3390/molecules28176410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bilobalide exhibits numerous beneficial bioactivities, including neuroprotective, anti-inflammatory, and antioxidant activity. Our previous study demonstrated that bilobalide inhibits adipogenesis and promotes lipolysis. The dose-dependent cytotoxicity was found to be specific to the mature adipocytes only, indicating the potential for regulating apoptosis in them. Herein, we aimed to investigate the apoptotic effects of bilobalide on 3T3-L1 mature adipocytes and elucidate the underlying mechanisms thereof. Flow cytometry analysis (FACS) revealed the pro-apoptotic effects of bilobalide on these cells. Bilobalide induced early apoptosis by reducing the mitochondrial membrane potential (MMP). DNA fragmentation was confirmed using TUNEL staining. Additionally, bilobalide increased the intracellular reactive oxygen species (ROS) levels and activities of Caspases 3/9. Pre-treatment with NAC (an ROS scavenger) confirmed the role of ROS in inducing apoptosis. Moreover, bilobalide up- and down-regulated the expression of Bax and Bcl-2, respectively, at the mRNA and protein expression levels; upregulated the Bax/Bcl-2 ratio; triggered the release of cytochrome c from the mitochondria; and increased the protein expression of cleaved Caspase 3, cleaved Caspase 9, and PARP cleavage. These results support the conclusion that bilobalide induces apoptosis in mature 3T3-L1 adipocytes through the ROS-mediated mitochondrial pathway, and offers potential novel treatment for obesity.
Collapse
Affiliation(s)
- Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Anran Xiong
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Zhiying Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Faycal Aissa-Brahim
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Ying Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Yichun Zhang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech Co., Ltd., Shenzhen 518001, China;
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Bai B, Wang T, Zhang X, Ba X, Zhang N, Zhao Y, Wang X, Yu Y, Wang B. PTPN22 activates the PI3K pathway via 14-3-3τ in T cells. FEBS J 2023; 290:4562-4576. [PMID: 37255287 DOI: 10.1111/febs.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor-mediated signalling pathway, and its negative regulatory function protects organisms from autoimmune disease. 14-3-3τ is an adaptor protein that regulates target protein function through its intracellular localization. In the present study, we determined that PTPN22 binds to 14-3-3τ via the PTPN22-Ser640 phosphorylation side. PTPN22 binding to 14-3-3τ resulted in 14-3-3τ-Tyr179 dephosphorylation, and reduced the association between 14-3-3τ and Shc, which competitively increased 14-3-3ζ binding to Shc and activated phosphoinositide 3-kinase (PI3K) by bringing it to the membrane. In addition, PTPN22 decreased the tyrosine phosphorylation of p110 to activate PI3K. These two pathways cooperatively affect PI3K activity and the expression of PI3K downstream proteins, such as phosphorylated Akt, mammalian target of rapamycin and forkhead box O1, which inhibited the expression of some proinflammatory factors such as interleukin-1β, interleukin-2, interleukin-6, interferon-γ and tumour necrosis factor-α. Our research provides a preliminary theory for PTPN22 regulating T cell activation, development and immune response via the PI3K/Akt/mammalian target of rapamycin pathway and brings new information for clarifying the functions of PTPN22 in autoimmune diseases.
Collapse
Affiliation(s)
- Bin Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Na Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xipeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
22
|
Song Y, Zhang J, Jiang C, Song X, Wu H, Zhang J, Raza SHA, Zhang L, Zhang L, Cai B, Wang X, Reng ZL, Ma Y, Wei D. FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4. Int J Biol Macromol 2023; 248:126025. [PMID: 37506793 DOI: 10.1016/j.ijbiomac.2023.126025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Intramuscular fat content is closely related to the quality of beef, where the forkhead box protein O1 (FOXO1) is involved in adipocyte differentiation and lipid metabolism, but the specific mechanism of its involvement is still unclear. In this study, interfering with FOXO1 promoted the G1/S transformation of bovine adipocytes by enhancing the expression of proliferation marker genes PCNA, CDK1, CDK2, CCNA2, CCNB1, and CCNE2, thereby positively regulating the proliferation of bovine adipocytes. Additionally, interfering with FOXO1 negatively regulated the expression of adipogenic differentiation marker genes PPARG and CEBPA, as well as lipid anabolism marker genes ACC, FASN, SCD1, SREBP1, FABP4, ACSL1, LPL, and DGAT1, thus reducing triglyceride (TG) content and inhibiting the generation of lipid droplets in bovine adipocytes. A combination of transcriptomic and metabolomics analyses revealed that FOXO1 could regulate the lipogenesis of cattle by influencing the AMPK and PI3K/AKT pathways. Importantly, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis revealed that FOXO1 could regulate bovine lipogenesis by binding to the promoter regions of the CD36 and STEAP4 genes and affecting their transcriptional activities. These results provide a foundation for studying the role and molecular mechanism of FOXO1 in the bovine adipogenesis.
Collapse
Affiliation(s)
- Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luo Reng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
23
|
Wang C, Huang L, Jin S, Hou R, Chen M, Liu Y, Tang W, Li T, Yin Y, He L. d-Aspartate in Low-Protein Diets Improves the Pork Quality by Regulating Energy and Lipid Metabolism via the Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12417-12430. [PMID: 37578298 DOI: 10.1021/acs.jafc.3c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
d-Aspartate is critical in maintaining hormone secretion and reproductive development in mammals. This study investigated the mechanism of different d-aspartate levels (0, 0.005, 0.05, and 0.5% d-aspartate) in low-protein diets on growth performance and meat quality by mediating the gut microbiota alteration in pigs. We found that adding 0.005% d-aspartate to a low-protein diet could dramatically improve the growth performance during the weaned and growing periods. Dietary d-aspartate with different levels markedly increased the back fat, and 0.5% d-aspartate significantly increased the redness in 24 h and reduced the shear force of the longissimus dorsi (LD) muscle. Moreover, d-aspartate treatments decreased the mRNA expression of MyHC II a and MyHC IIx in the LD muscle. The protein expression of MyH1, MyH7, TFAM, FOXO1, CAR, UCP2, and p-AMPK was upregulated by 0.005% d-aspartate. Additionally, the abundance of Alistipes, Akkermansia, and the [Eubacterium]_coprostanoligenes_group in the intestinal chyme of pigs was significantly decreased by d-aspartate treatments at the genus level, which was also accompanied by a significant decrease in acetate content. These differential microorganisms were significantly correlated with meat quality characteristics. These results indicated that d-aspartate in low-protein diets could improve the growth performance and meat quality in pigs by regulating energy and lipid metabolism via the alteration of gut microbiota.
Collapse
Affiliation(s)
- Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruoxin Hou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingzhe Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yonghui Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
24
|
Gupta A, Efthymiou V, Kodani SD, Shamsi F, Patti ME, Tseng YH, Streets A. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74:101746. [PMID: 37286033 PMCID: PMC10338377 DOI: 10.1016/j.molmet.2023.101746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Vissarion Efthymiou
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean D Kodani
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Mary Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Streets
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Park E, Jeon H, Lee N, Yu J, Park H, Satoh T, Akira S, Furuyama T, Lee C, Choi J, Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS-induced inflammatory responses. EMBO J 2023; 42:e111867. [PMID: 37203866 PMCID: PMC10308371 DOI: 10.15252/embj.2022111867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Eui‐Soon Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Nari Lee
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Jiyeon Yu
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hye‐Won Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Tatsuo Furuyama
- Department of Clinical ExaminationKagawa Prefectural University of Health SciencesKagawaJapan
| | - Chul‐Ho Lee
- Laboratory Animal CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jong‐Soon Choi
- Division of Life ScienceKorea Basic Science Institute (KBSI)DaejeonKorea
| | - Jaerang Rho
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| |
Collapse
|
26
|
Stefańska K, Nemcova L, Blatkiewicz M, Pieńkowski W, Ruciński M, Zabel M, Mozdziak P, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays. Int J Mol Sci 2023; 24:10023. [PMID: 37373173 DOI: 10.3390/ijms241210023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Cellivia 3 S.A., 61-623 Poznan, Poland
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Pieńkowski
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60177 Brno, Czech Republic
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
27
|
Lyu M, Li F, Wang X, Xu K, Sun S. miR-145 Modulates Fatty Acid Metabolism by Targeting FOXO1 to Affect SERBP1 Activity in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7440-7450. [PMID: 37154263 DOI: 10.1021/acs.jafc.2c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNA-mediated gene regulation is important for the regulation of fatty acid metabolism and synthesis. Our previous study uncovered that the miR-145 expression is higher in the lactating mammary gland of dairy cows than in the dry-period, but the underlying molecular mechanism is incompletely understood. In this study, we have investigated the potential role of miR-145 in bovine mammary epithelial cells (BMECs). We found that the expression of miR-145 gradually increased during lactation. CRISPR/Cas9-mediated knockout (KO) of miR-145 in BMECs results in the downregulated expression of fatty acid metabolism-associated genes. Further results revealed that miR-145 KO reduced total triacylglycerol (TAG) and cholesterol (TC) accumulation and altered the composition of intracellular fatty acids (C16:0, C18:0, and C18:1). Conversely, miR-145 overexpression had the opposite effect. Bioinformatics online program predicted that miR-145 targets the 3'-UTR of the Forkhead Box O1 (FOXO1) gene. Subsequently, FOXO1 was identified as a direct target of miR-145 by qRT-PCR, Western blot analysis, and luciferase reporter assay. Furthermore, siRNA-mediated silencing of FOXO1 promoted fatty acid metabolism and TAG synthesis in BMECs. Additionally, we observed the involvement of FOXO1 in the transcriptional activity of the sterol regulatory element-binding protein 1 (SREBP1) gene promoter. Overall, our findings indicated that miR-145 relieves the inhibitory effect of FOXO1 on SREBP1 expression by targeting FOXO1 and subsequently regulating fatty acid metabolism. Thus, our results provide valuable information on the molecular mechanisms for improving milk yield and quality from the perspective of miRNA-mRNA networks.
Collapse
Affiliation(s)
- Ming Lyu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Fang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Xu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Kun Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang Shaanxi 712100, PR China
| | - Shuang Sun
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, PR China
| |
Collapse
|
28
|
Wang X, Wan TC, Kulik KR, Lauth A, Smith BC, Lough JW, Auchampach JA. Pharmacological inhibition of the acetyltransferase Tip60 mitigates myocardial infarction injury. Dis Model Mech 2023; 16:dmm049786. [PMID: 36341679 PMCID: PMC9672930 DOI: 10.1242/dmm.049786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacologic strategies that target factors with both pro-apoptotic and anti-proliferative functions in cardiomyocytes (CMs) may be useful for the treatment of ischemic heart disease. One such multifunctional candidate for drug targeting is the acetyltransferase Tip60, which is known to acetylate both histone and non-histone protein targets that have been shown in cancer cells to promote apoptosis and to initiate the DNA damage response, thereby limiting cellular expansion. Using a murine model, we recently published findings demonstrating that CM-specific disruption of the Kat5 gene encoding Tip60 markedly protects against the damaging effects of myocardial infarction (MI). In the experiments described here, in lieu of genetic targeting, we administered TH1834, an experimental drug designed to specifically inhibit the acetyltransferase domain of Tip60. We report that, similar to the effect of disrupting the Kat5 gene, daily systemic administration of TH1834 beginning 3 days after induction of MI and continuing for 2 weeks of a 4-week timeline resulted in improved systolic function, reduced apoptosis and scarring, and increased activation of the CM cell cycle, effects accompanied by reduced expression of genes that promote apoptosis and inhibit the cell cycle and reduced levels of CMs exhibiting phosphorylated Atm. These results support the possibility that drugs that inhibit the acetyltransferase activity of Tip60 may be useful agents for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tina C. Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katherine R. Kulik
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amelia Lauth
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C. Smith
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John W. Lough
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Li L, Quan J, Gao C, Liu H, Yu H, Chen H, Xia C, Zhao S. Whole-genome resequencing to unveil genetic characteristics and selection signatures of specific pathogen-free ducks. Poult Sci 2023; 102:102748. [PMID: 37209656 DOI: 10.1016/j.psj.2023.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
Specific pathogen-free ducks are important high-grade laboratory animals, with a key role in research related to poultry biosecurity, production, and breeding. However, the genetic characteristics of experimental duck varieties remain poorly explored. Herein we performed whole-genome resequencing to construct a single nucleotide polymorphism genetic map of the genomes of 3 experimental duck varieties [Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)] to determine their genetic characteristics and identify selection signatures. Subsequent analyses of population structure and genetic diversity revealed that each duck variety formed a monophyletic group, with SM showing richer genetic diversity than JD and SX. Further, on exploring shared selection signatures, we found 2 overlapping genomic regions on chromosome Z of all experimental ducks, which comprised immune response-related genes (IL7R and IL6ST). Moreover, growth and skeletal development (IGF1R and GDF5), meat quality (FoxO1), and stress resistance (HSP90B1 and Gpx8-b) candidate gene loci were identified in strongly selected signatures specific to JD, SM, and SX, respectively. Our results identified the population genetic basis of experimental ducks at the whole-genome level, providing a framework for future molecular investigations of genetic variations and phenotypic changes. We believe that such studies will eventually contribute to the management of experimental animal resources.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China; College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, PR China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
30
|
Huang CJ, Choo KB. Circular RNA- and microRNA-Mediated Post-Transcriptional Regulation of Preadipocyte Differentiation in Adipogenesis: From Expression Profiling to Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054549. [PMID: 36901978 PMCID: PMC10002489 DOI: 10.3390/ijms24054549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Adipogenesis is an indispensable cellular process that involves preadipocyte differentiation into mature adipocyte. Dysregulated adipogenesis contributes to obesity, diabetes, vascular conditions and cancer-associated cachexia. This review aims to elucidate the mechanistic details on how circular RNA (circRNA) and microRNA (miRNA) modulate post-transcriptional expression of targeted mRNA and the impacted downstream signaling and biochemical pathways in adipogenesis. Twelve adipocyte circRNA profiling and comparative datasets from seven species are analyzed using bioinformatics tools and interrogations of public circRNA databases. Twenty-three circRNAs are identified in the literature that are common to two or more of the adipose tissue datasets in different species; these are novel circRNAs that have not been reported in the literature in relation to adipogenesis. Four complete circRNA-miRNA-mediated modulatory pathways are constructed via integration of experimentally validated circRNA-miRNA-mRNA interactions and the downstream signaling and biochemical pathways involved in preadipocyte differentiation via the PPARγ/C/EBPα gateway. Despite the diverse mode of modulation, bioinformatics analysis shows that the circRNA-miRNA-mRNA interacting seed sequences are conserved across species, supporting mandatory regulatory functions in adipogenesis. Understanding the diverse modes of post-transcriptional regulation of adipogenesis may contribute to the development of novel diagnostic and therapeutic strategies for adipogenesis-associated diseases and in improving meat quality in the livestock industries.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 11114 Taipei, Taiwan
- Correspondence: (C.-J.H.); (K.B.C.)
| | - Kong Bung Choo
- Department of Preclinical Sciences, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Selangor, Malaysia
- Correspondence: (C.-J.H.); (K.B.C.)
| |
Collapse
|
31
|
Yang M, Zhang R, Liu X, Shi G, Liu H, Wang L, Hou X, Shi L, Wang L, Zhang L. Integrating genome-wide association study with RNA-seq revealed DBI as a good candidate gene for intramuscular fat content in Beijing black pigs. Anim Genet 2023; 54:24-34. [PMID: 36305366 DOI: 10.1111/age.13270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
Increasing intramuscular fat (IMF) content can enhance the sensory quality of meat, including tenderness, juiciness, flavor, and color. Genome-wide association study and RNA-sequencing (RNA-seq) analysis were used to identify candidate IMF genes in Beijing Black pigs, a popular species among consumers in northern China. Two and three single nucleotide polymorphisms were significantly associated with IMF in SSC13 and SSC15 respectively. Solute carrier family 4 member 7 (SLC4A7) on SSC13 and insulin induced gene 2 (INSIG2), coiled-coil domain containing 93 (CCDC93), and diazepam binding inhibitor acyl-CoA binding protein (DBI) on SSC15 are good candidate genes in this population. Furthermore, RNA-seq analysis was performed between high and low IMF groups, and 534 differentially expressed genes were identified. In addition, based on differentially expressed genes, Kyoto Encyclopedia of Genes and Genomes analysis revealed that peroxisome proliferator-activated receptors and FoxO signaling pathway pathways might contribute to IMF. Moreover, the DBI gene was identified as a candidate for IMF both by genome-wide association study and RNA-seq analysis, suggesting that it might be a crucial candidate gene for influencing IMF in Beijing Black pigs.
Collapse
Affiliation(s)
- Man Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Run Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiance Liu
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Guohua Shi
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Hai Liu
- Beijing Heiliu Animal Husbandry Technology Co, Ltd, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Shi P, Ruan Y, Liu W, Sun J, Xu J, Xu H. Analysis of Promoter Methylation of the Bovine FOXO1 Gene and Its Effect on Proliferation and Differentiation of Myoblasts. Animals (Basel) 2023; 13:ani13020319. [PMID: 36670858 PMCID: PMC9854826 DOI: 10.3390/ani13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to explore the regulatory role of FOXO1 promoter methylation on its transcriptional level and unravel the effect of FOXO1 on the proliferation and differentiation of bovine myoblasts. Bisulfite sequencing polymerase chain reaction (BSP) and real-time quantitative PCR were performed to determine the methylation status and transcript levels of the FOXO1 promoter region at different growth stages. BSP results showed that the methylation level in the calf bovine (CB) group was significantly higher than that in the adult bovine (AB) group (p < 0.05). On the other hand, qRT-PCR results indicated that the mRNA expression level in the AB group was significantly higher than that in the CB group (p < 0.05), suggesting a significant decrease in gene expression at high levels of DNA methylation. CCK-8 and flow cytometry were applied to determine the effect of silencing the FOXO1 gene on the proliferation of bovine myoblasts. Furthermore, qRT-PCR and Western blot were conducted to analyze the expression of genes associated with the proliferation and differentiation of bovine myoblasts. Results from CCK-8 revealed that the short hairpin FOXO1 (shFOXO1) group significantly promoted the proliferation of myoblasts compared to the short-hairpin negative control (shNC) group (p < 0.05). Flow cytometry results showed a significant decrease in the number of the G1 phase cells (p < 0.05) and a significant increase in the number of the S phase cells (p < 0.05) in the shFOXO1 group compared to the shNC group. In addition, the expression of key genes for myoblast proliferation (CDK2, PCNA, and CCND1) and differentiation (MYOG, MYOD, and MYHC) was significantly increased at both mRNA and protein levels (p < 0.05). In summary, this study has demonstrated that FOXO1 transcription is regulated by methylation in the promoter region and that silencing FOXO1 promotes the proliferation and differentiation of bovine myoblasts. Overall, our findings lay the foundation for further studies on the regulatory role of epigenetics in the development of bovine myoblasts.
Collapse
Affiliation(s)
- Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
33
|
Yu S, Wang G, Liao J, Shen X, Chen J, Chen X. Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken. Br Poult Sci 2023. [PMID: 36622203 DOI: 10.1080/00071668.2022.2162370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19,270 lncRNA/mRNA pairs were identified, including 16,398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA-mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated that pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
34
|
Hu Z, Liu Y, Yao Z, Chen L, Wang G, Liu X, Tian Y, Cao G. Stages of preadipocyte differentiation: biomarkers and pathways for extracellular structural remodeling. Hereditas 2022; 159:47. [PMID: 36572937 PMCID: PMC9793557 DOI: 10.1186/s41065-022-00261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This study utilized bioinformatics to analyze the underlying biological mechanisms involved in adipogenic differentiation, synthesis of the extracellular matrix (ECM), and angiogenesis during preadipocyte differentiation in human Simpson-Golabi-Behmel syndrome at different time points and identify targets that can potentially improve fat graft survival. RESULTS We analyzed two expression profiles from the Gene Expression Omnibus and identified differentially expressed genes (DEGs) at six different time points after the initiation of preadipocyte differentiation. Related pathways were identified using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis (GSEA). We further constructed a protein-protein interaction (PPI) network and its central genes. The results showed that upregulated DEGs were involved in cell differentiation, lipid metabolism, and other cellular activities, while downregulated DEGs were associated with angiogenesis and development, ECM tissue synthesis, and intercellular and intertissue adhesion. GSEA provided a more comprehensive basis, including participation in and positive regulation of key pathways of cell metabolic differentiation, such as the "peroxisome proliferator-activated receptor signaling pathway" and the "adenylate-activated protein kinase signaling pathway," a key pathway that negatively regulates pro-angiogenic development, ECM synthesis, and adhesion. CONCLUSIONS We identified the top 20 hub genes in the PPI network, including genes involved in cell differentiation, ECM synthesis, and angiogenesis development, providing potential targets to improve the long-term survival rate of fat grafts. Additionally, we identified drugs that may interact with these targets to potentially improve fat graft survival.
Collapse
Affiliation(s)
- Zhihan Hu
- grid.412194.b0000 0004 1761 9803Department of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000 China
| | - Yi Liu
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Zongjiang Yao
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Liming Chen
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Gang Wang
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Xiaohui Liu
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Yafei Tian
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| | - Guangtong Cao
- grid.411294.b0000 0004 1798 9345Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, 730030 China
| |
Collapse
|
35
|
Abdollahi M, Kato M, Lanting L, Tunduguru R, Wang M, Wang Y, Fueger PT, Wang Q, Huang W, Natarajan R. miR-379 mediates insulin resistance and obesity through impaired angiogenesis and adipogenesis regulated by ER stress. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:115-130. [PMID: 36250205 PMCID: PMC9535382 DOI: 10.1016/j.omtn.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023]
Abstract
We investigated the role of microRNA (miR-379) in the pathogenesis of obesity, adipose tissue dysfunction, and insulin resistance (IR). We used miR-379 knockout (miR-379KO) mice to test whether loss of miR-379 affects high-fat diet (HFD)-induced obesity and IR via dysregulation of key miR-379 targets in adipose tissue. Increases in body weight, hyperinsulinemia, and IR in wild-type (WT)-HFD mice were significantly attenuated in miR-379KO-HFD mice with some sex differences. Relative to control chow-fed mice, in WT-HFD mice, expression of miR-379 and C/EBP homologous protein (Chop) (pro-endoplasmic reticulum [ER] stress) and inflammation in perigonadal white adipose tissue (gWAT) were increased, whereas adipogenic genes and miR-379 target genes (Vegfb and Edem3) were decreased. These changes, as well as key parameters of brown adipose tissue dysfunction (including mitochondrial defects), were significantly attenuated in miR-379KO-HFD mice. WAT from obese human subjects with and without type 2 diabetes showed increased miR-379 and decreased miR-379 target genes. In cultured 3T3L1 pre-adipocytes, miR-379 inhibitors increased miR-379 targets and adipogenic genes. These data suggest that miR-379 plays an important role in HFD-induced obesity through increased adipose inflammation, mitochondrial dysfunction, and ER stress as well as impaired adipogenesis and angiogenesis. miR-379 inhibitors may be developed as novel therapies for obesity and associated complications.
Collapse
Affiliation(s)
- Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiong Wang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
36
|
Kong Y, Niu A, Yuan W, Zhou Y, Xia M, Xiong X, Lu Y, Yin T, Zhang Y, Chen S, Huang Q, Zeng G, Huang Q. Interaction of FOXO1 and SUMOylated PPARγ1 induced by hyperlipidemia and hyperglycemia favors vascular endothelial insulin resistance and dysfunction. Vascul Pharmacol 2022; 147:107125. [PMID: 36252777 DOI: 10.1016/j.vph.2022.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
PPARγ1 and FOXO1 are the key transcription factors that regulate insulin sensitivity. We previously found that a small ubiquitin-related modifier of PPARγ1 at K77 (SUMOylation) favored endothelial insulin resistance (IR) induced by high fat/high glucose (HF/HG) administration. However, whether and how the crosstalk between SUMOylated PPARγ1 and FOXO1 would mediate the development of the endothelial IR and dysfunction remains unclear. Here, we emphasize how PPARγ1-K77 SUMOylation would interact with FOXO1 and participate in the development of the endothelial IR and dysfunction. Our results show that the combination of HF/HG and PPARγ1-K77 SUMOylation exhibits a synergistic deteriorative effect on the endothelial IR and dysfunction, presenting decreased NO levels and elevated ET-1 levels, weakened PI3K/Akt/eNOS signaling, and impaired endothelium-dependent vasodilation function. The further researches reveal that PPARγ1-K77 SUMOylation readily interacts with FOXO1, and FOXO1 occupies the PPAR response element (PPRE) which is supposed to be occupied by PPARγ, thus resulting in the decrease of PPARγ1 transcription activity and the mitigation of the PI3K/Akt signaling. Moreover, the mitigation of the PI3K/Akt signaling promotes in turn the accumulation of FOXO1 in the nucleus where FOXO1 interacts with the SUMOylated PPARγ1, thus exerting a positive feedback effect on IR pathogenesis. The findings uncover a novel association between PPARγ1-K77 SUMOylation and FOXO1, which contributes to our understanding of the pathogenesis of endothelial IR and dysfunction and provides novel pharmacological targets for diabetic angiopathy.
Collapse
Affiliation(s)
- Ying Kong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Ailin Niu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yumeng Zhou
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Min Xia
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiaowei Xiong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yanli Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Tingting Yin
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Yanan Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Sheng Chen
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qianqian Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang 330006, Jiangxi, PR China; Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
37
|
Huang J, Hong L, Shen B, Zhou Y, Lan J, Peng Y. FOXO1 represses MCL1 transcription to regulate the function of vascular smooth muscle cells in intracranial aneurysm. Exp Brain Res 2022; 240:2861-2870. [DOI: 10.1007/s00221-022-06461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
38
|
Zhou H, Zhou J, Teng H, Yang H, Qiu J, Li X. MiR-145 enriched exosomes derived from bone marrow-derived mesenchymal stem cells protects against cerebral ischemia-reperfusion injury through downregulation of FOXO1. Biochem Biophys Res Commun 2022; 632:92-99. [DOI: 10.1016/j.bbrc.2022.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
39
|
Chen Y, Liu J, Zhang X, Zhu H, Wang Y, Li Z, Liu Y, Liu S, Liu S, Li N, Chen K, Cao X. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity. SCIENCE ADVANCES 2022; 8:eabn9181. [PMID: 35930633 PMCID: PMC9355365 DOI: 10.1126/sciadv.abn9181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
RNA-RBP interaction is important in immune regulation and implicated in various immune disorders. The differentiation of proinflammatory T cell subset TH17 and its balance with regulatory T cell (Treg) generation is closely related to autoimmune pathogenesis. The roles of RNA-RBP interaction in regulation of TH17/Treg differentiation and autoinflammation remain in need of further investigation. Here we report that lncRNA-GM polarizes TH17 differentiation but inhibits iTreg differentiation by reducing activity of Foxo1, a transcriptional factor that is important in inhibiting TH17 differentiation but promoting Treg generation. lncRNA-GM-deficient mice were protected from experimental autoimmune encephalomyelitis. Mechanistically, lncRNA-GM directly binds to cytoplasmic Foxo1, thus inhibiting its activity through blocking dephosphorylation of Foxo1 by phosphatase PP2A to promote Il23r transcription. The human homolog of lncRNA-GM (AK026392.1) also polarizes human TH17 differentiation. Our study provides mechanistic insight into the interaction of lncRNA and transcriptional factor in determining T cell subset differentiation during T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yali Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xiaomin Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Ha Zhu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yanfang Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shuxun Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Kun Chen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
YY1 alleviates lupus nephritis-induced renal injury by reducing the Th17/Treg cell ratio via the IFN-γ/Fra2 axis. J Transl Med 2022; 102:872-884. [PMID: 35361881 DOI: 10.1038/s41374-022-00777-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lupus nephritis (LN) is associated with extensive injury and nephron loss in the afflicted kidney. Evidence has revealed the involvement of dysregulated Yin Yang 1 (YY1), a reported inflammatory modulator, in LN-induced kidney injury, and our microarray profile identified downregulated YY1 expression. Therefore, this study explored the functional relevance and mechanism of YY1 in LN-induced kidney injury. LN was modeled in mice by intraperitoneal injection of pristane, and Jurkat cells (CD41 human T lymphocytes) were activated with TNF-α to mimic the inflammatory environment found in LN. The expression patterns of YY1 and bioinformatics predictions of the downstream factor IFN-γ were confirmed in renal tissues from the mice with LN using qRT-PCR and Western blot analyses. The contents of proinflammatory cytokines in mouse serum samples and cell supernatants were determined using enzyme-linked immunosorbent assays (ELISAs). Ectopic expression and depletion approaches were subsequently used in vitro and in vivo to examine the effects of the YY1/IFN-γ/Fra2/PARP-1/FOXO1 axis on TNF-α-induced inflammation and LN-induced kidney injury. The results showed downregulated expression of YY1 and FOXO1 in the kidney tissues of the mice with LN. Increased proinflammatory factor production was observed in the mice with LN and TNF-α-treated Jurkat cell supernatant, accompanied by increased cell apoptosis and a high ratio of Th17/Treg cells, and these effects were reversed by YY1 restoration. YY1 was further shown to inhibit IFN-γ expression and thereby downregulate Fra2 expression. Fra2 depletion then inhibited PARP-1 expression and promoted FOXO1 expression to suppress cell apoptosis and the release of inflammatory factors. Collectively, our findings revealed that YY1 may alleviate LN-induced renal injury via the IFN-γ/Fra2/PARP-1/FOXO1 axis.
Collapse
|
41
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
42
|
Liu B, Guo K. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol Biol Lett 2022; 27:31. [PMID: 35346026 PMCID: PMC8962532 DOI: 10.1186/s11658-022-00330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Circular RNA (circRNA) has been shown to play an important role in a variety of cardiovascular diseases, including myocardial infarction (MI). However, the role of circRbms1 in MI progression remains unclear. Methods An MI mouse model was constructed in vivo, and cardiomyocytes were cultured under hypoxia condition to induce a cardiomyocyte injury model in vitro. The expression levels of circRbms1, microRNA (miR)-742-3p, and forkhead box O1 (FOXO1) were determined by quantitative real-time PCR. Cell viability, migration, invasion, and apoptosis were measured using Cell Counting Kit-8 assay, transwell assay, and flow cytometry. Meanwhile, western blot analysis was used to examine the protein levels of apoptosis markers and FOXO1. Additionally, dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were employed to verify the interactions between miR-742-3p and circRbms1 or FOXO1. Results CircRbms1 was upregulated in the heart tissues of MI mice and hypoxia-induced cardiomyocytes. Hypoxia induced cardiomyocyte injury by suppressing cell viability, migration, and invasion, and promoting apoptosis. Function experiments showed that circRbms1 overexpression aggravated hypoxia-induced cardiomyocyte injury, while its silencing relieved cardiomyocyte injury induced by hypoxia. Furthermore, circRbms1 sponged miR-742-3p. MiR-742-3p overexpression alleviated hypoxia-induced cardiomyocyte injury, and its inhibitor reversed the suppressive effect of circRbms1 silencing on hypoxia-induced cardiomyocyte injury. Further experiments showed that FOXO1 was a target of miR-742-3p, and its expression was positively regulated by circRbms1. The inhibitory effect of miR-742-3p on hypoxia-induced cardiomyocyte injury was reversed by FOXO1 overexpression. Conclusion CircRbms1 regulated the miR-742-3p/FOXO1 axis to mediate hypoxia-induced cardiomyocyte injury, suggesting that circRbms1 might be an effective target for MI treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00330-y.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China.
| |
Collapse
|
43
|
Chen H, Peng T, Shang H, Shang X, Zhao X, Qu M, Song X. RNA-Seq Analysis Reveals the Potential Molecular Mechanisms of Puerarin on Intramuscular Fat Deposition in Heat-Stressed Beef Cattle. Front Nutr 2022; 9:817557. [PMID: 35387191 PMCID: PMC8978796 DOI: 10.3389/fnut.2022.817557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of Puerarin on intramuscular fat deposition in heat-stressed beef cattle and its underlying mechanism. Thirty-two healthy Jinjiang bulls were randomly divided into four groups and dietary with 0 (Control), 200 (Pue200), 400 (Pue400), and 800 (Pue800) mg/kg Puerarin in the feed concentrate. The results showed that Puerarin treatment enhanced the concentration of crude fat, fatty acid (C14:1 and C17:1), and the activity of fatty acid synthase in Longissimus thoracis (LT), but decreased the levels of blood leptin (P < 0.05). High-throughput sequencing of mRNA technology (RNA-Seq) was used and the analysis showed that 492 genes were down-regulated and 341 genes were up-regulated in LT, and these genes were significantly enriched to the pathways related to lipid metabolism. These results indicated that dietary supplemental with Puerarin enhanced intramuscular fat deposition by regulating lipid metabolism of heat-stressed beef cattle.
Collapse
|
44
|
Sun WL, He LY, Liang L, Liu SY, Luo J, Lv ML, Cai ZW. Ambra1 regulates apoptosis and chemosensitivity in breast cancer cells through the Akt-FoxO1-Bim pathway. Apoptosis 2022; 27:329-341. [PMID: 35257265 DOI: 10.1007/s10495-022-01718-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
Abstract
The sensitivity of cells to chemotherapeutic agents has a major effect on disease outcome in breast cancer patients. Unfortunately, there are numerous factors involved in the regulation of chemosensitivity, and the mechanisms need to be further investigated. Autophagy/Beclin 1 regulator 1 (Ambra1) is a key protein in the crosstalk between autophagy and apoptosis. It controls the switch between these two processes, which determines whether cells survive or die. Induction of apoptosis is the primary mechanism by which most chemotherapeutic drugs eliminate cancer cells. Recently, Ambra1 has been shown to modulate paclitaxel-induced apoptosis in breast cancer cells via the Bim/mitochondrial pathway, thereby modifying the sensitivity of cells to paclitaxel. However, how Ambra1 regulates Bim expression remains unclear. Here, we further confirmed that Bim plays an indispensable role in Ambra1's regulation of apoptosis and chemosensitivity in breast cancer cells. Furthermore, Ambra1 was found to regulate Bim expression at the transcriptional level through the Akt-FoxO1 pathway. Therefore, we propose a novel pathway, Ambra1-Akt-FoxO1-Bim, which regulates apoptosis and chemosensitivity in breast cancer cells. Thus, Ambra1 may represent a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Wei-Liang Sun
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China.
| | - Ling-Yan He
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Li Liang
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Si-Yu Liu
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Jie Luo
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Mei-Ling Lv
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| | - Zheng-Wen Cai
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedonglu Road, Nanning, 530007, Guangxi, People's Republic of China
| |
Collapse
|
45
|
Wang X, Wan TC, Lauth A, Purdy AL, Kulik KR, Patterson M, Lough JW, Auchampach JA. Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. J Mol Cell Cardiol 2022; 163:9-19. [PMID: 34610340 PMCID: PMC8816866 DOI: 10.1016/j.yjmcc.2021.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023]
Abstract
Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amelia Lauth
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexandra L. Purdy
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Katherine R. Kulik
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
46
|
Gao Q, Wang L, Wang S, Huang B, Jing Y, Su J. Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front Cell Dev Biol 2022; 9:787118. [PMID: 35047499 PMCID: PMC8762234 DOI: 10.3389/fcell.2021.787118] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BMSCs), identified as pericytes comprising the hematopoietic niche, are a group of heterogeneous cells composed of multipotent stem cells, including osteochondral and adipocyte progenitors. Nevertheless, the identification and classification are still controversial, which limits their application. In recent years, by lineage tracing and single-cell sequencing, several new subgroups of BMSCs and their roles in normal physiological and pathological conditions have been clarified. Key regulators and mechanisms controlling the fate of BMSCs are being revealed. Cross-talk among subgroups of bone marrow mesenchymal cells has been demonstrated. In this review, we focus on recent advances in the identification and classification of BMSCs, which provides important implications for clinical applications.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai University Institute of Advanced Interdisciplinary Materials Science, Shanghai, China
| | - Lipeng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai University Institute of Advanced Interdisciplinary Materials Science, Shanghai, China.,Wenzhou Institute of Shanghai University, Wenzhou, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai University Institute of Advanced Interdisciplinary Materials Science, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
47
|
Ma X, Li H, Gong Y, Liu F, Tong X, Zhu F, Yang X, Yang L, Zuo J. Psoralen inhibits hepatitis B viral replication by down-regulating the host transcriptional machinery of viral promoters. Virol Sin 2022; 37:256-265. [PMID: 35305922 PMCID: PMC9170971 DOI: 10.1016/j.virs.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) is a global public health challenge due to its highly contagious nature. It is estimated that almost 300 million people live with chronic HBV infection annually. Although nucleoside analogs markedly reduce the risk of liver disease progression, the analogs do not fully eradicate the virus. As such, new treatment options and drugs are urgently needed. Psoralen is a nourishing monomer of Chinese herb and is known to inhibit virus replication and inactivate viruses. In this study, we evaluated the potential of psoralen as an anti-HBV agent. Quantitative PCR and Southern blot analysis revealed that psoralen inhibited HBV replication in HepG2.2.15 cells in a concentration-dependent manner. Moreover, psoralen was also active against the 3TC/ETV-dual-resistant HBV mutant. Further investigations revealed that psoralen suppressed both HBV RNA transcription and core protein expression. The transcription factor FOXO1, a known target for PGC1α co-activation, binds to HBV pre-core/core promoter enhancer II region and activates HBV RNA transcription. Co-immunoprecipitation showed that psoralen suppressed the expression of FOXO1, thereby decreasing the binding of FOXO1 co-activator PGC1α to the HBV promoter. Overall, our results demonstrate that psoralen suppresses HBV RNA transcription by down-regulating the expression of FOXO1 resulting in a reduction of HBV replication. Psoralen is a nourishing monomer of Chinese herb that inhibits the replication of HBV. Psoralen decreases the expression of transcription factor FOXO1 of pre-core/core promoter. Psoralen suppresses HBV replication by down-regulation FOXO1 in HBV-producing cells.
Collapse
|
48
|
Tumor-associated macrophages (TAMs) depend on MMP1 for their cancer-promoting role. Cell Death Discov 2021; 7:343. [PMID: 34753916 PMCID: PMC8578434 DOI: 10.1038/s41420-021-00730-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
The complex interaction between tumor-associated macrophages (TAMs) and tumor cells through several soluble factors and signaling is essential for colorectal cancer (CRC) progression. However, the molecular mechanism involved remains elusive. In this study, we demonstrated that MMP1 derived from TAMs markedly facilitated colon cancer cell proliferation via accelerating cell cycle transition from G0/G1 to S and G2/M phase. Moreover, exogenous MMP1 activated cdc25a/CDK4-cyclin D1 and p21/cdc2-cyclin B1 complexes through altering c-Myc and ETV4. Mechanistic studies indicated that inhibition of PAR1 or blockage of MAPK/Erk signaling eliminated the proliferation induced by exogenous MMP1 in vitro and in vivo. In addition, ETV4 could bind to the promoter of MMP1 and activate MMP1 transcription, which confirmed the MMP1/ETV4/MMP1 positive feedback. Altogether, our study identified a cytokine paracrine manner between colon cancer cells and TAMs. MMP1/PAR1/Erk1/2/ETV4 positive feedback loop may represent to be a therapeutic target and prognostic marker in CRC.
Collapse
|
49
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
50
|
Association of Fpr1 gene expression with osteogenesis and adipogenesis of adipose derived stem cells. Biochem Biophys Res Commun 2021; 574:33-38. [PMID: 34428707 DOI: 10.1016/j.bbrc.2021.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023]
Abstract
Formyl peptide receptors (Fprs) play fundamental roles in multiple cell functions including promotion of osteogenesis and bone fracture healing. In this study, the role of Fpr1 gene in osteogenic and adipogenic differentiation of adipose derived stem cells (ADSCs) was investigated. Primary ADSCs (mADSCs) from either Fpr1 knockout (KO) or wild type (WT) mice and human ADSCs (hADSCs) were treated by osteogenic (OM) or adipogenic (AM) medium, with basal medium as control. Osteogenesis and adipogenesis were measured by histological and biochemical methods. In both hADSCs and mADSCs, Fpr1 gene expression, osteogenic gene expression, as well as mineralization were increased after osteogenic induction. The osteogenic capacity of KO ADSCs was remarkably reduced compared to WT ADSCs, with decreased levels of expression of osteogenic markers, alkaline phosphatase activity, and mineralization. In contrast, the adipogenesis of KO ADSCs was remarkably enhanced compared with WT ADSCs, forming more lipid droplets, and increasing expression of adipogenic markers PPARγ and aP2. Expression of the nuclear transcription factor Forkhead box protein O1 (FoxO1) was decreased in KO ADSCs, while OM and AM caused increase and decrease in FoxO1 expression, respectively. The current study revealed a correlation of Fpr1 gene expression with osteogenesis and adipogenesis of mADSCs, underlying a mechanism involving FoxO1. Our present research suggests that targeting Fpr1 might be a novel strategy to enhance osteogenesis of ADSCs.
Collapse
|